Н. М. Михайлова, А. Н. Левов, С. В. Гозун, О. О. Тимонина, Ф. Тозе, А. В. Варламов

ЦИАНЭТИЛИРОВАНИЕ ЗАМЕЩЕННЫХ 4-АЗАФЛУОРЕНОВ СИНТЕЗ СПИРО[4-АЗАФЛУОРЕН-9-ЦИКЛОПЕНТЕНОВ]

Цианэтилирование 9-фенацил(β-гидрокси-β-фенилэтил-, ацетамидо)-4-азафлуоренов в условиях реакции Михаэля протекает региоселективно по положению 9. 1-Амино-4-азафлуорен в этих условиях образует 1-(N,N-ди-β-цианоэтиламино)-9-β-цианоэтил-4-азафлуорен. Осуществлена циклизация 9-фенацил-9-β-цианоэтил-4-азафлуорена в 1'циано- 2'-фенилспиро[4-азафлуорен-9,4'-циклопентен и 1'-имино-2'гидроксибензилиденспиро- [4-азафлуорен-9,3'-циклопентан], замещенные по пятичленному фрагменту.

Ключевые слова: азафлуорен, спироазафлуоренциклопентан, спироазафлуоренциклопентен, внутримолекулярная циклизация, цианэтилирование.

4-Азафлуорен легко алкилируется в условиях реакции Михаэля с образованием 9,9-ди-(β-R-этил)замещенных производных, на основе которых могут быть получены спироаннелированные по положению 9 4-азафлуорены [1]. Такого рода спиросоединения интересны с точки зрения их потенциальной биологической активности. Поведение в условиях реакции Михаэля азафлуоренов, имеющих два реакционных центра, не изучалось.

В настоящей работе изучена регионаправленность цианэтилирования в условиях реакции Михаэля в присутствии тритона Б 9-фенацил(β -гидрокси- β -фенилэтил-, ацетамидо)-4-азафлуоренов **1а–с** и 1-амино-4-азафлуорена (**1d**). Синтез соединений **1с** и **1d** описан в работах [2, 3]. Азафлуорен **1b** получен восстановлением 9-фенацилпроизводного **1a** алюмогидридом лития в эфире. Реакция Михаэля у азафлуоренов **1а–d** может протекать как по положению атома C₍₉₎, так и по метиленовой (гидроксильной, амидной) группе заместителя при атоме C₍₉₎ или по аминогруппе в положении 1.

1 \mathbf{a} - \mathbf{c} R = H, \mathbf{d} R = NH₂; **2** \mathbf{a} - \mathbf{c} R = H, \mathbf{d} R = N(CH₂CH₂CN)₂; **1**, **2** \mathbf{a} R¹ = CH₂COPh, \mathbf{b} R¹ = CH₂CH(OH)Ph, \mathbf{c} R¹ = NHAc, \mathbf{d} R¹ = H

Цианэтилирование соединений **1а**-с протекает региоселективно по атому $C_{(9)}$ с образованием β -цианэтилзамещенных азафлуоренов **2а**-с с выходами 26–55%. Такое направление реакции обусловлено большой стабильностью промежуточного $C_{(9)}$ -карбаниона за счет делокализации отрицательного заряда по азафлуореновой системе. Цианэтилирование соединения **1d** протекает как по положению 9, так и по аминогруппе с образованием три- β -цианэтилзамещенного соединения **2d** (выход 30%). В отсутствие катализатора цианэтилирование соединения **1d** по аминогруппе в кипящем ацетонитриле не происходит, что, по-видимому, обусловлено ее низкой нуклеофильностью. Цианэтилирование соединения **1a**-с сопровождалось осмолением. При цианэтилировании соединения **1a** с выходом 5% образуется 9-фенацилиден-4-азафлуорен, по-видимому, вследствие окисления промежуточного $C_{(9)}$ -карбаниона. Осуществить алкилирование 9-фенацилзамещенного **1a** акриламидом, этил- и бутилакрилатами в условиях, аналогичных цианэтилированию, не удалось.

