Посвящается академику РАН М. Г. Воронкову в связи с его 85-летием

С. А. Муха, Н. Н. Чипанина, И. В. Стерхова, Т. Н. Аксаментова, С. А. Медведева, В. К. Турчанинов

МОЛЕКУЛЯРНОЕ СТРОЕНИЕ КОМПЛЕКСОВ С БИФУРКАЦИОННОЙ ВОДОРОДНОЙ СВЯЗЬЮ 5.* ДИМЕРЫ 3-ГИДРОКСИ-2-МЕТИЛ-4-ПИРОНА В ИНЕРТНЫХ СРЕДАХ

По данным ИК спектроскопии и квантово-химических расчетов (B3LYP/6-31G**, B3LYP/6-311G*), синперипланарный конформер 3-гидрокси-2-метил-4-пирона (мальтола) в парах и дихлорэтане существует в равновесии с его димерами двух типов. Атом водорода гидроксильной группы одного из них участвует в образовании трехцентровой бифуркационной водородной связи. Второй димер образуется посредством двух таких H-связей, внутримолекулярный компонент которых существенно ослаблен, а межмолекулярный является настолько прочным, что по характеру приближается к двухцентровому.

Ключевые слова: 3-гидрокси-2-метил-4-пирон, димеры, мальтол, бифуркационная водородная связь, DFT квантово-химические расчеты, ИК спектры.

Биологическая активность многих природных соединений, например, таких как флавоноиды, обусловлена образованием в их структуре циклов, замкнутых водородной связью [2]. Наличие внутримолекулярных водородных связей (BMBC) часто определяет надмолекулярную структуру вещества в конденсированном состоянии. Так, молекулы трополона в его твердом агрегатном состоянии объединяются в центросимметричные димеры [3]. Эти димеры в растворе хлороформа диссоциируют с образованием мономеров, которым присуща сильная внутримолекулярная Н-связь, сопровождаемая резонансом [4]. Цитринин, молекулы которого в твердой фазе содержат две ВМВС, в неполярном четыреххлористом углероде существует в виде равновесной смеси мономерных форм с двумя и одной Н-связью [5]. Конформационый изомер 2,5-дигидрокси-1,4бензохинона с двумя ВМВС устойчив в газовой фазе и в растворе хлороформа. В кристаллическом состоянии молекулы этого соединения объединяются в бесконечные ленты посредством групп ОН, участвующих в трехцентровых бифуркационных водородных связях [6]. Молекулы 3гидрокси-2-метил-4-пирона (мальтола) в кристаллическом состоянии полиморфные модификации, представляющие имеют лве собой циклические димеры и цепочечные полиассоциаты [7]. В настоящей работе изучено строение молекул мальтола в газовой фазе и растворе.

^{*} Сообщение 4 см. [1].

Основное внимание уделялось структуре самоассоциатов, которые охарактеризованы совокупностью данных квантово-химических расчетов методом DFT и ИК спектроскопии.

Удовлетворительные данные о геометрических параметрах соединений с BMBC, приводящими к поляризации π -электронной системы молекул, получены при квантово-химических расчетах методом B3LYP/6-31G** [6, 8, 9]. С применением этого метода (комплекс программ Gaussian-98 [10]) в данной работе изучены энергетика образования и строение син-(*sp*) и антиперипланарного (*ap*) конформеров мальтола (1) (рис. 1), а также его димеров (рис. 2), сведения о строении которых заимствованы из данных PCA [7].

