Посвящается академику РАН Михаилу Григорьевичу Воронкову в связи с 85- летием

Н. В. Руссавская, А. В. Елаев, В. А. Грабельных, Е. Р. Жанчипова, Е. П. Леванова, Л. В. Клыба, Э. Н. Сухомазова, С. Г. Шевченко, Т. И. Вакульская, А. И. Албанов, Н. А. Корчевин

1,2-ДИТЕЛЛУРОЛАН: НОВЫЙ МЕТОД СИНТЕЗА, СТРОЕНИЕ И ХИМИЧЕСКИЕ ПРЕВРАЩЕНИЯ

Предложен простой метод синтеза 1,2-дителлуролана, основанный на реакции элементного теллура с 1,3-дигалогенпропанами в системе гидразингидрат-щелочь с последующим действием органического растворителя на полученные поли(триметилендителлуриды). Охарактеризованы продукты окисления и восстановления 1,2-дителлуролана, проанализированы его спектральные характеристики.

Ключевые слова: 1,3-бис(метилтеллуро)пропан, гидразингидрат, 1,2-дителлуролан, 1,3-пропандителлуристая кислота, теллур, теллуретан, квантовохимические расчеты.

Реакция элементной серы с алкенилбензолами, приводящая к образованию поистине уникальных гетероциклических соединений – фенилзамещенных 1,2-дитиол-3-тионов, была открыта М. Г. Воронковым еще в середине прошлого века [1–4]. В дальнейшем под его руководством были получены 1,2-дитиол-3-он [5] и 1,2-диселенол-3-он [6]. Это способствовало развитию синтетической химии пятичленных гетероциклов с двумя атомами халькогенов, обладающих ароматическими свойствами. Многие из них или их производные используются в органическом синтезе [7], а также в качестве биологически активных веществ [8] или технических продуктов [9].

Насыщенные гетероциклические системы с двумя атомами халькогенов (1,2-дихалькогеноланы) изучены в гораздо меньшей степени. Прежде всего, это обусловлено трудностями их получения и выделения, особенно селеновых и теллуровых аналогов. Описаны многостадийные методы синтеза 1,2-диселенолана с использованием цианида калия [10] или металлического лития [11]. Это соединение нашло применение в органическом синтезе, например, с его помощью получают устойчивые, "сшитые" селеновыми мостиками циклодекстрины с гидрофобными полостями, способными образовывать комплексы включения [12], а также селенсодержащие каликсареновые соединения [13]. Первые сведения о получении 1,2-дителлуролана 1 появились в 1984 г. [14]. Он был получен реакцией 1,3-дибромпропана с полителлурид-анионами, генерированными электрохимическим восстановлением теллура, и охарактеризован в растворе методами УФ спектроскопии и масс-спектрометрии. Позднее 1,2-дителлуролан был получен методом цианидной активации теллура с

последующим взаимодействием с 1,3-дибромпропаном [15], продукт охарактеризован также только в растворе. Химические свойства 1,2-дителлуролана в этих работах не обсуждаются.

Недавно нами были предложены методы синтеза 1,2-дитиолана [16] и 1,2-диселенолана [17], основанные на активации серы или селена в системе гидразингидрат-щелочь. В этой же системе осуществлена реакция 1-бром-3-хлорпропана с теллуром и получен олигомерный поли(триметилендителлурид) 2 [18]. Олигомерная природа теллурокола 2 подтверждена данными ИК спектроскопии и восстановительным расщеплением по связи Те-Те в системе гидразингидрат-щелочь.

Неожиданно было обнаружено, что обработка теллурокола **2** органическим растворителем (ацетон, хлороформ, бензол, гексан и др.) приводит к образованию интенсивно-синих растворов, в которых, по данным УФ и ИК спектроскопии, хромато-масс-спектрометрии и ЯМР ¹Н, однозначно показано присутствие 1,2-дителлуролана **1**. В УФ спектре раствора теллурокола **2** в бензоле наблюдаются появление и рост интенсивностей длинноволновых полос поглощения $\lambda = 400$ (плечо), 581, 667 нм, характерных для 1,2-дителлуролана [14, 15]. Выход гетероцикла **1** достигает 14 % (оценено методом ЯМР ¹Н путем введения стандартной добавки).

