И. В. Украинец, Л. В. Сидоренко, О. В. Горохова, Н. Л. Березнякова, С. В. Шишкина^а

4-ГИДРОКСИХИНОЛОНЫ-2

109*. АЛКИЛИРОВАНИЕ ЭТИЛОВЫХ ЭФИРОВ 4-ЗАМЕЩЕННЫХ 2-ОКСО-1,2-ДИГИДРОХИНОЛИН-3-КАРБОНОВЫХ КИСЛОТ

Изучено алкилирование этиловых эфиров 4-метил-, 4-хлор- и 4-аминозамещенных 2-оксо-1,2-дигидрохинолин-3-карбоновых кислот этилиодидом в системе ДМФА/К₂CO₃. Обсуждаются особенности строения исходных соединений и их влияние на соотношение между образованием N- и O-алкильных производных.

Ключевые слова: 2-оксо-1,2-дигидрохинолины, 1Н-хинолин-2-оны, алкилирование, РСА.

Алкилирование α-оксо(гидрокси)азагетероциклов редко проходит однозначно. Как правило, в результате таких реакций образуются смеси соответствующих N- и О-алкилзамещенных производных, зачастую содержащие некоторое количество исходного соединения [2–5]. Преимущественное образование того или иного изомера определяют многие причины: заместители в алкилируемом образце, строение и размер вводимой алкильной группы (в случае алкилгалогенидов существенное влияние оказывает и галоген), применяемое для генерирования аниона основание, растворитель и другие условия проведения эксперимента. Поэтому влияние внешних и структурных факторов на алкилирование α-оксо(гидрокси)азагетероциклов представляет особый интерес и стало предметом изучения многих исследователей [5–7].

Проведенные нами эксперименты показали, что алкилирование этилового эфира 4-метил-2-оксо-1,2-дигидрохинолин-3-карбоновой кислоты (1а) этилиодидом в системе ДМФА/ K_2CO_3 (т. е. фактически амбидентного аниона 2а) дает смесь продуктов реакции. По данным хромато-массспектра, основным ее компонентом (70%) является N-этилхинолон 3a. Минорный остаток (28%) идентифицирован как 2-этоксихинолин 4a при 2% не вступившего в реакцию исходного NH-эфира 1a. Направление алкилирования такого рода соединений, как известно [6], в большой степени зависит от положения таутомерного равновесия. Ранее при детальном изучении строения эфира 1a нами были отмечены некоторые его особенности. В частности, в кристалле наблюдалась заметная делокализация электронной плотности в хинолиновом фрагменте, позволившая предположить, что уже в нейтральных условиях эфир 1a существует в двух

^{*}Сообщение 108 см. [1].

таутомерных формах: ароматической и 1,2-дигидро с преимущественным вкладом последней [8]. В основной среде вклад ароматического таутомера в резонансный гибрид, очевидно, существенно не изменяется – в результате при алкилировании эфира **1**а с высоким выходом образуется продукт 1-N-замещения **3**а.

В отличие от этого, у структурного аналога 4-метилзамещенного эфира 1а – этилового эфира 2-оксо-4-хлор-1,2-дигидрохинолин-3-карбоновой кислоты (1b), судя по данным PCA, двойная связь C₍₇₎-C₍₈₎ локализована (рисунок, табл. 1, 2). Некоторое же удлинение карбонильной связи С₍₉₎-О₍₁₎ 1.242(4) Å (среднее значение 1.210 Å [9]) можно объяснить не таутомерией, а всего лишь образованием межмолекулярной водородной связи N₍₁₎-H_(1N)...O₍₁₎ (-1-x, 2-y, 1-z) Н...О 1.98 Å, N-H...О 171°. Бициклический фрагмент и атомы O(1), Cl(1) лежат в одной плоскости с точностью 0.01 Å. Сложноэфирный заместитель при атоме С₍₈₎ разупорядочен по двум положениям А и В с заселенностью конформеров 54:46 вследствие вращения вокруг связи С₍₈₎-С₍₁₀₎ и в обоих конформерах развернут практически перпендикулярно плоскости хинолина также, как и в молекуле 4-метилзамещенного эфира 1а (торсионный угол $C_{(7)}$ – $C_{(8)}$ – $C_{(10)}$ – $O_{(2)}$ –88(1)° А и -108 (1)° В). Этильная группа в конформерах А и В находится в *ар*-положении относительно связи C₍₁₀₎-C₍₈₎ (торсионный угол C₍₁₁₎-O₍₃₎-C₍₁₀₎-C₍₈₎ -166.3(9)° А, -171(1)° В). Атом С(12) в конформере А находится в положении, промежуточном между –ас и –ар, а в конформере В – в положении, близком к +ac (торсионный угол C₍₁₀₎-O₍₃₎-C₍₁₁₎-C₍₁₂₎ -166(1)° A, 147(2)° B). При этом в конформере A возникает укороченный