Конформеры молекулы мальтола. Энергия образования цикла с ВМВС изолированной молекулы мальтола (ΔE) определена как разность полных энергий ее sp-1a и ap-1b конформеров (рис. 1) и составляет 48.24 кДж/моль. Теоретические значения длин валентных связей конформера 1а мало отличаются от найденных методом РСА для субъединиц его самоассоциатов (табл. 1). В отличие от валентных связей, рассчитанное расстояние между атомами кислорода O(1) и O(2) его цикла, замкнутого Н-связью, существенно (на 0.13 Å) короче присущего самоассоциатам мальтола (табл. 1). Очевидно, в последних это расстояние увеличивается, благодаря ослаблению внутримолекулярной Н-связи. Длина невалентной связи O(1) O(2) у конформера 1а является типичной для молекул с сильной Н-связью, сопровождаемой резонансом [11]. Тяжелые атомы гетерокольца молекулы мальтола в форме 1а и атомы ее цикла, замкнутого водородной связью, расположены в одной плоскости. Тяжелые атомы *ар*-формы 1b также лежат в одной плоскости, а гидроксильная группа отклоняется от нее лишь на 6°. Конформационный переход $ap \rightarrow sp$ приводит к уменьшению валентных углов O(2)C(4)C(3) и H(1)O(1)C(3) на 5 и 7° соответственно. В результате возникновения внутримолекулярной Н-связи расстояние между атомами карбонильного и гидроксильного кислородов у конформера 1а становится на 0.083 Å

Рис. 1. Молекулярная структура, энергия образования (ΔE) и дипольный момент (μ) *sp*-1a и *ap*-1b конформеров мальтола (B3LYP/6-31G**). 1a (*sp*): $\Delta E = 0.0$ кДж/моль, $\mu = 5.28$ D; 1b (*ap*): $\Delta E = 48.24$ кДж/моль, $\mu = 3.36$ D

Рис. 2. Молекулярная структура, дипольный момент (μ) и энергия образования (ΔE) димеров **1с** и **1d** относительно *sp*-конформера мальтола (B3LYP/6-31G**). **1с** $\Delta E = -45.19$ кДж/моль, $\mu = 1.00$ D; **1d** $\Delta E = -35.35$ кДж/моль, $\mu = 1.93$ D

меньше, чем у конформера **1b**. Наряду с уменьшением этого расстояния образование внутримолекулярной H-связи вызывает резкое увеличение (на 0.017 и 0.014 Å) длин связей OH и C=O. В целом, при образовании водородосвязанного цикла у конформера **1a** π -система возмущается таким образом, что происходит выравнивание длин связей углерод–углерод, а, следовательно, повышение ароматичности его гетероцикла по сравнению с конформером **1b**.

Изменения геометрических параметров молекулы мальтола, происходящие в результате конформационного перехода *ар*—*sp* находят отражение в значениях частот его нормальных колебаний. Расчет колебательного спектра конформационных изомеров **1a**,**b** (табл. 2) выполнен методом B3LYP/6-311G*, поскольку он лучше отражает изменения одного из наиболее важных параметров ИК спектров Н-комплексов – частоты валентных колебаний группы OH [12]. Согласно

Таблица 1

	sp-1a	<i>ap</i> -1b	1c(A,B)*	1c (A)	1d (B)	1c (A)	1d (A)	
	B3LYP/6-31G **					PCA [7]		
Связь	l, Å							
H(1)–O(1)	0.983	0.966	0.998	0.987	0.981	0.82	0.86	
O(1)–C(3)	1.350	1.360	1.343	1.342	1.351	1.356	1.350	
O(2)–C(4)	1.241	1.227	1.248	1.240	1.251	1.248	1.254	
O(3)–C(2)	1.376	1.374	1.370	1.374	1.371	1.365	1.366	
O(3)–C(6)	1.346	1.351	1.343	1.344	1.347	1.347	1.351	
C(1)–C(2)	1.490	1.498	1.491	1.491	1.490	1.484	1.482	
C(2)–C(3)	1.357	1.359	1.368	1.365	1.359	1.359	1.354	
C(3)–C(4)	1.467	1.481	1.466	1.470	1.461	1.441	1.444	
C(4)–C(5)	1.446	1.462	1.448	1.451	1.441	1.438	1.433	
C(5)–C(6)	1.353	1.346	1.351	1.351	1.353	1.338	1.325	
H(1) O(2)	1.993		2.516	2.318	1.997			
O(1) O(2)	2.631	2.714	2.822	2.770	2.626	2.754	2.765	
O(2) H(5)				2.139			2.410	
O(2) C(5)				3.116			3.193	
$H(1)\mathbf{A}^{\dots}O(2)\mathbf{B}$			1.663	1.847		1.949	2.035	
$H(1)\mathbf{B}^{\dots}O(2)\mathbf{A}$						1.876	2.102	
$O(1)\mathbf{A}^{\cdots}O(2)\mathbf{B}$			2.640	2.718		2.718	2.738	
$O(1)\mathbf{B}^{}O(2)\mathbf{A}$						2.700	2.752	
Угол	ω, град.							
H(1)O(1)C(3)	103	110	111	112	103			
O(2)C(4)C(3)	118	123	123	121	117			
O(1)AH(1)AO(2)B			165	145		156	146	