Для выяснения пути образования 1,2-дителлуролана 1 из теллурокола 2 олигомер был исследован методом ЭПР. Оказалось, что образцы, полученные реакцией теллура с 1-бром-3-хлорпропаном в системе гидразингидрат-щелочь, являются парамагнитными. Характеристики спектра ЭПР зависят от срока хранения образца, дополнительного воздействия ультрафиолетового облучения и будут обсуждены нами в отдельной публикации. Однако во всех случаях величина *g*-фактора и ширина линий позволяют судить о возможности локализации неспаренного электрона на атоме теллура. Таким образом, можно предположить, что превращение $2 \rightarrow 1$ связано с гомолизом теллурокола по связи Те-Те, при этом введение растворителя способствует разделению радикальных пар. Дальнейшая радикальная гетероциклизация приводит к образованию 1,2-дителлуролана 1. Суммарно процесс синтеза 1,2-дителлуролана 1 можно представить следующей схемой:

$$4\text{Te} + 4\text{KOH} + \text{N}_{2}\text{H}_{4}\text{\cdot}\text{H}_{2}\text{O} \longrightarrow 2\text{K}_{2}\text{Te}_{2} + \text{N}_{2} + 5\text{H}_{2}\text{O}$$

$$n\text{K}_{2}\text{Te}_{2} + n\text{BrCH}_{2}\text{CH}_{2}\text{CH}_{2}\text{CH}_{2}\text{CI} \longrightarrow -(-\text{TeCH}_{2}\text{CH}_{2}\text{CH}_{2}\text{Te}-)_{n}^{-n}$$

$$\overset{\text{M}}{\longrightarrow} \text{TeCH}_{2}\text{CH}_{2}\text{CH}_{2}\text{Te}-\text{TeCH}_{2}\text{CH}_{2}\text{CH}_{2}\text{Te}^{-}) \xrightarrow{n}^{n}$$

$$(1)$$

$$\overset{\text{M}}{\longleftarrow} \text{TeCH}_{2}\text{CH}_{2}\text{CH}_{2}\text{CH}_{2}\text{Te}^{-}\text{TeCH}_{2}\text{CH}_{2}\text{CH}_{2}\text{Te}^{-}\text{M} \longrightarrow$$

$$\overset{\text{CHCl}_{3}, C_{6}\text{H}_{6} \text{ u } \text{Ap}.}{\overset{\text{CHCl}_{3}, C_{6}\text{H}_{6} \text{ u } \text{Ap}.}$$

$$(1)$$

После извлечения растворителем 1,2-дителлуролана **1** ни оставшийся 1706

черный осадок, ни полученный синий раствор (в любом растворителе) не дают сигнала ЭПР.

1,2-Дителлуролан 1 был получен из теллурокола 2 и другим путем. Для этого теллурокол 2 был подвергнут восстановительному расщеплению по связям Те-Те в системе гидразингидрат-КОН, в которой наблюдалось его полное растворение. Полученный раствор дителлуролата 3 был проэкстрагирован бензолом. В ходе экстракции наблюдалось окисление дителлуролата 3 с образованием 1,2-дителлуролана 1, который переходил в органическую фазу. Выход 1,2-дителлуролана 1 по этому методу составляет ~25%.

$$2 \xrightarrow{N_2H_4 \cdot H_2O / KOH} KTeCH_2CH_2CH_2TeK \xrightarrow{O_2, H_2O} 1 (2)$$

