Работа посвящена академику РАН М. Г. Воронкову в честь его 85-летия

В. П. Фешин, Е. В. Фешина, Л. И. Жижина

ВЗАИМОДЕЙСТВИЕ АТОМОВ В МОЛЕКУЛАХ ПИРИДИНА И ЕГО ПРОИЗВОДНЫХ ПО РЕЗУЛЬТАТАМ РАСЧЕТОВ *ab initio*

Неэмпирические квантово-химические расчеты пиридина и его 2-, 3- и 4-Х-замещенных (X = F, Cl, Br, Me и Et) методами RHF/6-311G(d) и MP2/6-311G(d) указывают на чередование зарядов на атомах пиридинового кольца и заселенностей их валентных p_y -орбиталей. Оно обусловлено поляризацией связей под действием зарядов геминальных атомов по отношению к C(n). Связывающие молекулярные орбитали в этих молекулах, сформированные за счет p_y -орбиталей атомов, находящихся в плоскости пиридинового кольца, не являются признаком (характеристикой) p,π -сопряжения между неподеленной парой электронов гетероатома заместителя X и π -электронной системой кольца. Результаты расчетов этими методами принципиально не различаются.

Ключевые слова: пиридин и его 2-, 3- и 4-замещенные, заряды на атомах, заселенности атомных орбиталей, молекулярные орбитали, неэмпирические квантовохимические расчеты, p,π -сопряжение.

Квантово-химические расчеты методом RHF/6-31G(d) показали [1], что более низкая частота ЯКР ³⁵Cl 2-хлорпиридина по сравнению с 3- и 4хлорпроизводными обусловлена поляризацией связи C-Cl в первом под непосредственным воздействием частичного отрицательного заряда атома N пиридинового кольца. Аналогичной поляризацией под воздействием заряда атома N обусловлено также чередование зарядов на атомах C в этих молекулах. Согласно существующим представлениям (см., например, [2, 3]) в молекуле пиридина (Py, C_5H_5N) и его производных (XC₅H₄N) *p*-орбиталь атома N, перпендикулярная плоскости пиридинового кольца, участвует в образовании π-электронной системы последнего, а в галогенпроизводных пиридина неподеленная пара электронов атома галогена участвует в *р*,π-сопряжении с этой системой. Степень участия атома галогена в таком сопряжении должна уменьшаться при переходе от $X = F \kappa X = Cl u$ Вг, поскольку при этом возрастает объем атома галогена и орбиталей их неподеленных пар электронов и, следовательно, уменьшается степень перекрывания этих орбиталей с *п*-электронной системой кольца.

Для дальнейшего изучения электронных эффектов в молекуле пиридина и его 2-, 3- и 4-замещенных (X = H, F, Cl, Br, Me и Et) нами выполнены квантово-химические расчеты этих молекул ограниченным методом Хартри–Фока (RHF) и с последующим учетом корреляции электронов в рамках теории возмущения Меллера–Плессета второго

порядка (MP2). При этом использован базисный набор 6-311G(d), 1671

рекомендованный для расчетов молекул, содержащих атомы химических элементов III периода таблицы Д. И. Менделеева [4]. Все расчеты выполнены с полной оптимизацией геометрии молекул по программе GAUSSIAN 94W [5]. В расчетах пиридина и его алкилзамещенных за начало системы координат выбрано ядро атома N, а для галогенпроизводных – ядро атома галогена, причем ось Z совпадала со связью галоген–углерод, а ось Y была перпендикулярна плоскости молекулы.