Длины связей (*l*) и углы (ω) *sp*- и *ар*-конформеров мальтола и его димеров, по данным расчета (B3LYP/6-31G**) и PCA [7]

* А и В – субъединицы димеров.

расчетам, в результате перехода от конформера **1b** со свободной группой ОН к конформеру **1a**, у которого группа ОН связана, частота валентного колебания гидроксильной группы испытывает смещение к низким частотам на 217 см⁻¹, что указывает на образование прочной водородной связи. Как видно из приведенных выше данных, она поляризует π -систему мальтола, то есть сопровождается резонансом.

В спектре паров мальтола, зарегистрированном при температурах выше 400 К, самая высокочастотная полоса, принадлежащая валентным колебаниям связи О–Н, расположена при 3404 см⁻¹. В спектрах растворов этого соединения в таких инертных апротонных растворителях, как четыреххлористый углерод, дихлорэтан и хлористый метилен, полоса 1638

поглощения мономера регистрируется в интервале 3400-3390 см⁻¹. Ее смещение по отношению к соответствующей полосе в спектрах растворов мономера фенола составляет 210-220 см⁻¹. Эти значения хорошо теоретически вычисленным $c M^{-1}$). соответствуют (Δv_{OH}) 222 Правомочность использования в данном случае в качестве объекта сравнения фенола вытекает из близости теоретически вычисленной частоты его мономера v_{OH} (3793 см⁻¹) и частоты конформера **1b** мальтола (3788 см⁻¹). Следовательно, высокочастотная полоса в области V_{OH} ИК спектра паров мальтола и его растворов в инертных растворителях принадлежит валентным колебаниям гидроксильной группы, вовлеченной в ВМВС. Это в соответствии с результатами расчетов свидетельствует о высокой энергетической предпочтительности sp-конформера (v_{OH} 3571 см⁻¹).

Частоты, отвечающие интервалу 1750–1600 см⁻¹ вычисленного спектра ар-конформера мальтола 1b, имеют три типа колебаний различной интенсивности. Наибольшей частотой (1741 см⁻¹) среди них характеризуется валентное колебание его свободной карбонильной группы, слабо смешанное с деформационным колебанием связи С-Н гетерокольца и валентным колебанием связи С=С. Более низкие частоты (1679 и 1636 см⁻¹) отвечают смешанным колебаниям – валентным С=С, деформационным С-Н и О-Н (табл. 2). Такой порядок следования частот колебаний типичен для α -, γ -пиронов и их производных со свободной карбонильной группой [13, 14]. По данным колебательных расчетов наибольшая интенсивность присуща самому высокочастотному колебанию теоретического спектра конформера 1b. У *sp*-конформера 1a мальтола имеет место иной порядок частот, а его высокочастотное колебание (1723 см⁻¹) характеризуется, напротив, малой интенсивностью. Оно относится к деформационным колебаниям δ_{OH} с небольшим вкладом валентного С=С. Следующее за ним на шкале энергий самое интенсивное колебание (1699 см⁻¹) является смешанным: преимущественно – валентное связи С=О, деформационное связи СН и в небольшой степени – валентное связи С=С. Третье колебание с частотой 1620 см⁻¹ и низкой интенсивностью также смешанное: валентное связей C=C И деформационное СН (табл. 2). В ИК спектрах паров мальтола и его растворов в инертных растворителях (CHCl₃, CH₂Cl₂, C₂H₄Cl₂), зарегистрированных в условиях слабой самоассоциации, в указанном выше интервале наблюдаются три полосы поглощения (рис. 3). Самой интенсивной является промежуточная по порядку следования полоса с максимумом в интервале 1630-1660 см⁻¹. Первая и третья полосы поглощения с максимумами при ~1675 и ~1570 см⁻¹ имеют низкую пиковую интенсивность (рис. 3, 1,2). Таким образом, результаты эксперимента согласуются с результатами расчета колебательного спектра конформера 1а. Это показывает, что самая высокочастотная полоса в отмеченной области ИК спектра мальтола обусловлена деформационными колебаниями фрагмента СОН *sp*-конформера его молекулы. Природа полосы подтверждается сравнением спектров водного раствора (D₂O) мальтола и его раствора, содержащего метилат натрия (рис. 3, 3,4).