Молекулярная структура наиболее стабильного изомера 1,2-дителлуролана 1, по данным квантово-химических расчетов DFT(B3LYP)/LanL2DZ, соответствует наименее стерически напряженной с выходом атомов теллура из плоскости трех атомов углерода на $22-26^{\circ}$ и мало чувствительна к влиянию среды в интервале $\varepsilon = 1 \div 78$ (рисунок, табл. 1)

Таблица 1

Chapt	l, Å					
Связь	ε = 1	$\varepsilon = 4.9$	$\varepsilon = 36.6$	$\epsilon = 78.4$		
Te(1)-Te(2)	2.8386	2.8406	2.8415	2.8413		
Te(2)-C(3)	2.1991	2.2008	2.2005	2.2006		
Te(1)-C(5)	2.2000	2.2006	2.2005	2.2006		
C(3)–C(4)	1.5560	1.5568	1.5553	1.5552		
C(5)–C(4)	1.5578	1.5564	1.5577	1.5578		
C(3)-H(6)	1.0931	1.0935	1.0938	1.0938		
C(3)-H(7)	1.0959	1.0961	1.0963	1.0963		
C(4)–H(8)	1.0990	1.0989	1.0991	1.0991		
C(4)-H(9)	1.0987	1.0989 1.0988		1.0988		
C(5)-H(10)	1.0959	1.0961	1.0962	1.0962		
C(5)–H(11)	1.0930	1.0935	1.0936	1.0937		
Угол	б, град					
Te(1)-Te(2)-C(3)	82.4	81.3	81.2	81.2		
Te(2)-Te(1)-C(5)	81.4	81.2	81.6	81.6		
C(3)-C(4)-C(5)	117.3	118.1	118.3	118.3		
H(3)-C(3)-H(7)	109.0	109.0	109.0	109.0		
H(8)-C(4)-H(9)	107.2	107.2	107.2	107.2		
H(10)-C(5)-H(11)	109.0	109.0	109.0	109.0		
C(3)-C(4)-C(5)-Te(1)	22.9	24.5	21.6	21.6		
C(5)-C(4)-C(3)-Te(2)	26.5	23.9	26.5	26.4		

Длины связей (1) и углы (б) молекулы 1,2-дителлуролана 1 в газовой фазе и различных средах, рассчитанные методом B3LYP/LanL2DZ (РСМ-модель)

Геометрия 1,2-дителлуролана 1 в газовой фазе, рассчитанная методом DFT(B3LYP)/LanL2DZ

Методом DFT(B3LYP)/LanL2DZ в гармоническом приближении выполнен теоретический анализ ИК спектров молекулы 1,2-дителлуролана 1 симметрии C_s в изолированном состоянии и в различных средах. В теоретическом ИК спектре 1,2-дителлуролана 1 наблюдается 27 нормальных колебаний симметрии **A**. Частоты и интенсивности колебаний с участием атомов Те приведены в табл. 2.

Таблица2

No	ν, cm ⁻¹			<i>I</i> , КМ/моль				Отнесение			
JN≌	ε=1	$\epsilon =$ = 4.9	ε = = 36.6	ε = = 78.4	ε=1	ε=4.9	$\epsilon =$ = 36.6	$\epsilon =$ = 78.4	Отнессние		
1	65	51	33	33	0.13	0.28	0.42	0.43	ρTe(1)C(5)C(4)C(3)		
2	144	139	138	138	0.57	1.45	1.92	1.92	$\rho_\tau C(4)(C(5)C(3))$		
3	174	172	172	171	0.10	0.14	0.18	0.18	vTe-Te + + $\rho_{r}C(4)(C(5)C(3))$		
4	199	197	195	195	0.30	0.35	0.38	0.37	$vTe -C + \delta_{\text{цикл}}$		
5	388	385	384	384	0.04	0.01	0.01	0.01	$\nu Te - C + \delta_{\text{цикл}}$		
6	501	498	497	497	5.34	9.04	11.64	12.12	vTe-C + + $\rho_{\tau}C(4)(C(5)C(3))$		
7	592	590	589	589	2.86	5.89	7.86	7.93	vTe - C + + $\delta_s C(4)(C(5)C(3))$		