При восстановлении карбонильной группы в соединении **2a** до гидроксильной боргидридом натрия с выходом 60% получен азафлуорен **2b**, который, в отличие от выделенного при цианэтилировании индивидуального изомера **1b**, по данным спектров ЯМР ¹Н, представляет собой смесь (1:1.5) двух диастереомеров (таблица).

С целью получения перспективных в биологическом плане спиросоединений, содержащих фрагмент 4-азафлуорена, была осуществлена циклизация соединения **2a** под действием этилата натрия. В этих условиях реализуются оба возможных направления циклизации с участием метиленовых групп как CH₂CN, так и CH₂CO. Хроматографически из реакционной среды с равными выходами (20%) выделены 1'-циано-2'фенилспиро[4-азафлуорен-9,4'-циклопентен] (**3**) и 1'-имино-2'-бензоилспиро[4-азафлуорен-9,3'-циклопентан] (**4**), по данным ИК спектроскопии, существующий в енольной форме.

В ИК спектрах соединений **2а–d** и **3** в области 2218–2252 см⁻¹ присутствует характеристическая полоса валентных колебаний группы CN. Валентным колебаниям CO в соединении **2а** отвечает полоса 1670, а в соединении **2с** – 1650 см⁻¹. В ИК спектре азафлуорена **2b** присутствует широкая полоса связанного гидроксила при 3200 см⁻¹. В ИК спектре спиросоединения **4** полосы поглощения в области валентных колебаний CO отсутствуют. Интенсивная полоса при 1603 см⁻¹ обусловливается наличием группировки –C(OH)=C-C=NH и указывает на существование соединения **4** в енольной форме, которая стабилизируется водородной связью. В ИК спектре соединения **4** в растворе CHCl₃ (*c* = 0.0296 моль/л), наряду с широкой полосой валентных колебаний групп NH и OH при 1497