Рис. 3. ИК спектры мальтола в интервале 1750–1450 см⁻¹. Пары при 470 К (*1*). Растворы (*c* = 0.02 моль/л, 298 К): в дихлорэтане (*2*), в D₂O (*3*), в D₂O с избытком NaOMe (*4*). Таблетка с КВг (*5*).

Высокочастотная полоса мальтола (D₂O) имеет максимум при 1632 см⁻¹. В спектре аниона (D₂O, NaOMe) она полностью исчезает. Полоса поглощения карбонильной группы при переходе от нейтральной молекулы ($v_{C=O}$ 1600 см⁻¹, D₂O) к ее аниону сохраняет свое положение ($v_{C=O}$ 1605 см⁻¹, D₂O, NaOMe). При этом самая низкочастотная полоса (1535 см⁻¹) расщепляется на две (1560 и 1496 см⁻¹) (рис. 3, 4). Таким образом, у конформера **1а** природа полос, наблюдаемых в области частот колебаний связей С=O и C=C, отличается от присущих конформеру **1b** и α -, γ -пиронам со свободной карбонильной группой. Понижение частоты $v_{C=O}$ конформера **1а** по сравнению с частотой конформера **1b** и α -, γ -пиронов обусловлено участием карбонильной группы мальтола во внутримолекулярном водородном связывании.

Димеры мальтола. В силу того, что раскрытие водородосвязанного цикла мальтола требует высоких энергетических затрат, димерные формы этого соединения могут образоваться только с участием *sp*-конформера его молекулы (рис. 2). Симметричный димер **1с**, по данным PCA [7], сформирован за счет двух однотипных межмолекулярных водородных связей ОН[…]O=C. Димер **1d** представляет собой фрагмент второй полиморфной формы [7], образующийся посредством одной связи ОН[…]O=C. Оба димера являются конформационными изомерами с взаимной *sp*- и *аp*-ориентацией внутримолекулярных связей Н[…]O.

Энергия образования H-комплексов 1c и 1d (рис. 2), субъединицами A и B которых является *sp*-конформер, определена как разность между полной энергией димера и удвоенной энергией мономера. Полученные значения свидетельствуют о большей (на 9.84 кДж/моль) энергетической устойчивости димера 1c. Отметим, что строение димера 1d в изолированном состоянии, как и в твердой фазе, определяется наличием у него дополнительной водородной связи CH[…]O=C (рис. 2). Вычисленное расстояние между тяжелыми атомами C(5)[…]O(2) на ~0.08 Å короче имеющегося в кристалле (табл. 1).

Таблица 2

Отнесение		ИК, см ⁻¹			
	1 a	1b	1c	1d	(газ 470 К)
ν_{OH}	3571 (83)	3788 (28)		3585 (81)	3404 c.
$\nu_{\rm OH}$				3445 (1394)	3304 сл.
$\nu_{\rm OH}$			3350 (3950)		3220 сл.
$\nu_{\rm OH}$			3318 (64)		
$\nu_{C=O},~\delta_{CH}$		1741 (403)			
$\delta_{OH},\ \nu_{C=C}$	1723 (28)			1717 (38)	1684 сл.
$\begin{array}{l} \nu_{C=O}, \ \delta_{CH}, \\ \nu_{C=C}, \ \delta_{OH} \end{array}$	1699 (435)			1696 (629)	1658 o.c.
$\begin{array}{l} \nu_{C=C}, \ \delta_{CH}, \\ \delta_{OH} \end{array}$		1679 (54)			
$\begin{array}{l} \nu_{C=C}, \ \nu_{C=O}, \\ \delta_{OH} \end{array}$			1688 (767) 1688 (50)	1693 (65)	
$\begin{array}{l} \nu_{C=O}, \ \delta_{CH}, \\ \nu_{C=C}, \ \delta_{OH} \end{array}$			1675 (713) 1672 (1)	1674 (583)	
$\begin{array}{l} \nu_{C=C}, \ \delta_{CH}, \\ \delta_{OH} \end{array}$		1636 (18)			
$\begin{array}{l} \nu_{C=C}, \ \delta_{CH}, \\ \delta_{OH}, \ \nu_{C=O} \end{array}$	1620 (1)		1618 (1) 1617 (79)	1622 (12) 1610 (6)	1570 сл.