Рассчитанные методом DFT(B3LYP)/LanL2DZ частоты и интенсивности полос ИК спектров молекулы 1,2-дителлуролана 1 в газовой фазе и различных средах (РСМ-модель)

В приведенной области спектра находятся полосы важных для анализа строения 1,2-дителлуролана 1 колебаний. Валентное колебание v_{Te-Te} дает вклад в нормальное колебание 3 при 174 см⁻¹, смешано с торсионным колебанием $\rho_{\tau}C(4)(C(5)C(3))$ и имеет слабую интенсивность. Изменение є среды в интервале 1÷78 не влияет на спектральные характеристики колебания. Нормальные колебания 4–7 соответствуют валентному колебанию v_{Te-C} с вкладами различных деформаций пятичленного цикла. При увеличении є среды интенсивность нормальных колебаний 6 и 7 заметно возрастает. В экспериментальном ИК спектре раствора 1,2-дителлуролана 1 в CHCl₃ нормальным колебаниям 6 и 7 соответствуют полосы при 525 и 620 см⁻¹ соответственно. Исходя из сопоставления теоретически рассчитанных ($\varepsilon = 4.9$) и экспериментальных частот, масштабирующий множитель равен 1.05, что характеризует удовлетворительную точность расчета ИК спектра 1,2-дителлуролана 1 методом DFT(B3LYP)/LanL2DZ.

В продуктах реакции (2) помимо 1,2-дителлуролана 1 в органической фазе методом хромато-масс-спектрометрии был обнаружен в следовых количествах теллуретан 4, образующийся, вероятно, за счет реакций концевых групп теллурокола 2 (последний, по данным элементного анализа, содержит ~3% остаточного галогена [18]).

$$CICH_{2}CH_{2}CH_{2}Te \xrightarrow{} Te \sim V \xrightarrow{N_{2}H_{4} \cdot H_{2}O / KOH} 3 + CICH_{2}CH_{2}CH_{2}TeK$$

$$(3)$$

$$Te$$

$$4$$

Реакция (3) показывает, что теллуретан 4, несмотря на возможные угловые напряжения в молекуле, является достаточно устойчивым соединением и сохраняется как в ходе реакции (70 °C, система гидразингидрат-щелочь, 1.5 ч), так и при экстракции реакционной смеси бензолом на воздухе.

При использовании в реакции (1) 1,3-дибромпропана вместо 1-бром-3-хлорпропана образуется олигомер 5, который практически диамагнитен. Однако после облучения УФ светом в течение 1.5 ч в спектре ЭПР олигомера 5 регистрируется достаточно интенсивный двойной сигнал: $g_1 = 2.394$, $\Delta H = 460$ Э; $g_2 = 2.003$, $\Delta H = 160$ Э. При действии органических растворителей на теллурокол 5 раствор приобретает бледно-синюю окраску, и только при использовании хлороформа в нем методом хроматомасс-спектрометрии удается обнаружить 1,2-дителлуролан 1.

Различие в поведении олигомеров 2 и 5 обусловлено, скорее всего, различным строением олигомерной цепи, которая, в свою очередь, определяется различной реакционной способностью атомов хлора и брома в реакциях нуклеофильного замещения теллурид-анионами. При активации теллура системой гидразингидрат—щелочь образуется равновесная смесь полителлуридов K_2Te_x , у которых среднее значение *x* регулируется соотношением Те:КОН [19]. В случае 1,3-дибромпропана образуется

олигомер, которому, на основании данных элементного анализа, можно приписать вероятную структуру **5**, где, в определенной степени, наблюдается чередование моно- и дителлуридных фрагментов.

