И. В. Украинец, А. А. Ткач, Л. В. Сидоренко, О. В. Горохова.

4-ГИДРОКСИХИНОЛОНЫ-2 110*. БРОМИРОВАНИЕ АНИЛИДОВ 1-R-4-ГИДРОКСИ-2-ОКСО-1,2-ДИГИДРОХИНОЛИН-3-КАРБОНОВЫХ КИСЛОТ

Осуществлен синтез анилидов 1-R-4-гидрокси-2-оксо-1,2-дигидрохинолин-3-карбоновых кислот. Экспериментально установлено, что в ледяной уксусной кислоте указанные соединения бромируются молекулярным бромом в положение 4 анилидного фрагмента. Обсуждаются противотуберкулезные свойства синтезированных соединений.

Ключевые слова: амиды 4-гидрокси-2-оксо-1,2-дигидрохинолин-3-карбоновых кислот, бромирование, РСА, противотуберкулезная активность.

Анилиды 1-R-4-гидрокси-2-оксо-1,2-дигидрохинолин-3-карбоновых кислот обладают широким спектром биологической активности. Среди них обнаружены вещества с антитиреоидными [2], противотуберкулезными [3, 4], анальгетическими, противовоспалительными [5] и антиоксидантными [6] свойствами. В медицинской практике используется антинеопластик линомид (рохинимекс), созданный на основе N-метиланилида 4-гидрокси-1-метил-2-оксо-1,2-дигидрохинолин-3-карбоновой кислоты [7]. Многочисленные исследования по модификации структуры этого лекарственного препарата позволили выявить в изучаемом ряду соединений потенциальные антинефритные [8] и противоангиогенные [9, 10] средства, а также новые синтетические иммуномодуляторы [11].

В продолжение проводимых нами работ по изучению физикохимических и биологических свойств 4-гидроксихинолонов-2 в данном сообщении мы исследовали анилиды 1-R-4-гидрокси-2-оксо-1,2-дигидрохинолин-3-карбоновых кислот (1) и их 4-бромзамещенные аналоги 2. Целевые соединения (табл. 1–3) синтезированы амидированием этиловых эфиров 3, соответственно, анилином и 4-броманилином по разработанному ранее методу [12].

Известно, что 3-алкил-, 3-фенил- и 3-алкоксикарбонилзамещенные 4гидрокси-2-оксо-1,2-дигидрохинолины (в том числе и N-фенил) бромируются молекулярным бромом в ледяной уксусной кислоте в положение 3, образуя 3-бром-3-R-2,4-диоксо-1,2,3,4-тетрагидрохинолины [13, 14].

Однако позже нами было показано, что при тщательном обезвоживании растворителя и реагентов указанная реакция проходит иначе – электрофильной атаке подвергается уже исключительно поло- жение 6 хинолона [15]. У анилидов **1** появляется еще один возможный реакционный центр для галогенирования – фениламидное ядро.

^{*} Сообщение 109 см. [1].

1–3 a R = H, **b** R = Me, **c** R = Et, **d** $R = CH_2CH=CH_2$, **e** R = Pr, **f** R = Bu, **g** R = i-Bu, **h** $R = C_5H_{11}$, **i** R = i- C_5H_{11} , **j** $R = C_6H_{13}$

Данное обстоятельство и предопределило последующее исследование, проведенное на примере N-метильного производного **1b**. Оказалось, что бромирование этого соединения проходит легко. С целью однозначного определения направления изучаемой реакции, полученный образец подвергнут РСА (рисунок, табл. 4, 5), показавшему, что бромирование анилидов **1** проходит не в гетероциклическую часть молекулы, а в положение 4 анилидного фрагмента, что подтверждается и спектроскопией ЯМР ¹Н.

Строение молекулы 4-броманилида **2b** с нумерацией атомов. Пунктиром показаны внутримолекулярные водородные связи.