Строение молекулы эфира 1b с нумерацией атомов

внутримолекулярный контакт $H_{(11b)}...O_{(2a)}$ 2.35 Å (сумма ван-дерваальсовых радиусов 2.46 Å [10]). В молекуле обнаружен также укороченный внутримолекулярный контакт $H_{(5)}...Cl_{(1)}$ 2.71 Å (3.06 Å). Другими словами, в случае хлорзамещенного эфира **1b** PCA не позволяет утверждать о каком-либо заметном присутствии в кристалле ароматической таутомерной формы. Следовательно, при алкилировании этого хинолона этилиодидом логично было бы ожидать если не исключительного образования N-этилзамещенного соединения **3b**, то, по крайней мере, более высокого его выхода, чем в предыдущем примере. Тем не менее, хроматографическое изучение состава полученной реакционной смеси показало, что соответствующий 2-этоксиизомер **4b** все же образуется, а его выход оказался даже несколько выше (31%), чем в случае 4-метильного производного.

4-Аминозамещенный эфир в кристалле также существует исключительно в 1,2-дигидроформе [11]. Но и его реакция с бромистым октилом в системе ДМФА/К₂CO₃ дает смесь продуктов N- и О-алкилирования, причем уже со значительным преобладанием ароматического 2-алкоксипроизводного [3]. Одной из причин такого результата следовало бы считать достаточно большой размер алкильной группы в октил-бромиде. Однако после алкилирования этилового эфира 4-амино-2-оксо-1,2-дигидрохинолин-3-карбоновой кислоты (1с) этилиодидом в тех же условиях обнаружены только следы N-этилзамещенного изомера 3с.

Таким образом, из результатов проведенных исследований следует, что определяемые методом PCA особенности строения сложных эфиров 1H-2оксо-1,2-дигидрохинолин-3-карбоновых кислот, к сожалению, мало информативны для прогнозирования направления алкилирования. Такие реакции требуют предварительной ионизации связи N–H, что достигается путем добавления основания и растворителя. Образующиеся при этом анионы общей формулы 2 амбидентны по своей природе. Поэтому реальное соотношение между N- и О-алкильными изомерами при их последующем алкилировании зависит от таутомерного равновесия именно в анионе, а оно, как оказалось, в большинстве случаев существенно отличается от такового в нейтральной молекуле.

Длины связей (*l*) в структуре эфира 1b

Таблица 1

Связь	l, Å	Связь	<i>l</i> , Å
Cl ₍₁₎ –C ₍₇₎	1.730(3)	N ₍₁₎ -C ₍₉₎	1.349(4)
$N_{(1)}-C_{(1)}$	1.375(4)	O ₍₁₎ –C ₍₉₎	1.242(4)
O _(2A) -C ₍₁₀₎	1.206(5)	$O_{(3A)} - C_{(10)}$	1.314(7)
$O_{(3A)} - C_{(11A)}$	1.472(9)	C _(11A) -C _(12A)	1.507(9)
$O_{(2B)} - C_{(10)}$	1.206(5)	O _(3B) -C ₍₁₀₎	1.322(8)
O _(3B) -C _(11B)	1.464(9)	C _(11B) –C _(12B)	1.51(1)
$C_{(1)} - C_{(6)}$	1.396(4)	$C_{(1)} - C_{(2)}$	1.406(4)
$C_{(2)} - C_{(3)}$	1.360(5)	C ₍₃₎ -C ₍₄₎	1.395(5)
$C_{(4)} - C_{(5)}$	1.358(5)	C ₍₅₎ -C ₍₆₎	1.404(4)
$C_{(6)} - C_{(7)}$	1.430(4)	C ₍₇₎ –C ₍₈₎	1.354(4)
$C_{(8)} - C_{(9)}$	1.456(4)	$C_{(8)} - C_{(10)}$	1.492(4)