Согласно расчетам обоими методами остов всех изученных молекул плоский, т. е. двугранные углы равны 0 или 180° . В молекулах этилпиридина оба атома С этильной группы также лежат в плоскости кольца. Двугранные углы CCC(2)N в 2-EtC₃H₄N, CCC(3)C(4) в 3-EtC₃H₄N и CCC(4)C(3) в 4-EtC₅H₄N равны 180° . Оси симметрии p_y -орбиталей атомов N, C и галогена перпендикулярны плоскости молекул. В молекулах 2-, 3- и 4-XC₅H₄N рассчитанные методом RHF/6-311G(d) длины связей несколько меньше, за исключением связей C–X (X = Cl, Br, Me и Et), чем вычисленные методом MP2/6-311G(d) (табл. 1). Результаты расчетов геометрических параметров пиридина и его производных последним методом ближе к экспериментальным данным, согласно которым в пиридине длины связей N–C(2) 1.340, C(2)–C(3) 1.395, C(3)–C(4) 1.394 Å, углы C(2)NC(6) 116.8, NC(2)C(3) 123.9, C(2)C(3)C(4) 118.5, C(3)C(4)C(5) 118.3° [2, 6].

Длины связей X–C (X = Cl, Br) в 2-XC₅H₄N немного больше, чем в соответствующих 3- и 4-замещенных (табл. 1). Это подтверждает результаты расчетов, ранее выполненных методом RHF/6-31G(d) [1], и не согласуется с предположением (см., например, [3]) о более высокой кратности связи С–галоген в первых молекулах по сравнению с последними.

Ранее [1] отмечалось чередование зарядов на атомах С в пиридине и его 2- и 3-хлорзамещенных. Настоящие расчеты более высокого уровня подтверждают это чередование. То же самое наблюдается и для всех других изученных молекул (табл. 2). Это обусловлено тем, что атом N в них имеет значительный частичный отрицательный заряд, под действием которого электронная плотность соответствующей связи C(n)X смещается к атомам C, геминальным по отношению к атому C(n). При этом на атомах C(2) и C(6) заряды обычно положительные, а на C(4) – небольшой отрицательный заряд.

v	<i>d</i> , Å										
л	X-C(n)	N-C(2)	C(2)–C(3)	C(3)–C(4)	C(4)–C(5)	C(5) –C(6)	C(6)– N				
	-		Метод	RHF/6-311G	(d)		-				
Н	-	1.319	1.385	1.382	1.384	1.384	1.320				
2-F	1.315	1.292	1.385	1.377	1.390	1.377	1.327				
2-Cl	1.744	1.300	1.386	1.379	1.387	1.379	1.324				
2-Br	1.903	1.301	1.387	1.380	1.386	1.380	1.324				
2-Me	1.506	1.325	1.389	1.383	1.382	1.384	1.317				
2-Et	1.514	1.327	1.389	1.385	1.380	1.385	1.316				
3-F	1.325	1.317	1.379	1.373	1.383	1.384	1.320				
3-Cl	1.740	1.316	1.383	1.379	1.382	1.384	1.319				
3-Br	1.895	1.317	1.384	1.380	1.383	1.384	1.319				
3-Me	1.508	1.321	1.387	1.389	1.380	1.386	1.316				
3-Et	1.517	1.324	1.386	1.391	1.378	1.387	1.314				
4-F	1.318	1.320	1.384	1.376	1.376	1.384	1.320				
4-Cl	1.737	1.318	1.385	1.379	1.379	1.385	1.318				
4-Br	1.894	1.318	1.385	1.380	1.380	1.385	1.318				
4-Me	1.507	1.322	1.381	1.390	1.385	1.386	1.317				
4-Et	1.516	1.323	1.379	1.393	1.385	1.388	1.315				
		I	Метод	MP2/6-311G	(d)	I					
Н	-	1.344	1.398	1.396	1.397	1.398	1.344				
2-F	1.341	1.316	1.396	1.392	1.400	1.394	1.348				
2-Cl	1.741	1.327	1.399	1.394	1.398	1.395	1.347				
2-Br	1.905	1.327	1.400	1.394	1.398	1.395	1.347				
2-Me	1.505	1.348	1.402	1.396	1.395	1.398	1.342				
2-Et	1.513	1.349	1.401	1.398	1.394	1.398	1.340				
3-F	1.343	1.341	1.395	1.389	1.397	1.398	1.344				
3-Cl	1.732	1.340	1.399	1.394	1.396	1.397	1.344				
3-Br	1.892	1.341	1.400	1.395	1.397	1.397	1.344				
3-Me	1.506	1.343	1.402	1.401	1.395	1.398	1.343				
3-Et	1.514	1.346	1.402	1.403	1.393	1.399	1.341				
4-F	1.342	1.343	1.398	1.389	1.389	1.398	1.343				
4-Cl	1.732	1.343	1.398	1.394	1.394	1.398	1.343				
4-Br	1.893	1.343	1.398	1.395	1.395	1.398	1.343				
4-Me	1.506	1.344	1.396	1.401	1.399	1.398	1.342				
4-Et	1.514	1.345	1.395	1.403	1.399	1.400	1.341				