Таблица 1

Характеристики синтезированных соединений

Соеди	- Брутто-	Т. пл., °С (ДМФА)	<u>Найдено, %</u> Вычислено, %				Задержка роста Mycobacterium
нение	формула		С	Н	N	Выход, %	<i>tuberculosis</i> при <i>c</i> = 6.25 мкг/мл, %
1 a	$C_{16}H_{12}N_2O_3$	298–303	<u>68.45</u> 68.57	<u>4.39</u> 4.32	<u>9.91</u> 9.99	98	0
1b	$C_{17}H_{14}N_2O_3$	196–198	<u>69.50</u> 69.38	<u>4.87</u> 4.79	<u>9.44</u> 9.52	91	0
1c	$C_{18}H_{16}N_2O_3$	169–171	<u>70.23</u> 70.12	<u>5.35</u> 5.23	<u>9.16</u> 9.09	90	0
1d	$C_{19}H_{16}N_2O_3$	161–163	<u>71.15</u> 71.24	<u>5.16</u> 5.03	<u>8.66</u> 8.74	91	0
1e	$C_{19}H_{18}N_2O_3$	142–144	<u>70.90</u> 70.79	<u>5.77</u> 5.63	<u>8.78</u> 8.69	93	0
1f	$C_{20}H_{20}N_2O_3$	138–140	<u>71.34</u> 71.41	<u>5.90</u> 5.99	<u>8.39</u> 8.33	88	85
1g	$C_{20}H_{20}N_2O_3$	130–132	<u>71.32</u> 71.41	<u>5.87</u> 5.99	<u>8.42</u> 8.33	90	89
1h	$C_{21}H_{22}N_2O_3$	123–125	<u>71.91</u> 71.98	<u>6.45</u> 6.33	<u>7.93</u> 7.99	86	81
1i	$C_{21}H_{22}N_2O_3$	115–117	<u>71.86</u> 71.98	<u>6.40</u> 6.33	<u>7.88</u> 7.99	83	100
1j	$C_{22}H_{24}N_2O_3$	104–106	<u>72.62</u> 72.51	<u>6.77</u> 6.64	$\frac{7.56}{7.69}$	85	87
2a	$C_{16}H_{11}BrN_2O_3$	321-323	<u>53.59</u> 53.50	$\frac{3.14}{3.09}$	<u>7.86</u> 7.80	91	9
2b	C ₁₇ H ₁₃ BrN ₂ O ₃	210-212	<u>54.82</u> 54.71	<u>3.59</u> 3.51	<u>7.44</u> 7.51	94	23
2c	$C_{18}H_{15}BrN_2O_3$	184–186	<u>55.76</u> 55.83	$\frac{3.98}{3.90}$	$\frac{7.35}{7.23}$	92	57
2d	$C_{19}H_{15}BrN_2O_3$	173–175	<u>57.07</u> 57.16	$\frac{3.67}{3.79}$	<u>7.00</u> 7.02	90	48
2e	C ₁₉ H ₁₇ BrN ₂ O ₃	197–199	<u>56.96</u> 56.87	<u>4.37</u> 4.27	<u>6.87</u> 6.98	90	32
2f	C ₂₀ H ₁₉ BrN ₂ O ₃	170–172	<u>57.95</u> 57.84	$\frac{4.54}{4.61}$	$\frac{6.88}{6.75}$	89	57
2g	$C_{20}H_{19}BrN_2O_3$	156–158	<u>57.90</u> 57.84	<u>4.50</u> 4.61	<u>6.67</u> 6.75	91	64
2h	$C_{21}H_{21}BrN_2O_3$	129–131	<u>58.68</u> 58.75	<u>4.98</u> 4.93	<u>6.45</u> 6.53	87	75
2i	$C_{21}H_{21}BrN_2O_3$	120–122	<u>58.83</u> 58.75	<u>4.85</u> 4.93	<u>6.44</u> 6.53	84	79
2j	C ₂₂ H ₂₃ BrN ₂ O ₃	114–116	<u>59.71</u> 59.60	<u>5.14</u> 5.23	<u>6.38</u> 6.32	88	58
	I. Contraction of the second se	1	•		•	1	1