Частоты колебаний в области 4000–1500 см⁻¹ конформеров мальтола и его димеров

* ИК спектр, рассчитанный по методу B3LYP/6-311G* (в скобках приведены интенсивности колебаний).

Найденные при расчетах невалентные расстояния О.О и Н.О между субъединицами обоих димеров короче измеренных в кристалле (табл. 1). Как в изолированном состоянии, так и в кристалле они меньше у димера 1с, что свидетельствует о большей прочности его межмолекулярных водородных связей. Этот димер имеет симметрию С₈ и образуется за счет двух трехцентровых бифуркационных Н-связей (рис. 2). Возникновение в нем прочных межмолекулярных H-связей (1.663 Å) приводит к резкому ослаблению внутримолекулярных. Невалентная связь Н О у равноценных субъединиц A и B этого димера удлиняется на ~0.5 Å в сравнении со связью свободного мономера. Гидроксильная группа в результате этого на 33° поворачивается относительно плоскости мономера, а плоскости гетероколец оказываются развернутыми друг относительно друга на 59°. Валентный угол O(1)AH(1)A···O(2)B (165°) в трехцентровом мостике димера 1с стремится к значению, присущему комплексам с двухцентровой водородной связью. Несмотря на ослабление в этом лимере Н-связей (внутримолекулярного внутримолекулярных компонента бифуркационной H-связи) π -электронная система *sp*-конформера не испытывает тех изменений, которые происходят при конформационном переходе мальтола $sp \rightarrow ap$. Согласно расчетам, длины валентных связей в гетерокольце субъединиц димера 1с практически не изменяются по сравнению с длинами таковых свободного *sp*-конформера. Это является спецификой трехцентрового Н-комплекса, обусловленной передачей эффекта от внутри- к межмолекулярному компоненту бифуркационной водородной связи.

Обе субъединицы (A, B) второго димера 1d с более длинной (1.847 Å), а следовательно, менее прочной, чем у димера 1с, межмолекулярной водородной связью ОН-О=С и сравнительно слабой связью СН-О=С расположены в одной плоскости. По сравнению со свободным sp-конформером в водородосвязанном цикле его фрагмента А невалентное расстояние О Н увеличивается на ~0.3 Å за счет возникновения межмолекулярной Н-связи, оставаясь на ~0.2 Å меньше суммы ван-дерваальсовых радиусов. Валентный угол O(1)-H(1)^{...}O(2) в трехцентровом мостике согласно расчетам составляет 145°. Его значение практически совпадает с данными РСА и на 20° меньше, чем у димера 1с. Наряду с большей длиной межмолекулярной связи ОН О это свидетельствует внутримолекулярного компонента о большей прочности ланной бифуркационной Н-связи по сравнению с димером 1с. Выводы относительно характера трехцентровых бифуркационых водородных связей в димерах 1c,d распространяются и на обе полиморфные формы кристаллического мальтола.

Анализ рассчитанного колебательного спектра димера 1d (табл. 2) показал, что частота валентного колебания группы OH, участвующей только во внутримолекулярной H-связи (фрагмент **B**), незначительно (на 14 см⁻¹) выше значения, соответствующего свободному конформеру 1а. Ослабление этой внутримолекулярной H-связи происходит благодаря вовлечению в трехцентровой комплекс атома кислорода группы C=O. Образование бифуркационной водородной связи посредством атома водорода гидроксильной группы субъединицы **A** данного димера,

напротив, приводит к понижению частоты v_{OH} по сравнению со свободным *sp*-конформером на 126 см⁻¹. Это указывает на более высокую прочность межмолекулярного компонента трехцентровой H-связи.