Длины связей (d) в молекулах пиридина (X=H), его 2-, 3- и 4-замещенных (XC5H4N), рассчитанные методами RHF/6-311G(d) и MP2/6-311G(d)

v	α, град.										
Λ	C(2)NC(6)	NC(2)C(3)	C(2)C(3)C(4)	C(3)C(4)C(5)	C(4)C(5)C(6)	C(5)C(6)N	XC(n)C(n+1)				
Метод RHF/6-311G(d)											
Н	117.71	123.63	118.21	118.61	118.21	123.63	-				
2-F	117.09	125.68	116.63	119.24	117.83	123.53	117.92				
2-Cl	117.53	124.60	117.08	119.17	117.93	123.46	118.46				
2-Br	117.63	124.75	117.08	119.19	117.97	123.38	118.60				
2-Me	118.73	121.92	118.99	118.93	117.61	123.81	121.78				
2-Et	119.06	121.61	118.96	119.17	117.45	123.76	123.57				
3-F	118.44	121.99	120.46	117.19	118.70	123.21	120.15				
3-Cl	118.35	122.55	119.42	117.84	118.53	123.31	120.72				
3-Br	118.35	122.53	119.41	117.83	118.51	123.38	120.73				
3-Me	117.95	124.51	116.56	119.62	118.29	123.07	121.76				
3-Et	118.16	124.43	116.28	119.97	118.17	122.98	119.84				
4-F	117.51	124.06	116.80	120.76	116.80	124.06	119.62				
4-Cl	117.54	123.97	117.35	119.83	117.35	123.97	120.08				
4-Br	117.59	123.95	117.38	119.76	117.38	123.95	120.12				
4-Me	116.99	123.86	119.21	116.85	119.19	123.89	121.09				
4-Et	116.82	123.80	119.54	116.53	119.17	124.13	119.49				

Валентные углы (α) в молекулах пиридина (X = H), его 2-, 3- и 4-замещенных (XC₅H₄N)

Таблица 2

Метод MP2/6-311G(d)										
Н	116.67	123.90	118.67	118.18	118.69	123.88	-			
2-F	116.22	126.03	116.96	118.82	118.39	123.59	117.9			
2-Cl	116.52	125.06	117.52	118.79	118.39	123.73	118.42			
2-Br	116.55	125.12	117.39	118.86	118.42	123.66	118.3			
2-Me	117.77	122.25	119.45	118.41	118.23	123.89	121.92			
2-Et	118.00	122.06	119.37	118.63	118.10	123.84	123.3			
3-F	117.26	122.39	120.75	116.86	119.10	123.65	120.0			
3-C1	117.39	122.87	119.70	117.48	119.06	123.50	120.5			
3-Br	117.47	122.76	119.75	117.42	119.09	123.51	120.5			
3-Me	116.83	124.82	117.02	119.19	118.72	123.42	121.3			
3-Et	117.05	124.65	116.83	119.54	118.55	123.37	123.3			
4-F	116.56	124.30	117.23	120.40	117.23	124.30	119.8			
4-C1	116.44	124.30	117.83	119.31	117.83	124.30	120.3			
4-Br	116.46	124.34	117.76	119.35	117.76	124.34	120.3			
4-Me	116.17	123.98	119.68	116.52	119.67	123.99	121.3			
4-Et	116.01	123.90	119.96	116.31	119.57	124.25	119.9			