Таблица 2

	Химические сдвиги, δ, м. д. (Ј, Гц)*							
Соеди- нение			Н аром.					
	H-5 (1Н, д)	Н-7 (1Н, т)	H-8,2',6' (3Н, м)	H-3',4',5' (3Н, м)	Н-6 (1Н, т)	R		
1a	8.18 (8.0)	7.89 (7.9)	7.70	7.43	7.20 (7.4)	11.86 (1H, c, NH)		
1b	8.11 (7.9)	7.83 (7.9)	7.65	7.39	7.18 (7.4)	3.66 (3H, c, CH ₃)		
1c	8.12 (8.0)	7.80 (7.9)	7.64	7.38	7.16 (7.4)	4.31 (2H, к, <i>J</i> = 7.3, NCH ₂); 1.25 (3H, т, <i>J</i> = 7.1, CH ₃)		
1d	8.12 (8.1)	7.78 (8.0)	7.60	7.39	7.17 (7.4)	5.96 (1H, м, NCH ₂ C <u>H</u>); 5.15 (1H, д, <i>J</i> = 10.5, H _{иис} в =CH ₂); 5.09 (1H, д, <i>J</i> = 12.7, H _{транс} в =CH ₂); 4.96 (2H, д, <i>J</i> = 4.4, NCH ₂)		
1e	8.10 (8.0)	7.81 (7.8)	7.63	7.38	7.16 (7.4)	4.22 (2H, T, <i>J</i> = 7.4, NCH ₂); 1.62 (2H, M, NCH ₂ C <u>H₂</u>); 0.97 (3H, T, <i>J</i> = 7.3, CH ₃)		
1f	8.09 (7.8)	7.80 (7.8)	7.64	7.38	7.16 (7.3)	4.24 (2H, т, <i>J</i> = 7.5, NCH ₂); 1.59 (2H, кв, <i>J</i> = 7.1, NCH ₂ C <u>H₂</u>); 1.40 (2H, м, C <u>H</u> ₂ CH ₃); 0.92 (3H, т, <i>J</i> = 7.1, CH ₃)		
1g	8.11 (7.9)	7.83 (7.8)	7.63	7.39	7.18 (7.4)	4.19 (2H, д, <i>J</i> = 7.3, NCH ₂); 2.16 (1H, м, CH); 0.92 (6H, д, <i>J</i> = 6.8, 2CH ₃)		
1h	8.12 (8.0)	7.83 (7.9)	7.66	7.39	7.17 (7.3)	4.26 (2H, T, $J = 7.5$, NCH ₂); 1.63 (2H, κ , $J = 6.9$, NCH ₂ CH ₂); 1.36 (4H, κ , (CH ₂) ₂ CH ₃); 0.87 (3H, T, $J = 6.8$, CH ₃)		
1i	8.08 (8.0)	7.81 (7.8)	7.60	7.37	7.16 (7.4)	4.24 (2H, т, <i>J</i> = 7.6, NCH ₂); 1.72 (1H, м, CH); 1.48 (2H, к, <i>J</i> = 6.7, NCH ₂ C <u>H₂</u>); 0.96 (6H, д, <i>J</i> = 6.7, 2CH ₃)		
1j	8.09 (8.0)	7.82 (7.8)	7.64	7.38	7.16 (7.4)	4.23 (2H, т, <i>J</i> = 7.0, NCH ₂); 1.60 (2H, кв, <i>J</i> = 6.9, NCH ₂ C <u>H</u> ₂); 1.41–1.23 (6H, м, (C <u>H</u> ₂) ₃ CH ₃); 0.86 (3H, т, <i>J</i> = 6.7, CH ₃)		

Спектры ЯМР ¹Н соединений 1а-ј

* Сигналы протонов 4-ОН и анилидных групп NH имеют вид синглетов в областях 16.59–16.35 и 12.68–12.61 м. д. соответственно.