Валентные углы (ω) в структуре эфира 1b

Таблица 2

Угол	ω, град.	Угол	ω, град.
$C_{(9)} - N_{(1)} - C_{(1)}$	124.8(2)	$C_{(10)} - O_{(3A)} - C_{(11A)}$	111.3(8)
$O_{(3A)} - C_{(11A)} - C_{(12A)}$	105.5(9)	$C_{(10)} - O_{(3B)} - C_{(11B)}$	124(1)
$O_{(3B)}$ - $C_{(11B)}$ - $C_{(12B)}$	102(1)	$N_{(1)} - C_{(1)} - C_{(6)}$	120.6(3)
$N_{(1)} - C_{(1)} - C_{(2)}$	119.3(3)	$C_{(6)} - C_{(1)} - C_{(2)}$	120.1(3)
$C_{(3)} - C_{(2)} - C_{(1)}$	119.5(3)	$C_{(2)} - C_{(3)} - C_{(4)}$	120.7(3)
$C_{(5)} - C_{(4)} - C_{(3)}$	120.3(3)	$C_{(4)} - C_{(5)} - C_{(6)}$	120.7(3)
$C_{(1)} - C_{(6)} - C_{(5)}$	118.6(3)	$C_{(1)} - C_{(6)} - C_{(7)}$	115.9(3)
$C_{(5)} - C_{(6)} - C_{(7)}$	125.5(3)	$C_{(8)} - C_{(7)} - C_{(6)}$	122.8(3)
$C_{(8)}-C_{(7)}-Cl_{(1)}$	118.9(2)	$C_{(6)} - C_{(7)} - Cl_{(1)}$	118.3(2)
$C_{(7)} - C_{(8)} - C_{(9)}$	120.0(2)	$C_{(7)} - C_{(8)} - C_{(10)}$	122.6(3)
$C_{(9)} - C_{(8)} - C_{(10)}$	117.3(3)	$O_{(1)} - C_{(9)} - N_{(1)}$	121.5(3)
$O_{(1)} - C_{(9)} - C_{(8)}$	122.6(3)	$N_{(1)} - C_{(9)} - C_{(8)}$	115.9(3)
O _(2A) -C ₍₁₀₎ -O _(3A)	125(1)	O _(2B) -C ₍₁₀₎ -O _(3B)	124(1)
$O_{(2A)} - C_{(10)} - C_{(8)}$	124(1)	$O_{(2B)} - C_{(10)} - C_{(8)}$	122(1)
O _(3A) -C ₍₁₀₎ -C ₍₈₎	110.3(6)	$O_{(3B)} - C_{(10)} - C_{(8)}$	113.3(7)

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Спектры ЯМР ¹Н записаны на приборе Varian Mercury VX-200 (200 МГц), растворитель ДМСО-d₆, внутренний стандарт ТМС. Хромато-масс-спектрометрические исследования проведены на приборе Varian 1200L в режиме полного сканирования в диапазоне 35–700 *m*/*z*, ионизация электронным ударом 70 эВ; хроматографическая колонка CP-SIL 8CB: длина 50 м, внутренний диаметр 0.25 мм, неподвижная фаза – пленка полисилоксана (5% дифенилполисилоксан, 95% диметилполисилоксан) толщиной 0.33 мкм, газ-носитель – гелий, температура инжектора 300 °С, температура ионного источника 250 °С. Синтез этилового эфира 2-оксо-4-хлор-1-этил-1,2-дигидрохинолин-3-карбоновой кислоты (**3b**) приведен в работе [12].

Этиловый эфир 4-метил-2-оксо-1-этил-1,2-дигидрохинолин-3-карбоновой кислоты (2а). К смеси 2.31 г (0.01 моль) этилового эфира 4-метил-2-оксо-1,2-дигидрохинолин-3карбоновой кислоты (1a) и 2.76 г (0.02 моль) К₂СО₃ в 20 мл ДМФА прибавляют 0.89 мл (0.011 моль) иодэтана и перемешивают 5 ч при 90 °С. Охлаждают, разбавляют реакционную смесь водой. Выделившийся осадок экстрагируют CH₂Cl₂ (3×20 мл). Органические вытяжки объединяют, растворитель отгоняют, остаток подвергают хроматомасс-спектрометрическому анализу. Для разделения образовавшихся продуктов алкилирования реакционную смесь обрабатывают гексаном (3×15 мл). К нерастворившемуся остатку прибавляют 30 мл эфира. Осадок (исходный NH-эфир 1a) отфильтровывают, промывают эфиром, сушат. Получают 0.046 г (2%) эфира 1а. Эфирную вытяжку чистят углем и после отгонки растворителя выделяют 1.63 г (63%) N-этилзамещенного эфира 2a. Rf 0.23 (Silufol UV-254, Et₂O-гексан, 2:1). Т. пл. 72-74 °С (водный этанол). Масс-спектр, *m/z* (*I*_{отн}, %): 259 [M]⁺ (22), 258 [M–H]⁺ (8), 230 [M–C₂H₅]⁺ (8), 214 $[M-OEt]^+$ (53), 185 $[M-OEt-C_2H_3]^+$ (80), 157 $[M-OEt-C_2H_5-CO]^+$ (100), 143 (39), 130 (55), 103 (40), 77 (30). Спектр ЯМР ¹Н, δ , м. д. (*J*, Γ ц): 7.90 (1H, *д*, *J* = 8.1, H-5), 7.69 (1H, *τ*. *д*, *J* = 7.9 и *J* = 1.3, H-7), 7.61 (1H, д, *J* = 8.3, H-8), 7.33 (1H, т. д, *J* = 7.2 и *J* = 1.5, H-6), 4.29 (4H, м, NCH₂ + OCH₂), 2.39 (3H, c, 4-CH₃), 1.28 (3H, T, J = 7.0, OCH₂CH₃), 1.19 (3H, T, J = 7.1, NCH₂CH₃). Найдено, %: С 69.62; Н 6.78; N 5.53. С₁₅H₁₇NO₃. Вычислено, %: С 69.48; Н 6.61; N 5 40