В 2-фторпиридине сильно электроотрицательный атом F также имеет значительный отрицательный заряд, под действием которого геминальные по отношению к C(2) атомы N и C(3) имеют наибольшие отрицательные заряды по сравнению с незамещенным пиридином и его 2-Cl- и 2-Brзамещенными. Непосредственное влияние отрицательных зарядов атомов N и C(3) через пространство приводит к увеличению частичного отрицательного заряда атома С(4) по сравнению с незамещенным пирилином и его 2-Cl- и 2-Вг-замешенными. Пол непосредственным влиянием значительного отрицательного заряда атома F в 3-F-пиридине на атоме С(2), геминальном по отношению к атому С(3), появляется небольшой отрицательный заряд, а на другом геминальном атоме С(4) частичный отрицательный заряд становится значительным по сравнению с незамещенным пиридином и его 3-Cl- и 3-Br-замещенными. Непосредственное влияние отрицательно заряженного атома F в 4-F-пиридине на атомы С(3) и С(5), геминальные по отношению к атому С(4), приводит к увеличению их частичных отрицательных зарядов по сравнению с незамещенным пиридином и его Cl- и Br-замещенными. Атомом F в 2-, 3- и 4-F-замещенных пиридина обусловлен значительный положительный заряд на атоме С, с которым он связан.

Таким образом, распределение зарядов в изученных молекулах подчиняется общей закономерности изменения электронной плотности на атоме Y в группировках Y-Z-M и Y-Z = M под влиянием заряда атома M (см., например, [1, 7, 8]): отрицательный заряд атома M повышает электронную плотность на атоме Y, а положительный понижает ее. Это обусловлено поляризацией связи Z-Y под непосредственным воздействием заряда атома M [1, 7–9].

Заряды на атомах в изученных молекулах, рассчитанные методами RHF и MP2 (табл. 3), близки между собой, как и заселенности валентных *p*-орбиталей соответствующих атомов (табл. 4). Поскольку в базисном наборе 6-311G(d) каждая валентная орбиталь представлена в виде комбинации трех орбиталей разных размеров (см., например, [4]), приведенные в табл. 4 заселенности являются суммой трех этих составляющих.

Во всех этих молекулах происходит чередование заселенностей валентных p_y -орбиталей атомов С пиридинового кольца. Заселенности этих орбиталей максимальны для атомов N, C(3) и C(5), которые имеют наибольшие частичные отрицательные заряды. В молекулах 2- и 4-F-пиридина заселенности p_y -орбиталей атомов N, C(3) и C(5), а 3-F-пиридина – атомов C(2) и C(4) выше, чем в пиридине и его соответствующих Cl- и Вгзамещенных. По-видимому, такое распределение p_y -электронной плотности также обусловлено поляризацией соответствующих π -связей пиридинового кольца под действием зарядов атомов N и F непосредственно через пространство.