Таблица З

	Химические сдвиги, б, м. д. (Ј, Гц)*					
C	Н аром.					
Соеди- нение	H-5 (1Н, д)	H-7 (1H, T)	Н-8,3',5' (3Н, м)	H-2',6' (2H, д)	Н-6 (1Н, т)	R
2a	8.19	7.86	7.74–7.68	7.57	7.42	11.90 (1H, c, NH)
2b	(8.0) 8.13 (8.0)	(7.5) 7.82 (7.9)	7.73–7.66	(8.9) 7.55 (9.0)	(7.4) 7.39 (7.3)	3.68 (3H, c, CH ₃)
2c	8.14 (8.1)	(7.84)	/./1–/.65	(8.9)	(7.40)	4.34 (2H, κ , $J = 7.3$, NCH ₂); 1.24 (3H τ , $I = 7.0$ CH ₂)
2d	8.13 (8.0)	7.80 (7.7)	7.68–7.59	7.45 (9.0)	7.38 (7.5)	5.56 (1H, M, NCH ₂ C <u>H</u>); 4.75 (1H, μ , $J = 10.7$, $H_{\mu\mu\nu}$ B =CH ₂); 4.69 (1H, μ , $J = 13.2$, H_{mpauc} B =CH ₂); 4.55 (2H, μ , $J = 4.5$, NCH ₂)
2e	8.12 (8.0)	7.83 (7.7)	7.74–7.61	7.55 (8.9)	7.37 (7.3)	4.23 (2H, т, <i>J</i> = 7.4, NCH ₂); 1.64 (2H, м, NCH ₂ C <u>H₂</u>); 0.96 (3H, т, <i>J</i> = 7.3, CH ₃)
2f	8.11 (8.1)	7.82 (7.6)	7.70–7.59	7.54 (8.9)	7.38 (7.4)	4.27 (2H, τ , $J = 7.2$, NCH ₂); 1.61 (2H, κ , $J = 7.0$, NCH ₂ CH ₂); 1.42 (2H, μ , CH ₂ CH ₃); 0.94 (3H, τ , $J = 7.2$, CH ₃)
2g	8.12 (7.9)	7.81 (7.5)	7.73–7.60	7.55 (8.9)	7.38 (7.4)	4.18 (2H, д, <i>J</i> = 7.3, NCH ₂); 2.14 (1H, м, CH); 0.90 (6H, д, <i>J</i> = 6.7, 2CH ₃)
2h	8.10 (7.9)	7.80 (7.6)	7.72–7.61	7.54 (8.9)	7.37 (7.4)	4.23 (2H, T , $J = 7.4$, NCH ₂); 1.66 (2H, KB, $J = 7.0$, NCH ₂ CH ₂); 1.38 (4H, M, (CH ₂) ₂ CH ₃); 0.90 (3H, T , $J = 6.9$, CH ₃)
2i	8.11 (8.0)	7.82 (7.7)	7.70–7.62	7.54 (8.9)	7.38 (7.4)	4.22 (2H, т, <i>J</i> = 7.7, NCH ₂); 1.70 (1H, м, CH); 1.46 (2H, к, <i>J</i> = 6.9, NCH ₂ C <u>H₂</u>); 0.94 (6H, д, <i>J</i> = 6.8, 2CH ₃)
2j	8.10 (8.0)	7.81 (7.7)	7.70–7.58	7.55 (8.9)	7.37 (7.5)	4.24 (2H, T, $J = 6.9$, NCH ₂); 1.61 (2H, KB, $J = 6.9$, NCH ₂ CH ₂); 1.44–1.22 (6H, M, (CH ₂) ₃ CH ₃); 0.85 (3H, T, $J = 6.6$, CH ₃)

Спектры ЯМР ¹Н соединений 2а-ј

^{*} Сигналы протонов 4-ОН и анилидных групп NH имеют вид синглетов в областях 16.41–16.29 и 12.76–12.69 м. д. соответственно.

Все синтезированные соединения представляют собой практически нерастворимые в воде бесцветные кристаллические вещества с четкими температурами плавления (табл. 1). Функциональные группы в их структуре легко идентифицируются по соответствующим сигналам в спектрах ЯМР ¹Н (табл. 2 и 3).