Этиловый эфир 4-метил-2-этоксихинолин-3-карбоновой кислоты (3а). Оставшийся после выделения N-этилзамещенного эфира 2а гексановый экстракт (см. предыдущий пример) чистят углем, после чего растворитель удаляют. Получают 0.57 г (22%) 2-этоксипроизводного 3а в виде бесцветной маслянистой жидкости. R_f 0.80 (Silufol UV-254, Et₂O-reксан, 2:1). Масс-спектр, m/z ($I_{\text{огн}}$, %): 259 [M]⁺ (12), 244 [M–CH₃]⁺ (9), 230 [M–C₂H₃]⁺ (11), 214 [M–OEt]⁺ (27), 186 [M–OEt–CO]⁺ (100), 159 (66), 143 (83), 130 (27), 103 (15), 77 (20). Спектр ЯМР ¹H, δ , м. д. (J, Γ ц): 8.00 (1H, д, J = 8.3, H-5), 7.79–7.62 (2H, м, H-7,8), 7.47 (1H, т, J = 7.2, H-6), 4.41 (4H, м, NCH₂ + OCH₂), 2.55 (3H, с, 4-CH₃), 1.31 (6H, м, OCH₂CH₃ + + NCH₂CH₃). Найдено, %: С 69.66; H 6.54; N 5.35. C₁₅H₁₇NO₃. Вычислено, %: С 69.48; H 6.61; N 5.40.

Алкилирование этиловых эфиров 4-хлор- (1b) и 4-амино- (1c) 2-оксо-1,2-дигидрохинолин-3-карбоновых кислот этилиодидом проводят аналогично без препаративного разделения N- и О-алкильных изомеров. В качестве стандартов при хромато-массспектрометрических исследованиях использованы заведомые N-этилзамещенные эфиры 3b,с.

Рентгеноструктурное исследование. Кристаллы эфира 1b, полученные из этанола, триклинные. При 20 °C: a = 6.967(3), b = 7.397(3), c = 11.526(5) Å, $\alpha = 76.18(3)^{\circ}$, $\beta = 85.99$ 4)°, $\gamma = 81.17(3)^{\circ}$, V = 569.6(4) Å³, $d_{\text{выч}} = 1.467$ г/см³, пространственная группа $P\overline{1}$, $M_r = 251.66$, Z = 2, μ (Мо $K\alpha$) = 0.330 мм⁻¹, F(000) = 60. Параметры элементарной ячейки и интенсивности 3214 отражений измерены на автоматическом четырехкружном дифрактометре Siemens P3/PC (λ Мо $K\alpha$, графитовый монохроматор, $\theta/2\theta$ -сканирование, $2\theta_{\text{max}} = 60^{\circ}$).

Обработка экспериментальных данных проведена по методу Блессинга [13]. Структура расшифрована прямым методом по комплексу программ SHELXTL [14]. При уточнении структуры налагались ограничения на длины связей в разупорядоченном фрагменте: Csp^2 =O 1.210, Csp^2 -O 1.33, O- Csp^3 1.45 и Csp^3 - Csp^3 1.52 Å. Положения атомов водорода выявлены из разностного синтеза электронной плотности, а для разупорядоченного фрагмента рассчитаны геометрически и уточнены по модели "наездника" с $U_{из0} = nU_{экв}$ неводородного атома, связанного с данным водородным (n = 1.5 для метильных групп и n = 1.2 для остальных атомов водорода). Структура уточнена по F^2 полноматричным МНК в анизотропном приближении для неводородных атомов до $wR_2 = 0.186$ по 2923 отражениям ($R_1 = 0.077$ по 1765 отражениям с $F > 4\sigma$ (F), S = 1.060). Полная кристаллографическая информация депонирована в Кембриджском банке структурных данных (депонент № ССDC 283293). Межатомные расстояния и валентные углы представлены в табл. 1, 2.