Х	<i>q</i> , e								
	Х	N	C(2)	C(3)	C(4)	C(5)	C(6)		
			Метод RH	F/6-311G(d)					
Н	-	-0.398	0.031	-0.351	-0.084	-0.351	0.030		
2-F	-0.287	-0.414	0.595	-0.441	-0.069	-0.367	0.032		
2-Cl	-0.092	-0.397	0.206	-0.287	-0.073	-0.340	0.030		
2-Br	-0.030	-0.399	0.164	-0.298	-0.076	-0.346	0.027		
2-Me	-0.632	-0.431	0.267	-0.361	-0.075	-0.353	0.027		
2-Et	-0.404*	-0.431	0.257	-0.362	-0.069	-0.353	0.028		
3-F	-0.310	-0.381	-0.061	0.286	-0.180	-0.333	0.016		
3-Cl	-0.096	-0.394	0.103	-0.271	-0.013	-0.347	0.032		
3-Br	-0.030	-0.395	0.079	-0.281	-0.036	-0.349	0.036		
3-Me	-0.666	-0.398	0.013	-0.107	-0.088	-0.346	0.025		
3-Et	-0.441*	-0.406	0.022	-0.107	-0.087	-0.343	0.020		
4-F	-0.300	-0.408	0.043	-0.431	0.525	-0.431	0.043		
4-Cl	-0.082	-0.399	0.044	-0.292	-0.001	-0.292	0.044		
4-Br	-0.016	-0.397	0.044	-0.319	-0.002	-0.319	0.044		
4-Me	-0.659	-0.407	0.041	-0.376	0.178	-0.388	0.044		
4-Et	-0.433*	-0.406	0.040	-0.372	0.173	-0.393	0.048		
			Метод МР	2/6-311G(d)					
Н	-	-0.402	0.026	-0.346	-0.088	-0.346	0.026		
2-F	-0.306	-0.417	0.597	-0.425	-0.074	-0.360	0.029		
2-Cl	-0.083	-0.400	0.198	-0.285	-0.077	-0.345	0.026		
2-Br	-0.022	-0.402	0.156	-0.294	-0.081	-0.341	0.023		
2-Me	-0.627	-0.436	0.264	-0.356	-0.080	-0.349	0.024		
2-Et	-0.399*	-0.436	0.254	-0.356	-0.074	-0.348	0.025		
3-F	-0.323	-0.384	-0.060	0.287	-0.177	-0.328	0.012		
3-Cl	-0.090	-0.397	0.094	-0.259	-0.023	-0.340	0.027		
3-Br	-0.025	-0.398	0.071	-0.272	-0.045	-0.343	0.031		
3-Me	-0.659	-0.402	0.008	-0.098	-0.096	-0.339	0.019		
3-Et	-0.434*	-0.410	0.016	-0.098	-0.095	-0.336	0.013		
4 - F	-0.316	-0.409	0.037	-0.417	0.518	-0.417	0.037		
4-Cl	-0.074	-0.402	0.040	-0.290	-0.000	-0.290	0.040		
4-Br	-0.009	-0.401	0.039	-0.315	-0.006	-0.315	0.039		
4-Me	-0.655	-0.412	0.038	-0.373	0.177	-0.384	0.040		
4-Et	-0.427*	-0.411	0.037	-0.369	0.172	-0.388	0.043		

Заряды (q) на атомах в молекулах пиридина, его 2-, 3- и 4-замещенных (XC₅H₄N), рассчитанные методами RHF/6-311G(d) и MP2/6-311G(d)

* При X = Ме и Еt приведены заряды на атомах C, связанных с пиридиновым кольцом. Заряды на атоме C метильной группы при X = Et: -0.657, -0.648 и -0.650 е (RHF), -0.655, -0.646 и -0.649 е (MP2) для 2-, 3- и 4-замещенных соответственно. Заселенности p_y -орбиталей атомов галогена, направленных перпендикулярно плоскости пиридинового кольца, ниже, чем p_x -орбиталей, лежащих в плоскости кольца (исключение составляет заселенность p_y орбитали атома Cl в 3-Cl-пиридине). В принципе это можно объяснить участием p_y -орбиталей атомов галогена в p,π -сопряжении с π -электронной системой кольца. В 2- и 4-галогензамещенных пиридина при переходе от $X = F \kappa X = Cl и Br заселенности <math>p_y$ -орбиталей атомов N, C(2) и C(4) уменьшаются, а в 3-замещенных возрастают. При таком переходе возрастают также заселенности p_y -орбиталей атомов галогена.

Это можно было бы объяснить уменьшением способности неподеленных пар электронов последних участвовать в p,π -сопряжении при увеличении размера p_y -орбитали атома галогена по сравнению с аналогичными орбиталями атомов С кольца. Однако такое же возрастание наблюдается и для p_x -орбиталей атомов галогена, не способных к такому сопряжению. Поэтому его следует объяснять совсем другими причинами. Уменьшение заселенностей p_z -орбиталей атомов галогена при переходе от X = F к X = Cl и Br соответствует соотношению электроотрицательностей последних [10].