Таблица 4

Длины связей (*l*) в структуре 4-броманилида 2b

Связь	l, Å	Связь	l, Å
$Br_{(1)}-C_{(15)}$	1.902(4)	$N_{(1)}-C_{(1)}$	1.370(6)
$N_{(1)} - C_{(9)}$	1.395(6)	$N_{(1)} - C_{(10)}$	1.461(6)
$N_{(2)}-C_{(11)}$	1.335(6)	$N_{(2)} - C_{(12)}$	1.403(6)
$O_{(1)} - C_{(1)}$	1.235(6)	$O_{(2)} - C_{(3)}$	1.329(6)
$O_{(3)} - C_{(11)}$	1.249(6)	$C_{(1)} - C_{(2)}$	1.447(7)
$C_{(2)} - C_{(3)}$	1.386(7)	$C_{(2)} - C_{(11)}$	1.477(6)
$C_{(3)} - C_{(4)}$	1.431(6)	$C_{(4)} - C_{(5)}$	1.393(7)
$C_{(4)} - C_{(9)}$	1.394(7)	$C_{(5)} - C_{(6)}$	1.372(7)
$C_{(6)} - C_{(7)}$	1.379(8)	$C_{(7)} - C_{(8)}$	1.370(8)
$C_{(8)} - C_{(9)}$	1.397(6)	$C_{(12)} - C_{(13)}$	1.385(7)
$C_{(12)} - C_{(17)}$	1.392(7)	$C_{(13)} - C_{(14)}$	1.393(6)
$C_{(14)} - C_{(15)}$	1.384(7)	$C_{(15)} - C_{(16)}$	1.362(7)
$C_{(16)} - C_{(17)}$	1.386(7)		

Молекула 4-броманилида **2b** практически плоская. Отклонения от среднеквадратичной плоскости, проведенной через все неводородные атомы, не превышают 0.07 Å. Это обусловлено образованием сильных внутримолекулярных водородных связей $O_{(2)}$ – $H_{(20)}$... $O_{(3)}$ 1.41 (угол O–H...O 146.0°) и $N_{(2)}$ – $H_{(2N)}$... $O_{(1)}$ 1.87 Å (N–H...O 143.2°), наличие которых приводит к заметному изменению геометрии амидопиридонового фрагмента.

Валентные углы (ω) в структуре 4-броманилида 2b

Угол	ω, град.	Угол	ω, град.
$C_{(1)} - N_{(1)} - C_{(9)}$	123.1(4)	$C_{(1)} - N_{(1)} - C_{(10)}$	117.7(4)
$C_{(9)} - N_{(1)} - C_{(10)}$	119.2(4)	$C_{(11)} - N_{(2)} - C_{(12)}$	130.5(4)
$O_{(1)}-C_{(1)}-N_{(1)}$	118.6(4)	$O_{(1)} - C_{(1)} - C_{(2)}$	123.1(4)
$N_{(1)}-C_{(1)}-C_{(2)}$	118.2(4)	$C_{(3)} - C_{(2)} - C_{(1)}$	119.3(4)
$C_{(3)}-C_{(2)}-C_{(11)}$	118.3(4)	$C_{(1)} - C_{(2)} - C_{(11)}$	122.4(4)
$O_{(2)} - C_{(3)} - C_{(2)}$	122.0(4)	$O_{(2)} - C_{(3)} - C_{(4)}$	117.1(4)
$C_{(2)} - C_{(3)} - C_{(4)}$	120.9(4)	$C_{(5)} - C_{(4)} - C_{(9)}$	119.3(4)
$C_{(5)}-C_{(4)}-C_{(3)}$	121.7(4)	$C_{(9)} - C_{(4)} - C_{(3)}$	119.0(4)
$C_{(6)} - C_{(5)} - C_{(4)}$	121.1(5)	$C_{(5)} - C_{(6)} - C_{(7)}$	119.0(5)
$C_{(8)} - C_{(7)} - C_{(6)}$	121.4(5)	$C_{(7)} - C_{(8)} - C_{(9)}$	119.9(5)
$C_{(4)} - C_{(9)} - N_{(1)}$	119.4(4)	$C_{(4)} - C_{(9)} - C_{(8)}$	119.2(5)
$N_{(1)}-C_{(9)}-C_{(8)}$	121.4(4)	$O_{(3)} - C_{(11)} - N_{(2)}$	123.1(4)
$O_{(3)}-C_{(11)}-C_{(2)}$	120.1(4)	$N_{(2)}-C_{(11)}-C_{(2)}$	116.8(4)
$C_{(13)} - C_{(12)} - C_{(17)}$	119.0(4)	$C_{(13)} - C_{(12)} - N_{(2)}$	116.3(4)
$C_{(17)} - C_{(12)} - N_{(2)}$	124.7(5)	$C_{(12)} - C_{(13)} - C_{(14)}$	121.8(4)
$C_{(15)} - C_{(14)} - C_{(13)}$	117.1(5)	$C_{(16)} - C_{(15)} - C_{(14)}$	122.5(4)
$C_{(16)} - C_{(15)} - Br_{(1)}$	119.0(3)	$C_{(14)} - C_{(15)} - Br_{(1)}$	118.5(4)
$C_{(15)} - C_{(16)} - C_{(17)}$	119.8(4)	$C_{(16)} - C_{(17)} - C_{(12)}$	119.8(5)