В силу симметричного строения димера **1с** все колебания его связей являются дважды вырожденными. Прочные межмолекулярные водородные связи **1с** обусловливают более сильное (Δv 221 и 253 см⁻¹), чем у димера **1d** понижение частоты валентных колебаний групп OH.

Природа колебаний в области, характерной для карбонильной группы и двойных связей углерод–углерод обоих димеров, становится более сложной, чем у свободного *sp*-конформера (табл. 2). В связи с этим основой для дальнейшего анализа послужили в первую очередь теоретические данные, касающиеся изменения при димеризации частот v_{OH}.

В ИК спектрах паров мальтола при 400–410 К наряду с полосой при v_{OH} 3404 см⁻¹, обусловленной поглощением свободного *sp*-конформера, регистрируются две полосы – широкая, низкоинтенсивная с максимумом в интервале 3270–3280 см⁻¹ и интенсивная, центрированная при 3180 см⁻¹ (рис. 4, *l*). Их низкочастотное смещение относительно полосы поглощения конформера **1a** составляет ~130 и 220 см⁻¹, что хорошо соответствует данным колебательного расчета изолированных **1d** (Δv_{OH} 126 см⁻¹) и **1c** (Δv_{OH} 221 см⁻¹) димеров мальтола. При повышении температуры до 430 К интенсивность низкочастотной полосы, отвечаю- щей энергетически более выгодному димеру **1c**, падает, а относительная интенсивность полосы поглощения (3294 см⁻¹) димера **1d**, напротив, возрастает. При температуре 470 К в спектре (рис. 4, *2*) наблюдается интенсивная полоса поглощения групп OH свободной молекулы мальтола, а полосы поглощения его димеров становятся очень слабыми.

В спектрах раствора мальтола в полярном дихлорэтане при 298 К (рис. 4, 3-5) наряду с полосой поглощения *sp*-конформера (3395 см⁻¹) присутствует полоса поглощения димера 1d (3250 см⁻¹), смещенная относительно спектра паров к низким частотам. Ее относительная пиковая интенсивность увеличивается с повышением концентрации раствора и понижением температуры при одновременном падении интенсивности высокочастотной полосы, благодаря смещению равновесия в сторону димера (рис. 4, 4,5). Наряду с этими двумя четко выраженными полосами, в спектре раствора мальтола в дихлорэтане при 298 К наблюдаются три более слабые полосы. Одна из них имеет максимум при ~3200 см⁻¹. Вторая проявляется в виде плеча при ~3280 см⁻¹ на высокочастотном крыле полосы, отвечающей димеру 1d. Третья создает флексию (~3340 см⁻¹) на низкочастотном склоне полосы поглощения мономера (рис. 4, 3). При концентрации раствора относительная увеличении интенсивность компонентов не изменяется. Понижение минорных температуры интенсивности $(\sim 3280 \text{ cm}^{-1}),$ сопровождается приростом полосы соседствующей с полосой димера 1d, и исчезновением самой низкочастотной полосы (~3200 см⁻¹) уже при 263 К. Положение последней $(\Delta v_{OH} \sim 195 \text{ см}^{-1})$ дает основание отнести ее к димеру 1с. Кроме того в интервале частот 3140–3340 см⁻¹ могут появиться усиленные резонансом

Рис. 4. ИК спектры мальтола и ОD-мальтола в интервале 3600–2300 см⁻¹. Пары мальтола: 410 (1), 470 К (2). Растворы мальтола в дихлорэтане: *с* = 0.06 моль/л, 298 К (3); *с* = 0.15 моль/л, 298 К (4); *с* = 0.06 моль/л, 235 К (5). Пары OD-мальтола – 470 К (6). Раствор OD-мальтола в дихлорэтане – *с* = 0.06 моль/л, 298 К (7).

Ферми полосы, обусловленные обертонами или составными тонами валентных колебаний связей С=О, С=С и деформационных колебаний фрагмента СОН.