Можно полагать, что π-связывающая молекулярная орбиталь в замещенных пиридина, сформированная атомными р_v-орбиталями, направленными перпендикулярно плоскости пиридинового кольца, является результатом *p*,*π*-сопряжения между неподеленной парой электронов гетероатома Х и его л-электронной системой. В табл. 5 представлены энергии таких молекулярных орбиталей, а также коэффициенты при атомных *p*_v-орбиталях, формирующих их. Эти коэффициенты являются суммой коэффициентов при трех составляющих атомных орбиталей. Однако такая связывающая молекулярная орбиталь образуется также с участием p_{v} -орбиталей sp^{3} -гибридизованных атомов С, находящихся в плоскости пиридинового кольца и не способных к такому сопряжению (в том числе и атомов, не связанных с пиридиновым кольцом при X = Et). Следовательно, связывающие молекулярные орбитали в пиридине и его производных, сформированные за счет p_v -орбиталей атомов, находящихся в плоскости пиридинового кольца, не являются признаком (характеристикой) р, л-сопряжения между неподеленной парой электронов гетероатома Х и π-электронной системой кольца.

В пиридине наибольший вклад в связывающую молекулярную орбиталь вносит p_y -орбиталь атома N, в 2-, 3- и 4-фторпиридинах – p_y -орбиталь атома F. Вклады атомов N и C в последних незначительные. Исключение составляют вклады атомов C, с которыми связан атом F. При переходе от X = F к X = Cl и Br вклад атома галогена уменьшается, а атома N возрастает. Это согласуется с уменьшением способности p_y -орби- тали атома галогена участвовать во взаимодействии с π -электронной системой кольца при таком переходе вследствие увеличения объема этой орбитали, а также с бо́льшим вкладом атомов C метильной и этильной групп в связывающую молекулярную орбиталь, чем атомов Cl и Br. Результаты расчетов методами RHF и MP2 не различаются принципиально (табл. 5).

Таблица 4

Заселенности (*Np*) валентных *p*-орбиталей атома X, а также p_y -орбиталей атомов C и N в молекулах пиридина, его 2-, 3- и 4-замещенных (XC₅H₄N), рассчитанные методами RHF/6-311G(d) и MP2/6-311G(d)

		Х		C(2)	C(3)	C(4)	C(5)	C(6)	Ν
Х	Np _x , e	Np _y , e	<i>Np_z</i> , e	Np _y , e					
		/		Метод	ı RHF	- 2	/	/	_ ,
Н	-	-	-	0.903	1.029	0.908	1.029	0.904	1.122
2-F	1.940	1.913	1.463	0.867	1.081	0.879	1.060	0.882	1.178
2-Cl	1.980	1.964	1.215	0.952	1.029	0.894	1.031	0.894	1.136
2-Br	2.008	1.988	1.138	0.949	1.023	0.897	1.026	0.897	1.132
2-Me	-	1.148	-	0.863	1.055	0.897	1.048	0.892	1.145
2-Et	-	1.140*	_	0.862	1.056	0.898	1.048	0.891	1.145
3-F	1.944	1.925	1.465	0.958	0.985	0.964	1.001	0.934	1.101
3-C1	1.967	1.970	1.215	0.902	1.082	0.910	1.016	0.906	1.115
3-Br	2.001	1.995	1.132	0.896	1.079	0.904	1.019	0.902	1.118
3-Me	-	1.127	-	0.931	0.980	0.930	1.020	0.918	1.115
3-Et	-	1.118*	_	0.934	0.977	0.929	1.021	0.917	1.116
4-F	1.945	1.916	1.463	0.877	1.084	0.874	1.084	0.877	1.150
4-Cl	1.967	1.961	1.211	0.890	1.032	0.967	1.032	0.890	1.128
4-Br	2.001	1.987	1.128	0.893	1.026	0.963	1.026	0.893	1.123
4-Me	-	1.135	-	0.897	1.054	0.860	1.058	0.892	1.137
4-Et	-	1.127*	-	0.900	1.054	0.855	1.059	0.892	1.137
				Метод	MP2				
н	_		_	0.903	1 031	0.906	1 031	0.003	1 124
п 2_Е	1 943	1 920	1 466	0.903	1.031	0.900	1.051	0.903	1.124
2-1 2-C1	1.945	1.920	1.400	0.075	1.075	0.892	1.035	0.802	1 1 3 0
2-01 2-Br	2 008	1.902	1.131	0.932	1.035	0.895	1.030	0.896	1.132
2 DI 2-Me	2.000	1.900		0.862	1.020	0.895	1.050	0.892	1 148
2-Et	_	1.1.15	_	0.861	1.058	0.896	1.051	0.891	1.148
2 Et 3-F	1 945	1.156	1 467	0.954	0.992	0.958	1.005	0.031	1 104
3-Cl	1.966	1.928	1 211	0.904	1.083	0.910	1.005	0.907	1 1 1 6
3-Br	2.001	1 994	1 1 2 9	0.897	1.005	0.903	1.021	0.902	1 1 1 9
3-Me		1.125	_	0.931	0.982	0.929	1.022	0.919	1 1 1 6
3-Et	_	1.125	_	0.934	0.978	0.929	1.022	0.918	1 1 1 7
4-F	1.947	1.921	1.466	0.878	1.082	0.878	1.082	0.878	1.150
4-C1	1 966	1 959	1 206	0.890	1.036	0.964	1.036	0.890	1 131
4-Br	2.002	1 985	1 122	0.892	1 030	0.960	1 030	0.892	1 126
4-Me		1.133	_	0.896	1.057	0.858	1.060	0.893	1.140
4-Et	_	1.126*	_	0.899	1.057	0.853	1.061	0.893	1.140
				0.0//	1.007	5.000	1.001	0.075	