Связи $O_{(3)}-C_{(11)}$ 1.249(6), $O_{(1)}-C_{(1)}$ 1.235(6), $C_{(2)}-C_{(3)}$ 1.386(7), $C_{(2)}-C_{(11)}$ 1.477(6) и $N_{(1)}-C_{(1)}$ 1.370(6) Å несколько удлинены по сравнению со средними значениями [16] 1.211, 1.343, 1.460 и 1.355 Å, соответственно, а связи $O_{(2)}-C_{(3)}$ 1.329(6), $C_{(1)}-C_{(2)}$ 1.447(7), $C_{(3)}-C_{(4)}$ 1.431(6) и $N_{(2)}-C_{(11)}$ 1.335(6) Å укорочены (средние значения 1.363, 1.470, 1.455 и 1.355 Å, соответственно). Из этого следует, что для строения 4-броманилида **2b** характерен существенный вклад биполярных резонансных структур **4** и **5** (схема).

Противотуберкулезные свойства анилидов 1 и их 4-бромзамещенных аналогов 2 изучены в рамках программы TAACF (Tuberculosis Antimicrobial Acquisition & Coordinating Facility). В исследованиях использованы питательная среда ВАСТЕС 12В и радиометрическая система ВАСТЕС 460 [17-20]. Анализ результатов первичного микробиологического скрининга (табл. 1) показывает, что анилиды с низшими N-алкильными заместителями в хинолоновом ядре 1а-е на Mycobacterium tuberculosis H37Rv ATCC 27294 не оказывают никакого воздействия. В то же время N-бутильные, амильные и гексильное производные уже способны подавлять рост тест-штамма на 81-100%, причем минимальная ингибирующая концентрация наиболее активного из них анилида 1i составляет 1.56 мкг/мл. Введение атома брома в положение 4 анилидного остатка заметно повышает противотуберкулезную активность соединений с низшими алкильными заместителями. Однако для остальных соединений такая модификация приводит к существенному снижению антимикобактериальных свойств. Отмечено также, что в случае анилидов 1f-i и их 4-бромзамещенных аналогов 2f-i вещества с N-изоалкильными цепями несколько активнее своих изомеров нормального строения.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Спектры ЯМР ¹Н записаны на приборе Varian Mercury VX-200 (200 МГц) в ДМСО-d₆, внутренний стандарт ТМС. Этиловые эфиры 1-R-4-гидрокси-2-оксо-1,2-дигидрохинолин-3-карбоновых кислот (**3**) получены по известной методике [21].