В олигомере 2 преобладают дителлуридные фрагменты [18]. Эти выводы подтверждаются восстановительным расщеплением олигомеров 2 и 5 системой гидразингидрат-щелочь с целью получения 1,3-бис-(метилтеллуро)пропана 6: в то время как из теллурокола 2 соединение 6 получено с выходом 47.5 % [18], из олигомера 5 его удалось получить только с выходом 19%. Таким образом, для синтеза 1,2-дителлуролана 1 по реакции (1) целесообразнее использовать 1-бром-3-хлорпропан, а не 1,3-дибромпропан.

Синие растворы 1,2-дителлуролана 1 чрезвычайно неустойчивы на свету и в присутствии влаги (более устойчивы в темноте и в абсолютированных растворителях). В течение нескольких минут на свету (в зависимости от количества взятого раствора и его концентрации) синяя окраска постепенно исчезает и из раствора выпадает светло-коричневый осадок. На основании данных элементного анализа полученному продукту приписана структура 1,3-пропандителлуристой кислоты 7, которая образуется в результате окисления 1,2-дителлуролана 1.

$$1 \xrightarrow{O_2, H_2O} HOTeCH_2CH_2CH_2TeOH \xrightarrow{A. N_2H_4 \cdot H_2O / KOH} MeTeCH_2CH_2CH_2TeMe \xrightarrow{||}{D} O \xrightarrow{O} 0 \xrightarrow{A. N_2H_4 \cdot H_2O / KOH} 6$$

В теоретическом ИК спектре молекулы дикислоты 7, рассчитанном DFT(B3LYP)/LanL2DZ методом В гармоническом приближении. содержится 45 нормальных колебаний симметрии А, из которых 30 нормальных колебаний находятся в области 400-4000 см⁻¹ и их частоты не чувствительны к влиянию среды. Совпадение с экспериментальным ИК спектром соединения 7 в таблетке с КВг наблюдается с масштабирующим множителем 1.08 для всех полос в области 400-4000 см⁻¹. Интенсивная полоса при 608 см^{-1} с плечом при 684 см^{-1} соответствует, по данным расчета, характеристичным валентным колебаниям v_{Te-O} . Дублет средней интенсивности при 3421 см⁻¹ (плечо при 3250 см⁻¹) – валентным колебаниям гидроксильных групп v_{О-н}. Сильное уширение этих полос в экспериментальных спектрах до 150 см⁻¹ и наличие дублетов (в теоретическом спектре в области 400-4000 см⁻¹ на 2 полосы меньше) свидетельствуют о сильном межмолекулярном взаимодействии концевых групп в молекулах 1,3-пропандителлуристой кислоты 7.

Дикислота 7 не растворяется в воде и доступных органических растворителях. При действии на нее гидразингидрата наблюдается бурная экзотермическая реакция, сопровождающаяся обильным газообразованием и выделением элементного теллура. При использовании в этой реакции системы гидразингидрат–КОН также наблюдается бурная реакция, сопровождающаяся выделением элементного теллура, но образующийся раствор интенсивно окрашен в черно-фиолетовый цвет.

Алкилирование раствора иодистым метилом приводит к образованию небольших количеств диметилтеллурида, диметилдителлурида и соединения **6** (суммарный выход ~3%). Таким образом, основным продуктом этой реакции является регенерированный теллур (выход ~90%). Дикислота **7** растворяется в водной щелочи с образованием неустойчивого коричневого раствора.

Если синий раствор 1,2-дителлуролана 1 в бензоле прибавляют по каплям к концентрированному раствору щелочи в гидразингидрате, то наблюдается быстрое восстановительное раскрытие кольца по связи Te-Te с образованием пропандителлуролата 3. Метилирование полученного раствора иодистым метилом дает 1,3-бис(метилтеллуро)пропан 6 с выходом 60%.

$$1 \xrightarrow{N_2H_4 \cdot H_2O / KOH} 3 \xrightarrow{MeI} 6$$

Эта реакция позволяет надеяться на возможность использования 1,2-дителлуролана 1 в органическом синтезе.