Этиловый эфир 4-амино-2-оксо-1-этил-1,2-дигидрохинолин-3-карбоновой кислоты (3с) получают по известной методике [3]. Выход 75%. Т. пл. 200–202 °С (этанол). Спектр ЯМР ¹H, δ, м. д. (*J*, Гц): 8.16 (1H, д, *J* = 8.1, H-5), 8.01 (2H, с, 4-NH₂), 7.64 (1H, т, *J* = 7.8, H-7), 7.43 (1H, д, *J* = 8.6, H-8), 7.21 (1H, т, *J* = 7.5, H-6), 4.28–4.08 (4H, м, NCH₂ + OCH₂), 1.25 (3H, т, *J* = 7.1, CH₃), 1.12 (3H, т, *J* = 6.9, CH₃). Масс-спектр (прямой ввод), *m/z* (*I*_{0тн}, %): 260 [M]⁺ (74), 259 [M–H]⁺ (54), 232 [M–CO]⁺ (23), 214 [M–EtOH]⁺ (22), 213 [M–H–EtOH]⁺ (51), 188 [M-COOEt]⁺ (40), 187 [M-H-COOEt]⁺ (36), 171 (37), 158 (100), 131 (33), 116 (46), 104 (82), 77 (76). Найдено, %: С 64.51; Н 6.32; N 10.84. С₁₄Н₁₆N₂O₃. Вычислено, %: С 64.60; Н 6.20; N 10.76.

СПИСОК ЛИТЕРАТУРЫ

- 1. И. В. Украинец, Л. В. Сидоренко, О. В. Горохова, О. В. Шишкин, А. В. Туров, *XTC*, 1391 (2006).
- 2. A. Chilin, G. Dodoni, C. Frezza, A. Guiotto, V. Barbieri, F. Di Lisa, M. Canton, J. Med. Chem., 48, 192 (2005).
- 3. И. В. Украинец, Л. В. Сидоренко, О. В. Горохова, *ХГС*, 1355 (2005). [*Chem. Heterocycl. Comp.*, **41**, 1151 (2005)].
- 4. И. В. Украинец, С. Г. Таран, О. В. Горохова, И. В. Горлачева, П. А. Безуглый, А. В. Туров, *XГС*, 1104 (1996). [*Chem. Heterocycl. Comp.*, **32**, 952 (1996)].
- 5. E. F. Scriven, in *Comprehensive Heterocyclic Chemistry on CD-ROM: 8-Volume Set*, A. R. Katritzky and C. W. Rees (Eds.), Pergamon Press, 1998, vol. 2, p. 165.
- 6. А. Ф. Пожарский, Теоретические основы химии гетероциклов, Химия, Москва, 1985.
- 7. Гетероциклические соединения, под ред. Р. Эльдерфилда, Изд-во иностр. лит., Москва, 1955, т. 4, с. 108.
- 8. И. В. Украинец, Л. В. Сидоренко, О. В. Горохова, С. В. Шишкина, ХГС, 887 (2006).
- 9. H.-B. Burgi, J. D. Dunitz, Struct. Correl., VCH, Weinheim, 1994, vol. 2, 741.
- 10. Ю. В. Зефиров, Кристаллография, 42, 936 (1997).
- V. B. Rybakov, V. V. Chernyshev, I. V. Ukrainets, P. A. Bezugly, L. V. Sidorenko, N. Skaif, Acta Crystallogr., E59, 0412 (2003).
- И. В. Украинец, С. Г. Таран, О. В. Горохова, Н. А. Марусенко, С. Н. Коваленко, А. В. Туров, Н. И. Филимонова, С. М. Ивков, *XTC*, 195 (1995). [*Chem. Heterocycl. Comp.*, **31**, 167 (1995)].
- 13. R. H. Blessing, J. Appl. Crystallogr., 22, 396 (1989).
- 14. G. M. Sheldrick, SHELXTL PLUS. PC Version. A System of Computer Programs for the Determination of Crystal Structure from X-ray Diffraction Data. Rev. 5.1 (1998).

Национальный фармацевтический университет, Харьков, 61002, Украина e-mail: uiv@kharkov.ua Поступило 27.06.2005

^аИнститут сцинтилляционных материалов НАН Украины, Харьков 61001 e-mail: sveta@xray.isc.kharkov.com