4-Броманилид 4-гидрокси-1-метил-2-оксо-1,2-дигидрохинолин-3-карбоновой кислоты (**2b**). А. Смесь 2.47 г (0.01 моль) этилового эфира 4-гидрокси-1-метил-2-оксо-1,2дигидрохинолин-3-карбоновой кислоты (**3b**), 1.72 г (0.01 моль) 4-броманилина и 1 мл ДМФА при перемешивании выдерживают 2–3 мин при 170 °С. Реагенты при этом растворяются, после чего практически сразу же начинает выделяться этанол и выкристаллизовывается конечный анилид. К еще теплой реакционной массе прибавляют 20 мл этанола и тщательно перемешивают. После охлаждения осадок 4-броманилида **2b** отфильтровывают, промывают спиртом, сушат. Выход 3.51 г (94%).

По аналогичной методике получают все остальные анилиды 1 и 2 (табл. 1).

Б. К раствору 2.94 г (0.01 моль) анилида 4-гидрокси-1-метил-2-оксо-1,2-дигидрохинолин-3-карбоновой кислоты (1b) в 50 мл ледяной уксусной кислоты при перемешивании прибавляют 0.52 мл (0.01 моль) брома и оставляют на 1 ч при комнатной температуре. Разбавляют реакционную смесь водой, выделившийся осадок 4-броманилида 2b отфильтровывают, промывают водой, сушат. Выход 3.06 г (82%). Смешанная проба с образцом, полученным по способу A, не дает депрессии температуры плавления. Спектры ЯМР ¹Н этих соединений идентичны. Рентгеноструктурное исследование. Кристаллы 4-броманилида 2b, полученные из ДМФА, триклинные. При 20 °C: a = 7.993(5), b = 9.481(5), c = 10.058(6) Å, $\alpha = 90.04(2)^\circ$, $\beta = 91.15(2)^\circ$, $\gamma = 103.46(2)^\circ$, V = 741.1(8) Å³, $d_{\rm выч} = 1.672$ г/см³, пространственная группа $P\bar{1}, Z = 2$. Параметры элементарной ячейки и интенсивности 2457 независимых отражений ($R_{\rm int} = 0.07$) измерены на автоматическом четырехкружном дифрактометре Siemens P3/PC ($\lambda MoK\alpha$, графитовый монохроматор, $\theta/2\theta$ -сканирование, $2\theta_{\rm max} = 50^\circ$). Поглощение учтено полуэмпирически по данным Ψ -сканирования ($T_{\rm min} = 0.447, T_{\rm max} = 0.974$).

Структура расшифрована прямым методом с использованием комплекса программ SHELX97 [22]. Положения атомов водорода рассчитаны из разностного синтеза электронной плотности и уточнены по модели "наездника" с фиксированным $U_{iso} = nU_{eq}$ неводородного атома, связанного с данным атомом водорода (n = 1.5 для метильных групп и n = 1.2 для остальных атомов водорода). Уточнение по F^2 полноматричным МНК в анизотропном приближении по 2457 отражениям для неводородных атомов проведено до wR2 = 0.118 ($R_1 = 0.049$ по 1505 отражениям с $F > 4\sigma(F)$, S = 0.97). Полная кристаллографическая информация депонирована в Кембриджском банке структурных данных (депонент № ССDC 283294).

Авторы выражают благодарность Национальному институту аллергии и инфекционных заболеваний США за изучение противотуберкулезных свойств синтезированных нами соединений (контракт № 01-АІ-45246).