Таким образом, предложен новый простой метод синтеза 1,2-дителлуролана с использованием доступных реагентов, рассчитаны геометрические характеристики молекулы и охарактеризованы продукты его окисления на воздухе и восстановления в системе гидразингидрат–КОН.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Контроль за чистотой реагентов и продуктов осуществлялся методом ГЖХ с использованием хроматографов ЛХМ-80 МД (жидкая фаза DC-550 или XE-60, 5% на носителе Chromaton N-AW-HMDS, стальные колонки 2000 × 3 мм, линейное программирование температуры колонки со скоростью 12 град/мин, газ-носитель - гелий) и Цвет-500 (стальные колонки 2000 × 5 мм, жидкая фаза – силикон XE-60, 5 % на носителе Chromoton N-AW-HMDS, линейное программирование температуры колонки от 30 до 230 °C со скоростью 12 град/мин, газ-носитель – гелий). Масс-спектры получены на хромато-масс-спектрометре Shimadzu GCMS-QP5050A (колонка SPBTM-5, 60000 × 0.25мкм), толщина пленки неподвижной фазы 0.25 мкм; температура инжектора 250 °C, газ-носитель – гелий, скорость потока 0.7 мл/мин, программированный подъем температуры от 60 до 260 °С со скоростью 15 град/мин. Температура детектора 250 °С; масс-анализатор квадрупольный, электронная ионизация, энергия электронов 70 эВ, температура ионного источника - 200 °C; диапазон детектируемых масс 34-650 Д. ИК спектры продуктов получены на приборах Specord IR-75 и Bruker IFS-25 в тонком слое в растворе CHCl₃ (d = 0.006 см) и в таблетках КВг, спектры ЯМР ¹Н – на спектрометре Bruker DPX-400 (400 МГц) в CDCl₃, внутренний стандарт ГМДС (б 0.05 м. д.), УФ спектр – на UV/VISспектрометре Lamba 35 (растворитель C_6H_6 , d = 1см). Спектры ЭПР теллуроколов записаны на спектрометре SE/X-2547 Радиопан, снабженном магнетометром и измерителем микроволновой частоты.

1,2-Дителлуролан 1. А. Навеску теллурокола **2**, полученного по методике [18], обрабатывают в затемненном стакане несколькими порциями соответствующего растворителя. Для определения выхода в растворитель добавляют 1 г стандартного образца

(толуол или циклогексан), массу 1,2-дителлуролана 1 рассчитывают по соотношению пиков протонов продукта и стандарта в спектре ЯМР ¹Н. УФ спектр, λ , нм: 667, 581, 400 (плечо) (ср. [14, 15]). Спектр ЯМР ¹Н, δ , м. д. (*J*, Гц): 3.40 (4H, т, ³*J*_H = 6.2, CH₂Te), 3.83 (2H, кв,

 ${}^{3}J_{\rm H}$ = 6.2, CCH₂C) [15]. Масс-спектр (*m/z* для изотопа ¹³⁰Te): 302 [M]⁺, 260 [Te₂]⁺, 144 [CH₂Te]⁺, 130 [Te]⁺, 41 [C₃H₅]⁺, 39 [C₃H₃]⁺. По данным ЯМР ¹Н и хромато-массспектрометрии, в растворе присутствуют также углеводороды циклического и линейного строения C(16)–C(28), δ, м. д.: 0.85 (уш. т, CH₃), 1.24 (уш. с, CH₂ алифатические), 1.54 (уш. с, CH₂ циклические в больших циклах). По-видимому, углеводороды образуются из триметиленовых фрагментов теллурокола **2**, их выход составляет 3–5% от массы теллурокола **2**, взятого в реакцию.