С целью выяснения природы минорных полос изучен спектр частично дейтерированного мальтола в области 2300-2600 см⁻¹ (соотношение ОD:ОН составляет ~1:1). В спектре его паров (470 K) валентным колебаниям связей О-D sp-конформера и димера 1d соответствуют полосы поглощения с максимумом при 2526 и 2418 см⁻¹ (рис. 4, 6). Для мономера соотношение v_{OH}/v_{OD} составляет 1.347, для димера 1d – 1.362. В спектре раствора в дихлорэтане (298 К) (рис. 4, 7) частоты в максимуме наблюдаемых полос составляют 2518 и 2430 см⁻¹. Здесь соотношение v_{OH}/v_{OD} следующее: мономер – 1.348, димер – 1.337. Полосы, расположенной близко к максимуму полосы димера 1d, в этих спектрах не наблюдается. Следовательно, в спектре раствора мальтола в дихлорэтане полоса с максимумом ~3275 см⁻¹ обусловлена одним из обертонов. Скорее всего это обертон валентного колебания связи С=О (1630 см⁻¹). Поглощение на длинноволновом склоне полосы колебаний связей О-D *sp*-конформера, напротив, становится отчетливо выраженным. В спектре исходного мальтола ему соответствует флексия при ~3340 см⁻¹, которая может быть обусловлена обертоном δ_{OH} (1668 см⁻¹). Полоса, отнесенная в спектре исходного мальтола к димеру 1с, наблюдается и в

спектре дейтерированного производного. По отношению к димеру 1d она смещена к более высоким частотам и проявляется в виде плеча при $\sim 2480 \text{ см}^{-1}$.

Таким образом, проведенное исследование показало, что димерные формы мальтола, благодаря прочным межмолекулярным водородным связям ОН^{...}О=С, существуют не только в его твердом агрегатном состоянии, но и в газофазном, и в растворе дихлорэтана. Их строение обусловлено образованием одной или двух бифуркационных водородных связей. В симметричном димере **1с** внутримолекулярный компонент такой трехцентровой Н-связи настолько ослаблен, что характер межмолекулярного взаимодействия приближается к двухцентровому. Более высокий дипольный момент (рис. 2) второго димера **1d** способствует усилению неспецифической сольватации и повышает заселенность его состояния в растворе по сравнению с димером **1c**.

Отнесение частот в ИК спектре кристаллического мальтола к колебаниям его связей, выполненное в работах [15, 16], основано на данных, относящихся к у-пиронам и металл-хелатам койевой кислоты [13, 17]. Основное внимание исследователей уделялось области поглощения карбонильных групп и двойных связей углерод-углерод. Интенсивная высокочастотная полоса с максимумом при ~1660 см⁻¹ (рис. 3, 5) приписана валентным колебаниям группы С=О. Понижение ее частоты по сравнению с γ -пиронами, а также низкое значение v_{OH} (~3200 см⁻¹) в этом спектре объяснены наличием ВМВС ОН О-С. Однако, существуют указания на сильное смешивание колебаний связей С=О и С=С в соединениях такого типа, что затрудняет анализ [18]. Более того, имеется отнесение высокочастотной полосы в области 1700–1550 см⁻¹ спектра 2,6диметил-у-пирона к колебаниям связей С=С [19]. Из совокупности данных, полученных в результате настоящего исследования, становится очевидным, что низкое значение частоты v_{OH} в спектре мальтола в твердой фазе обусловлено вовлечением его гидроксильных групп в трехцентровые бифуркационные водородные связи, благодаря которым образуются самоассоциаты двух типов. Высокочастотная полоса (1666 см⁻¹) спектра мальтола (рис. 3, 5) обусловлена деформационными колебаниями гидроксильных групп его полиассоциата, фрагментом которого является димер 1d (табл. 2). Полоса, характеризующаяся наибольшей пиковой интенсивностью и полушириной с максимумом при 1626 см⁻¹ отвечает суперпозиции полос поглощения обеих полиморфных форм мальтола. Соответствующие им колебания имеют преимущест- венный вклад от связей C=O и C=C. И, наконец, поглощение с макси-мумом при 1564 см⁻¹ принадлежит колебаниям с преимущественным вкладом двойных связей углерод-углерод этих форм.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

3-Гидрокси-2-метил-4-пирон (мальтол) (1) выделен из хвои пихты сибирской (*Abies sibirica* Ledeb.) [20]. Дейтерирование его группы ОН проведено многократным кипячением раствора соединения в D₂O. ИК спектры паров мальтола при 400 – 480 К и его растворов получены на спектрофотометре Specord IR-75 с использованием термостатированной кюветы.