* Заселенности *p_y*-орбитали атома С метиленовой группы. Заселенности этой орбитали атома С метильной группы: 1.110, 1.118 и 1.117 е (RHF), 1.107, 1.114 и 1.113 е (MP2) в 2-, 3- и 4-этилзамещенных пиридина соответственно.

Таблица 5

Х	<i>–Е</i> , эВ	K								
		Х	C(2)	C(3)	C(4)	C(5)	C(6)	Ν		
Метод RHF										
Н	14.842	0.000	0.388	0.305	0.283	0.305	0.388	0.513		
2-F	19.273	1.058	0.318	0.097	0.038	0.027	0.055	0.152		
2-Cl	15.954	0.328	0.473	0.282	0.223	0.221	0.313	0.486		
2-Br	15.756	0.200	0.457	0.295	0.242	0.249	0.341	0.511		
2-Me	15.994	0.591	0.311	0.179	0.118	0.108	0.167	0.295		
2-Et	16.929	0.521*	0.192	0.104	0.053	0.042	0.073	0.153		
3-F	19.297	1.090	0.091	0.291	0.086	0.034	0.024	0.050		
3-C1	15.736	0.346	0.362	0.415	0.283	0.258	0.299	0.421		
3-Br	15.556	0.195	0.383	0.384	0.292	0.280	0.383	0.462		
3-Me	16.052	0.632	0.182	0.263	0.165	0.106	0.109	0.162		
3-Et	17.070	0.533*	0.098	0.164	0.085	0.042	0.039	0.066		
4- F	19.495	1.093	0.034	0.086	0.285	0.086	0.034	0.027		
4-C1	15.702	0.490	0.318	0.304	0.402	0.304	0.318	0.391		
4-Br	15.515	0.201	0.353	0.315	0.366	0.315	0.353	0.448		
4-Me	16.142	0.651	0.111	0.162	0.245	0.153	0.112	0.120		
4-Et	17.177	0.540*	0.044	0.087	0.154	0.089	0.047	0.043		
			Ν	Метод МР	2					
Н	14.612	-	0.388	0.312	0.291	0.312	0.388	0.506		
2-F	19.029	1.069	0.309	0.095	0.038	0.026	0.052	0.144		
2-Cl	15.733	0.366	0.475	0.284	0.223	0.218	0.305	0.473		
2-Br	15.505	0.218	0.459	0.300	0.248	0.252	0.339	0.503		
2-Me	15.893	0.606	0.301	0.171	0.109	0.097	0.151	0.273		
2-Et	16.876	0.522*	0.185	0.100	0.049	0.037	0.064	0.141		
3 - F	19.141	1.097	0.086	0.285	0.083	0.032	0.021	0.046		
3-Cl	15.544	0.399	0.353	0.427	0.258	0.254	0.284	0.398		
3-Br	15.324	0.219	0.380	0.395	0.298	0.283	0.332	0.452		
3-Me	15.987	0.644	0.168	0.258	0.158	0.095	0.093	0.141		
3-Et	17.027	0.532*	0.094	0.163	0.086	0.039	0.035	0.059		
4-F	19.296	1.101	0.032	0.082	0.279	0.082	0.032	0.025		
4-Cl	15.520	0.427	0.302	0.303	0.416	0.303	0.302	0.362		
4-Br	15.284	0.227	0.348	0.321	0.379	0.321	0.348	0.434		
4-Me	16.083	0.661	0.098	0.154	0.241	0.144	0.099	0.101		
4-Et	17.136	0.539*	0.040	0.084	0.153	0.086	0.043	0.037		