СПИСОК ЛИТЕРАТУРЫ

- 1. И. В. Украинец, Л. В. Сидоренко, О. В. Горохова, Н. Л. Березнякова, С. В. Шишкина, *XTC*, 1502 (2006).
- И. В. Украинец, С. Г. Таран, П. А. Безуглый, С. Н. Коваленко, А. В. Туров, Н. А. Марусенко, XГС, 1223 (1993). [Chem. Heterocycl. Comp., 29, 1044 (1993)].
- И. В. Украинец, А. Х. Н. Дакках, С. Г. Таран, О. В. Горохова, Л. В. Сидоренко, С. Г. Леонова, Физиологически активные вещества, № 1(29), 18 (2000).
- 4. И. В. Украинец, А. Х. Н. Дакках, П. А. Безуглый, О. В. Горохова, Л. В. Сидоренко, Т. В. Алексеева, *Вестник фармации*, № 1(25), 9 (2001).
- 5. И. В. Украинец, Е. А. Таран, О. И. Набока, И. В. Сенюк, *Вестник фармации*, № 4(28), 16 (2001).
- 6. И. В. Украинец, Е. А. Таран, Л. Н. Воронина, О. И. Набока, *Фарм. журн.*, № 6, 48 (2001).
- 7. E. Eriksoo, E. B. M. Sandberg, L. J. T. Stalhandske, US Pat. 4738971 (1988). http://ep.espacenet.com.
- K. Tsuji, G. W. Spears, K. Nakamura, T. Tojo, N. Seki, A. Sugiyama, M. Matsuo, *Bioorg. Med. Chem. Lett.*, 12, 85 (2002).
- 9. S. R. Khan, A. Mhaka, R. Pili, J. T. Isaacs, Bioorg. Med. Chem. Lett., 11, 451 (2001).
- 10. J. Shi, Z. Xiao, M. A. Ihnat, C. Kamat, B. Pandit, Z. Hu, P. Li, *Bioorg. Med. Chem. Lett.*, 13, 1187 (2003).
- S. Jönsson, G. Andersson, T. Fex, T. Fristedt, G. Hedlund, K. Jansson, L. Abramo, I. Fritzson, O. Pekarski, A. Runström, H. Sandin, I. Thuvesson, A. Björk, *J. Med. Chem.*, 47, 2075 (2004).
- 12. И. В. Украинец, С. Г. Таран, О. В. Горохова, Е. А. Таран, Н. А. Джарадат, И. Ю. Петухова, *XГС*, 203 (2000). [*Chem. Heterocycl. Comp.*, **36**, 166 (2000)].
- И. В. Украинец, С. Г. Таран, О. А. Евтифеева, О. В. Горохова, Н. И. Филимонова, А. В. Туров, XГС, 204 (1995). [Chem. Heterocycl. Comp., 31, 176 (1995)].
- 14. W. Stadlbauer, R. Laschober, H. Lutschounig, G. Schindler, T. Kappe, *Monatsh. Chem.*, **123**, 617 (1992).
- 15. И. В. Украинец, Л. А. Петрушова, Л. В. Сидоренко, В. Б. Рыбаков, В. В. Чернышев, *Журн. орг. фарм. хим.*, **2**, вып. 3(7), 26 (2004).
- 16. H.-B. Burgi, J. D. Dunitz, Struct. Correl., VCH, Weinheim, 1994, vol. 2, 741.

- 17. L. Collins, S. G. Franzblau, Antimicrob. Agents Chemother., 41, 1004 (1997).
- 18. S. H. Siddiqui, in *Clinical Microbiology Procedures Handbook*, H. D. Isenberg (Ed.), American Sosiety for Microbiology, Washington D.C., 1992, vol. 1, p. 5.14.2.
- 19. L. B. Heifets, in *Drug Susceptibility in the Chemotherapy of Mycobacterial Infections*, L. B. Heifets (Ed.), CRC Press, Boca Raton, 1991, p. 89.
- 20. C. B. Inderleid, K. A. Nash, in *Antibiotics in Laboratory Medicine*, V. Lorian (Ed.), Williams and Wilkins, Baltimore, 1996, p. 127.
- 21. И. В. Украинец, О. В. Горохова, С. Г. Таран, П. А. Безуглый, А. В. Туров, Н. А. Марусенко, О. А. Евтифеева, *XTC*, 958 (1994). [*Chem. Heterocycl. Comp.*, **30**, 829 (1994)].
- 22. G. M. Sheldrick, SHELX97. PC Version. A System of Computer Programs for the Crystal Structure Solution and Refinement, Rev. 2 (1998).

Национальный фармацевтический университет, Харьков 61002, Украина e-mail: uiv@kharkov.ua Поступило 27.06.2005