СПИСОК ЛИТЕРАТУРЫ

- 1. И. В. Стерхова, Н. Н. Чипанина, Б. А. Шаинян, В. К. Турчанинов, ЖОХ, 612 (2006).
- 2. C. A. Rice-Evans, N. J. Miller, G. Paganga, Trends Plant Sci., 2, 152 (1997).
- 3. G. A. Sim, J. M. Robertson, T. H. Goodwin, Acta Cryst., 8, 157 (1955).
- 4. H. P. Koch, J. Chem. Soc., No. 1–3, 512 (1951).
- 5. O. R. Rodig, M. Shiro, Q. Fernando, Chem. Commun., 1553 (1971).
- 6. A. Szabó, A. Kovács, J. Mol. Struct., 510, 215 (1999).
- J. Burgess, J. Fawcett, D. R. Russel, R. C. Hinder, M. B. Hossain, C. R. Stoner, D. van der Helm, Acta Cryst., C 52, 2917 (1996).
- 8. V. Bertolasi, P. Gilli, V. Ferretti, G. Gilli, K. Vaughan, New J. Chem., 23, 1261 (1999).
- 9. M. J. Frish, A. C. Scheiner, H. F. Schaefer, J. S. Binkley, J. Chem Phys., 82, 4194 (1985).
- M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, V. G. Zakrzewski, J. A. Montgomery, R. E. Stratmann, J. C. Burant, S. Dapprich, J. M. Millam, A. D. Daniels, K. N. Kudin, M. C. Strain, O. Farkas, J. Tomasi, V. Barone, M. Cossi, R. Cammi, B. Mennucci, C. Pomelli, C. Adamo, S. Clifford, J. Ochterski, G. A. Petersson, P. Y. Ayala, Q. Cui, K. Morokuma, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. Cioslowski, J. V. Ortiz, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. Gomperts, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, C. Gonzalez, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, J. L. Andres, C. Gonzalez, M. Head-Gordon, E. S. Replogle, J. A. Pople, *Gaussian 98, Revision A.6*, Gaussian, Inc., Pittsburgh (PA), 1998.
- 11. G. Gilli, F. Bellucci, V. Ferretti, V. Bertolasi, J. Am. Chem. Soc., 111, 1023 (1989).
- 12. А. И. Вокин, Л. П. Ознобихина, А. М. Шулунова, С. В. Федоров, В. К. Турчанинов, ЖОХ, **75**, 1642 (2005).
- 13. A. R. Katritzky, R. A. Jones, Spectrochim. Acta, 17, 64 (1961).
- 14. R. N. Jones, C. L. Angell, T. Ito, R. J. D. Smith, Canad. J. Chem., 37, 2007 (1959).
- 15. C. Gerard, Bull. Soc. Chim. Fr., No. 11-12, Pt. I, 451 (1979).
- 16. S. Bhatia, N. K. Kaushik, G. S. Sodhi, Bull. Chem. Soc. Jpn., 62, 2693 (1989).
- 17. Y. Muracami, K. Mera, Bull. Chem. Soc. Jpn., 39, 396 (1966).
- 18. K. Yamada, Bull. Chem. Soc. Jpn., 35, 1323 (1962).
- 19. D. Cook, Canad. J. Chem., 39, 1184 (1961).
- 20. С. А. Медведева, И. А. Антипова, С. А. Муха, Н. А. Тюкавкина, Рос. Пат. 2171805 (2001); *РЖХим*, 190.203П (2002).

Иркутский институт химии им. А. Е. Фаворского СО РАН, Иркутск 664033 e-mail: valtur@irioch.irk.ru Поступило 26.07.2006