Энергии (-*E*) связывающих молекулярных орбиталей, сформированных атомными p_y -орбиталями, и коэффициенты (*к*) при последних в молекулах пиридина, его 2-, 3и 4-замещенных (XC₅H₄N), рассчитанные методами RHF/6-311G(d) и MP2/6-311G(d)

* Коэффициенты при p_y -орбитали атома C, связанного с пиридиновым кольцом. Эти величины для атома C метильной группы: 0.425, 0.429 и 0.430 (RHF), 0.431, 0.432 и 0.432 (MP2) в 2-, 3- и 4-EtPy соответственно.

Работа выполнена при финансовой поддержке программы интеграционных проектов фундаментальных исследований, выполняемых в УрО РАН совместно с учеными СО и ДВО РАН в 2006–2007 гг.

СПИСОК ЛИТЕРАТУРЫ

- 1. В. П. Фешин, М. Ю. Коньшин, Изв. АН, Сер. хим., 2641 (1996).
- 2. О. Я. Нейланд, Органическая химия, Высшая школа, Москва, 1970, 751 с.
- 3. M. J. S. Dewar, E. A. C. Lucken, J. Chem. Soc., 2653 (1958).
- 4. J. B. Foresman, A. E. Frisch, *Exploring Chemistry with Electronic Structure Methods*, 2nd Ed., Gaussian, Inc., Pittsburgh, 1996, 302 p.
- M. J. Frisch, G. W. Trucks, H. B. Schlegel, P. M. W. Gill, B. G. Johnson, M. A. Robb, J. R. Cheeseman, T. Keith, G. A. Petersson, J. A. Montgomery, K. Raghavachari, M. A. Al-Laham, V. G. Zakrzewski, J. V. Ortiz, J. B. Foresman, J. Cioslowski, B. B. Stefanov, A. Nanayakkara, M. Challacombe, C. Y. Peng, P. Y. Ayala, W. Chen, M. W. Wong, J. L. Andres, E. S. Replogle, R. Gomperts, R. L. Martin, D. J. Fox, J. S. Binkley, D. J. Defrees, J. Baker, J. P. Stewart, M. Head-Gordon, C. Gonzalez, J. A. Pople, *GAUSSIAN 94, Revision E.3*, Gaussian, Inc., Pittsburgh PA, 1995.
- 6. Д. М. Смит, *Пиридины*, в кн. *Общая органическая химия*, под ред. И. К. Кочеткова, Химия, Москва, 1985, т. 8, с. 15.
- 7. В. П. Фешин, Электронные эффекты в органических и элементоорганических молекулах, УрО РАН, Екатеринбург, 1997, 377 с.
- 8. В. П. Фешин, ЖОХ, 74, 1929 (2004).
- 9. В. П. Фешин, М. Г. Воронков, Л. С. Романенко, ДАН, 256, 1431 (1981).
- 10. Л. Полинг, Общая химия, Мир, Москва, 1974, 864 с.

Институт технической химии УрО РАН, Пермь 614013 e-mail: cheminst@mpm.ru Поступило 29.05.2006