Спектры ЯМР ¹Н замещенных и спироаннелированных азафлуоренов 1–4

Соединение*	Химические сдвиги, δ, м. д. (КССВ, J, Гц)						
	R^1	Н-2	Н-3	Н-5, м	Н-6—8, м	R^2	R
1a	7.82 (д. д, J = 7.6, J = 1.5)	7.14 (д. д, J = 7.6, J = 4.9)	8.58 (д. д, J = 1.5, J = 4.9)	8.10	7.65–7.35	4.77 (д. д, J = 5.80, J = 8.20)	3.59 (д. д, $J = 18.0$, $J = 5.8$, CH _A -C ₍₉₎); 3.35 (д. д, $J = 18.0$, $J = 8.2$, CH _B -C ₍₉₎); 7.99 (м, C ₆ H ₅)
maj-1b	7.25-8.19 (м)	7.19 (д. д, J = 7.6, J = 5.2)	8.52 (д. д, J = 5.2, J = 1.2)	9.06	9.19–7.25	4.20 (м)	4.93 (м, С <u>Н</u> ОН); 2.65–1.90 (м, СН ₂ –С ₍₉₎ ; 8.19–7.25 (м, С ₆ Н ₅)
min-1b	7.25-8.19 (м)	7.08 (д. д. J = 7.6, J = 5.2)	8.46 (д. д, J = 5.2, J = 1.2)	7.95	8.19–7.25	4.20 (м)	4.93 (м, С <u>Н</u> ОН); 2.65–1.90 (м, CH ₂ –С ₍₉₎); 8.19–7.25 (м, С ₆ Н ₅)
2a	7.29 (д. д, J = 7.6, J = 1.5)	7.19 (д. д, J = 7.6, J = 4.9)	8.60 (д. д, J=4.9, J=1.5)	8.07	7.74–7.30	3.10–2.90 (м); 2.00–2.55 (м); 1.57 (м)	3.43 и 3.62 (AB) (<i>J</i> = 16.8, CH ₂ CO); 7.74–7.30 (м, C ₆ H ₅)
maj-2b	7.37 (д. д, J = 8.0, J = 1.8)	6.98 (д. д, J = 8.0, J = 5.0)	8.46 (д. д, J = 5.0, J = 1.8)	8.06	8.86-7.11	2.63–2.36 (м); 1.65–1.36 (м)	2.71 и 2.47 (м, <i>J</i> = 14.4, CH ₂); 4.06 (м, CH); 1.54 (<i>J</i> = 4.0, OH); 8.86–7.11 (С ₆ H ₅)
min-2b	7.87 (д. д, J = 8.0, J = 1.8)	7.29 (д. д, J = 8.0, J = 5.0)	8.57 (д. д, J = 5.0, J = 1.8)	7.99	8.86-7.11	2.63–2.36 (м); 1.65–1.36 (м)	2.65 и 2.36 (м, <i>J</i> = 14.4, CH ₂); 4.06 (м, CH); 1.64 (<i>J</i> = 4.0, OH); 8.86–7.11 (С ₆ H ₅)
2c	8.24 (д. д, J = 7.6, J = 1.5)	7.22 (д. д, J = 7.6, J = 4.9)	8.60 (д. д, J=4.9, J=1.5)	8.02	7.7–7.4	3.22 (м); 2.82 (м); 1.80 (т, <i>J</i> = 7.9)	5.86 (уш. с, NH); 1.95 (с, Ac)
2d	-	6.45 (д, J = 5.8)	8.40 (д, J = 5.8)	8.02	7.30-7.50	2.50–2.30 (м); 1.59 (т)	4.80 (т, H-9); 2.90–2.60 (м, CH ₂ N)
3	7.79 (д. д, J = 7.7, J = 1.5)	7.20 (д. д, J = 7.7, J = 4.9)	8.60 (д. д, J=4.9, J=1.5)	8.04	7.83-7.40	3.52, 3.42, 3.38 и 3.37 (4H, м, <i>J</i> = 16.5, <i>J</i> = 2.2); 7.83–7.40 (м, C ₆ H ₅)	
4	7.55 (д. д, J = 7.6, J = 1.5)	7.03 (д. д, J = 7.6, J = 4.9)	8.36 (д. д, J = 4.9, J = 1.5)	_**	7.45-7.25	3.15-2.85 и 2.30-2.20 (4	Н, м); 6.86–6.16 (м, С ₆ Н ₅)

*maj – мажорный изомер, min – минорный изомер. **Определить химический сдвиг или КССВ не удалось из-за взаимного перекрывания сигналов.

3291 см⁻¹, появляются узкие полосы при 3491 и 3403 см⁻¹, которые можно отнести к валентным колебаниям групп ОН и NH, связанных внутримолекулярной связью с одним мостиком. В масс-спектрах соединений **1b**, **2а–с**, **3** и **4** наблюдаются пики молекулярных ионов различной интенсивности, соответствующие их брутто-формулам.

В спектрах ЯМР ¹Н всех соединений (таблица) присутствуют сигналы всех протонов, имеющихся в молекулах. Сигналы протонов пиридинового фрагмента молекул H-1,2,3 наблюдаются в виде трех групп сигналов, представляющих собой дублеты дублетов с характерными для пиридинов КССВ $J_{12} = 7.6-8.0$, $J_{13} = 1.5-1.8$ и $J_{23} = 4.9-5.8$ Гц. Метиленовые протоны β -цианэтильного радикала при атоме C₍₉₎ проявляются в виде двух мультиплетов в области 1.36–1.80 (2H) и 2.36–3.22 м. д. (2H).