Б. В колбу с мешалкой, термометром и обратным холодильником помещают 1 г теллурокола 2, 0.933 г (16.6 ммоль) КОН и 4.2 г (84 ммоль) гидразингидрата. Реакционную смесь перемешивают 1.5 ч при температуре 70 °С и охлаждают до 25 °С. Образующийся гомогенный раствор на воздухе экстрагируют бензолом. Полученный синий раствор содержит 1,2-дителлуролан 1, идентичный продукту, полученному по методу А. Выход 0.25 г (25%). В отличие от метода А углеводороды C(16)–C(28) в бензольном экстракте практически отсутствуют. Методом хромато-масс-спектрометрии обнаружены следы теллуретана 4. Масс-спектр m/z для изотопа ¹³⁰ Te (I, % от полного ионного тока с учетом изотопных ионов, характеристика иона): 172 [M]⁺ (16), 144 [M–C₂H₄]⁺ (10), 130 [Te]⁺ (6), 41 [C₃H₅]⁺ (50), 39 [C₃H₃]⁺ (18).

Теллурокол 5. В реакционную колбу помещают 1.4 г (25 ммоль) КОН и 10 г (200 ммоль) гидразингидрата. При температуре 75–85 °С прибавляют порциями 3.19 г (25 ммоль) растертого в порошок теллура. Полученную смесь перемешивают 2 ч при температуре 85 °С, охлаждают и при 25–35 °С прибавляют по каплям 3.82 г (18.9 ммоль) 1,3-дибромпропана до практически полного обесцвечивания раствора. Образовавшийся на дне колбы вязкий черный олигомер отделяют, промывают многократно горячей водой, сушат и получают 3.25 г (88%) соединения **5**. Найдено, %: С 14.20; Н 2.40; Вг 2.87; Те 80.91. Расчет молекулярной массы по остаточному брому (метод концевых групп) дает величину 6050 ед. (ср. [18]). Вычислено для $C_6H_{12}Te_3$ (элементарное звено формулы 5), %: С 15.38; Н 2.56; Те 82.05. 1,2-Дителлуролан **1** получают из теллурокола **5**, как описано в методе А.

1,3-Пропандителлуристая кислота 7. Хлороформный раствор, содержащий 0.47 г (1.6 ммоль) 1,2-дителлуролана 1 выдерживают на свету до полного обесцвечивания раствора. Выпавший светло-коричневый осадок дикислоты 7 отфильтровывают, промывают хлороформом и сушат. Получают 0.56 г (97%), т. пл. 140–150 °C (с разл.). Найдено, %: С 10.06; Н 2.37; Те 71.61. С₃H₈O₄Te₂. Вычислено, %: С 9.85; Н 2.19; Те 69.87.

1,3-Бис(метилтеллуро)пропан 6. А. К раствору 1 г (1.8 ммоль) КОН в 4 г (80 ммоль) гидразингидрата прибавляют 0.35 г (0.96 ммоль) кислоты 7. В полученный темно-красный раствор прибавляют по каплям 1.48 г (10 ммоль) иодистого метила. Полученную смесь экстрагируют дихлорметаном и анализируют ГЖХ и хромато-масс-спектрометрией. В растворе обнаруживают соединение **6**.

Б. Растворяют 14 г (250 ммоль) КОН в 50 г (1000 ммоль) гидразингидрата при температуре 50–55 °С, прибавляют по каплям 80 мл бензольного раствора, содержащего 0.38 г (1.28 ммоль) 1,2-дителлуролана 1. Наблюдается мгновенное исчезновение синей окраски. Бензольный слой отделяют, а к гидразиновому добавляют по каплям 0.36 г (2.56 ммоль) иодистого метила. Полученную смесь экстрагируют эфиром и анализируют методами ГЖХ и хромато-масс-спектрометрии. По данным ГЖХ (метод стандартных добавок), экстракт содержит 0.25 г соединения 6, его характеристики приведены в работе [18].

Теоретический анализ наиболее стабильных изомеров 1,2-дителлуролана 1 и соединения 7 выполнен методами функционала матрицы плотности DFT(B3LYP)/LanL2DZ с использованием программного комплекса Gaussian 03W [20]. Проведена полная оптимизация геометрии. В приближении сольватационной РСМ модели рассчитано влияние среды в интервале $\varepsilon = 1 \div 78$ на структурные характеристики и колебательные спектры.