В спектрах ЯМР ¹Н фенацилзамещенного азафлуорена **2a** протоны группы CH₂CN химически неэквивалентны и наблюдаются в виде двух мультиплетов в области 2.55–2.80 и 2.90–3.10 м. д., каждый с интегральной интенсивностью 1Н. Метиленовые протоны радикала \mathbb{R}^1 при атоме C₍₉₎ в спектрах соединений **2a**, в проявляются в виде дублета дублетов (**2a**) и мультиплета (**2b**) с геминальными КССВ J = 16.8 и J = 14.4 Гц соответственно.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

ИК спектры получали на спектрометре IR-75 в таблетках КВг. Масс-спектры регистрировали на приборе Varian MAT-112 с прямым вводом образца в источник ионов при ионизирующем излучении 70 эВ. Спектры ЯМР ¹Н ~3% растворов синтезированных веществ в CDCl₃ регистрировали при 30 °С на приборе Bruker WP-200 (200 МГц), внутреннеий стандарт ТМС. Для ТСХ использовали пластины Silufol UV-254 (проявление парами иода), для колоночной хроматографии – Al₂O₃ I ст. акт. по Брокману.

9-Фенацил-4-азафлуорен (1а). К раствору 4 г (14.4 ммоль) 9-фенацилиден-4азафлуорена в 140 мл смеси этанола и 25% раствора аммиака (1:1) прибавляют 1.85 г (28.2 ммоль) цинковой пыли, 2.17 г (28.2 ммоль) ацетата аммония и кипятят 4 ч (контроль TCX). Раствор декантируют и охлаждают. Выпавшие кристаллы отфильтровывают и промывают водой. Получают 3.17 г (79%) соединения **1а**, бесцветные кристаллы, т. пл. 104–106 °С (из смеси гексан–этилацетат, 2:1), R_f 0.53 (гексан–этилацетат, 1:1). ИК спектр, v, см⁻¹: 1673 (С=О). Масс-спектр, m/z ($I_{отн}$, %): 285 [М]⁺ (41); 180 (71); 179 (25); 166 (29); 152 (13); 105 (100); 77 (51). Найдено, %: С 84.01; Н 5.14; N 4.77. С₂₀Н₁₅NO. Вычислено, %: C 84.20; Н 5.26; N 4.91. М 285.

9-(1-Гидрокси-1-фенилэтил-2)-4-азафлуорен (1b). К раствору 0.41 г (1.44 ммоль) соединения **1a** в 150 мл абсолютного эфира прибавляют пятикратный избыток алюмогидрида лития. Перемешивают 4 ч при 20 °С (контроль TCX). Осторожно разлагают водой. Экстрагируют эфиром, сушат MgSO₄. Получают 0.37 г (92%) соединения **1b**, светло-желтые кристаллы, т. пл. 39–42 °С, R_f 0.31 (гексан–этилацетат, 1:1). ИК спектр, v, см⁻¹: 3100–3500 (OH). Найдено, %: С 83.92; Н 6.02; N 4.62. М⁺ 287. С₂₀H₁₇NO. Вычислено, %: С 83.62; Н 5.92; N 4.88. М 287.

9-Фенацил-9-(β-цианоэтил)-4-азафлуорен (2а). Раствор 3 г (10.5 ммоль) **1а**, 1.2 мл тритона Б в спирте и 8.4 г (158.5 ммоль) акрилонитрила в 120 мл абсолютного бензола перемешивают 6 ч при 20 °С (контроль TCX). Бензол отгоняют. Остаток хроматографируют на оксиде алюминия (1 × 20 см), элюент гексан–этилацетат, 1:1. Последовательно элюируют: 1.94 г (55%) соединения **2а** [бесцветные кристаллы, т. пл. 117–121 °С (гексан–этилацетат, 1:1), R_f 0.42 (гексан–этилацетат, 1:2). ИК спектр, v, см⁻¹: 2252 (С=N), 1670 (С= O).

Найдено, %: С 81.96; Н 5.12; N 8.38. М⁺ 338. С₂₃Н₁₈N₂O. Вычислено, %: С 81.66; Н 5.33; N 8.28. М 338] и 0.2 г (5%) 9-фенацилиден-4-азафлуорена [т. пл. 147–149 °С (из гептана) [4]. Найдено: М⁺ 283. С₂₀Н₁₃NO. Вычислено: М 283].

9-(β-Гидрокси-β-фенилэтил)-9-(β-цианоэтил)-4-азафлуорен (2b). А. Раствор 0.64 г (2.2 ммоль) соединения **1b**, 0.25 мл тритона Б и 1.42 г (27 ммоль) акрилонитрила в 50 мл абсолютного толуола перемешивают при 0 °С (контроль TCX). Добавляют воду, органический слой отделяют, водный экстрагируют эфиром. Объединенный экстракт сушат MgSO₄. Остаток 0.6 г после отгонки растворителей кристаллизуют из смеси гексан – этилацетат. Получают 0.2 г (26%) соединения **2b**, бесцветные кристаллы, т. пл. 182–184 °С, R_f 0.27 (гексан–этилацетат, 1:1). ИК спектр, v, см⁻¹: 2250 (С=N), 3100–3300 (OH). Массспектр, m/z ($I_{0тн}$, %): 340 [M]⁺ (12); 233 (3.5); 194 (100); 180 (69); 107 (31); 77 (30). Найдено, %: С 81.40; H 5.91; N 8.40. С₂₃H₂₀N₂O. Вычислено, %: С 81.18; H 5.88; N 8.24. М 340.

Б. К раствору 0.2 г (0.59 ммоль) **2а** в 20 мл ацетонитрила прибавляют 0.025 г (0.59 ммоль) боргидрида натрия и кипятят 1 ч (контроль TCX). Ацетонитрил отгоняют в вакууме, прибавляют 20 мл воды, экстрагируют эфиром (3 × 20 мл). Экстракт сушат MgSO₄. Остаток 0.2 г после отгонки эфира кристаллизуют из смеси гексан–этилацетат, 1:1. Получают 0.12 г (60%) соединения **2b**, бесцветные кристаллы, т. пл. 151–155 °C, R_f 0.31 (гексан–этилацетат, 1:2). ИК спектр, v, см⁻¹: 2253 (С \equiv N), 3100–3300 (OH). Найдено, %: С 81.48; H 6.13; N 8.38. М ⁺ 340. С₂₃H₂₀N₂O. Вычислено, %: С 81.18; H 5.88; N 8.24. М 340.

9-Ацетамидо-9-(β-цианоэтил)-4-азафлуорен (2с). Раствор 1 г (4.5 ммоль) соединения **1с**, 0.6 мл тритона Б и 3.6 г (67 ммоль) акрилонитрила в 100 мл абсолютного бензола перемешивают при 20 °C в течение 4 ч (контроль TCX). Прибавляют 20 мл воды, органический слой отделяют, водный экстрагируют хлороформом. Объединенный экстракт сушат MgSO₄. Остаток после отгонки растворителей кристаллизуют из смеси этилацетат– этанол. Получают 0.65 г (52%) соединения **2с**, бесцветные кристаллы, т. пл. 223–225 °C, R_f 0.34 (2-пропанол). ИК спектр, v, см⁻¹: 2250 (C=N), 1670 (C=O), 3300, 3070 (NH). Найдено, %: С 73.80; Н 5.50; N15.16. М⁺ 277. С₁₇H₁₅N₃O. Вычислено, %: С 73.65; Н 5.42; N 15.16. М 277.

1-(N,N-Ди(β-цианоэтил)амино)-9-(β-цианоэтил)-4-азафлуорен (2d). Раствор 0.3 г (1.65 ммоль) соединения **1d**, 10 капель тритона Б и 1 мл (16.5 ммоль) акрилонитрила в 5 мл абсолютного бензола нагревают 10 ч при 45–50 °C (контроль TCX). Бензол отгоняют, остаток хроматографируют на оксиде алюминия (1 × 30 см), элюент гексан–этилацетат, 1:1. Выделяют 0.16 г (30%) соединения **2d**, желтые кристаллы, т. пл. 98–100 °C (гексан–этилацетат, 1:1), R_f 0.4 (этилацетат). ИК спектр, v, см⁻¹: 2230 (C≡N). Масс-спектр, m/z ($I_{отн}$, %): 341 [M]⁺ (35); 301 (30); 287 (100); 260 (15); 246 (30); 234 (40); 219 (22); 194 (20); 178 (150); 166 (10); 151 (15); 139 (5); 126 (5); 110 (10); 83 (15); 54 (30); 43 (25). Найдено, %: С 74.20; Н 5.61; N 20.73. C₂₁H₁₉N₅. Вычислено, %: С 73.90; Н 5.57; N 20.53. М 341.