СПИСОК ЛИТЕРАТУРЫ

1. М. Г. Воронков, А. С. Броун, ДАН, **59**, 1437 (1948).

1712

- 2. М. Г. Воронков, А. С. Броун, Г. Б. Карпенко, *ЖОХ*, **19**, 395 (1949).
- 3. М. Г. Воронков, А. С. Броун, Г. Б. Карпенко, ЖОХ, 19, 1927 (1949).
- 4. М. Г. Воронков, Н. С. Вязанкин, Э. Н. Дерягина, А. С. Нахманович, В. А. Усов, *Реакции серы с органическими соединениями*, Наука, Новосибирск, 1979.
- 5. Л. А. Остроухова, Л. П. Турчанинова, Н. А. Корчевин, Э. Н. Дерягина, М. Г. Воронков, *XTC*, 999 (1988). [*Chem. Heterocycl. Comp.*, **24**, 824 (1988)].
- 6. М. Г. Воронков, Э. Н. Дерягина, Л. А. Остроухова, Н. А. Корчевин, Л. В. Клыба, *XГС*, 855 (1987). [*Chem. Heterocycl. Comp.*, **23**, 707 (1987)].
- 7. P. S. Landis, Chem. Rev., 65, 237 (1965).
- 8. G. H. Elegmeie, S. H. Sayed, Synthesis, 1747 (2001).
- 9. И. Э. Виноградова, Противоизносные присадки к маслам, Химия, Москва, 1972.
- 10. G. T. Morgan, F. H. Burstall, J. Chem. Soc., 1497 (1930).
- 11. L. Syper, J. Mlochowski, Tetrahedron, 44, 6119 (1988).
- 12. Liu Yu, You Chang-Cheng, Chen Yong, Wada Takehiko, Inoue Yoshihisa, J. Org. Chem., 64, 7781 (1999).
- Zeng Xianshun, Han Xinxin, Chen Langxing, Li Qingshan, Xu Fengbo, He Xiwen, Zhang Zheng-Zhi, *Tetrahedron Lett.*, 43, 131 (2002).
- 14. G. Merkel, H. Berge, P. Jeroschewski, J. Prakt. Chem., 326, 467 (1984).
- M. V. Lakshmikantham, M. P. Cava, W. H. H. Gunther, P. N. Nugara, K. A. Belmore, J. L. Atwood, P. Craig, J. Am. Chem. Soc., 115, 885 (1993).
- Н. В. Руссавская, Е. П. Леванова, Л. В. Клыба, Е. Р. Жанчипова, В. А. Грабельных, Э. Н. Сухомазова, А. И. Албанов, Н. А. Корчевин, Э. Н. Дерягина, *ЖОХ*, 76, 159 (2006).
- 17. Н. В. Руссавская, Е. П. Леванова, Э. Н. Сухомазова, В. А. Грабельных, Л. В. Клыба, Е. Р. Жанчипова, А. И. Албанов, Н. А. Корчевин, *ЖОХ*, **76**, 243 (2006).
- Н. В. Руссавская, Е. П. Леванова, Э. Н. Сухомазова, В. А. Грабельных, А. В. Елаев, Л. В. Клыба, Е. Р. Жанчипова, А. И. Албанов, И. М. Коротаева, Д. С. Д. Торяшинова, Н. А. Корчевин, *ЖОХ*, **76**, 763 (2006).
- 19. В. Ю. Введенский, Э. Н. Дерягина, Б. А. Трофимов, ЖОХ, 66, 1579 (1996).
- M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, J. A. Pople, *Gaussian 03, Revision B.03, Gaussian, Inc.*, Pittsburgh PA, 2003.

Иркутский институт химии им. А. Е. Фаворского СО РАН, Иркутск 664033 e-mail: venk@irioch.irk.ru Поступило 25.08.2006