1'-Циано-2'-фенилспиро[4-азафлуорен-9,4'-циклопентен] (3) и 1'-имино-2'-гидроксибензилиденспиро[4-азафлуорен-9,3'-циклопентан] (4). Раствор 0.5 г (1.47 ммоль) соединения 2а и 0.3 г (4.43 ммоль) этилата натрия в 40 мл абсолютного этанола кипятят 2 ч (контроль TCX). Спирт отгоняют, к остатку прибавляют 50 мл воды, экстрагируют эфиром. Экстракт сушат MgSO4. Остаток после отгонки эфира хроматографируют на оксиде алюминия (1 × 35 см), элюент гексан-этилацетат, 1:1. Последовательно элюируют 90 мг (20%) спиросоединения 3 [бесцветные кристаллы, т. пл. 143-145 °С (гексанэтилацетат, 1:1), R_f 0.4 (этилацетат-гексан, 1:1). ИК спектр, v, см⁻¹: 2218 (С≡N). Массспектр, *m/z* (*I*_{отн}, %): 320 [M]⁺ (100); 319 (75); 293 (10); 267 (12); 243 (15); 193 (8); 180 (12); 166 (22); 103 (9). Найдено, %: С 86.25; Н 5.20; N 8.46. С₂₃Н₁₆N₂. Вычислено, %: С 86.25; Н 5.0; N 8.75. М 320] и 0.1 г (20%) спиросоединения 4 [желтоватые кристаллы, т. пл. 218-222 °С (гексан–этилацетат, 1:1), R_f 0.30 (этилацетат–гексан, 1:1). ИК спектр (CHCl₃), v, см⁻¹: 3643–3433 (OH), 3233–3553 (NH), 2276 и 3450 (NH...OH и связанные OH и NH). Масс-спектр, *m/z* (*I*_{отн}, %): 338 [M]⁺ (58), 337 (100); 294 (10); 233 (42); 217 (12); 192 (10); 180 (12); 167 (5); 105 (22); 77 (40). Найдено, %: С 81.89; Н 5.40; N 8.19. С₂₃Н₁₈N₂O. Вычислено, %: C 81.66; H 5.33; N 8.28. M 338].

СПИСОК ЛИТЕРАТУРЫ

- Н. С. Простаков, Б. Х. Сисимбина, С. А. Солдатова, Б. П. Шалимов, К. Г. Монтенегро, Н. И. Леонова, Л. А. Муругова, *XГС*, 1668 (1982). [*Chem. Heterocycl. Comp.*, 18, 1290 (1982)].
- Н. С. Простаков, Ханна Бу Хабиб, Л. М. Кириллова, О. И. Сорокин, А. В. Варламов, XIC, 967 (1983). [Chem. Heterocycl. Comp., 19, 778 (1983)].
- А. В. Варламов, А. Н. Левов, Ф. Тозе, А. И. Чернышев, В. В. Давыдов, М. А. Рябов, О. А. Егорова, XTC, 1682 (2002). [Chem. Heterocycl. Comp., 30, 1484 (2002)].
- 4. Н. С. Простаков, Михалис Макули, Н. М. Михайлова, Н. Д. Сергеева, *XIC*, 510 (1984). [*Chem. Heterocycl. Comp.*, **20**, 413 (1984)].

Российский университет дружбы народов, Москва 117198 e-mail:avarlamov@sci.pfu.edu.ru Поступило 14.06.2002 После переработки 24.02.2005