О. В. Хиля, Т. А. Воловненко, Ю. М. Воловенко

ВЗАИМОДЕЙСТВИЕ 2-ГЕТАРИЛАЦЕТОНИТРИЛОВ С ГЕТЕРОЦИКЛИЧЕСКИМИ ГАЛОГЕНАЛЬДЕГИДАМИ

Взаимодействием 4-оксо-3,4-дигидрохиназолил- и бензимидазолилацетонитрилов с 2-хлор-3-хинолинкарбальдегидами и 1-арил-3-метил-5-хлор-1Н-пиразол-4-карбальдегидами получены соответствующие 3-(2-хлор-3-хинолил)-2-(4-оксо-3,4-дигидро-2-хиназолил)-2-пропеннитрилы и 2-гетарил-3-(1-арил-3-метил-1Н-5-хлор-4-пиразолил)-2-пропеннитрилы. В результате внутримолекулярной циклизации этих соединений образуются 15-оксо-15Н-бензо[6,7][1,8]нафтиридино[2,1-*b*]хиназолин-6-карбонитрилы, 1-арил-3-метил-11-оксо-1,11-дигидропиразоло[4',3':5,6]пиридо[2,1-*b*]хиназолин-5-карбонитрилы и 1-арил-3-метил-1Н-бензо[4,5]имидазо[1,2-*a*]пиразоло[4,3-*e*]пиридин-5-карбонитрилы.

Ключевые слова: 1-арил-3-метил-1Н-бензо[4,5]имидазо[1,2-*а*]пиразоло[4,3-*е*]пиридин-5-карбонитрил, 1-арил-3-метил-11-оксо-1,11-дигидропиразоло[4',3':5,6]пиридо[2,1-*b*]хиназолин-5-карбонитрил, 1-арил-3-метил-5-хлор-1Н-пиразол-4-карбальдегид, 2-бензимидазолил-3-(1-арил-3-метил-1Н-5-хлор-4-пиразолил)-2-пропеннитрил, бензимидазолилацетонитрил, 15-оксо-15Н-бензо[6,7][1,8]нафтиридино[2,1-*b*]хиназолин-6-карбонитрил, 4-оксо-3,4дигидрохиназолилацетонитрил, 2-хиназолил-3-(1-арил-3-метил-1Н-5-хлор-4-пиразолил)-2пропеннитрил, 3-(2-хлор-3-хинолил)-2-(4-оксо-3,4-дигидро-2-хиназолил)-2-пропеннитрил, 2-хлор-3-хинолинкарбальдегид.

Ранее нами была исследована региоселективность реакции внутримолекулярного гетарилирования 3-(галогенарил)-2-(4-оксо-3,4-дигидро-2-хиназолил)акрилонитрилов [1, 2], полученных конденсацией хиназолилацетонитрилов и соответствующих *о*-галогенбезальдегидов. Представляет интерес изучение этой реакции в ряду 3-(галогенгетарил)-2-(4-оксо-3,4-дигидро-2-хиназолил)акрилонитрилов. Для получения последних во взаимодействие с хиназолилацетонитрилами **1** были введены галогенальдегиды азинового и азольного ряда.

В работе [3] было изучено взаимодействие 7-метил-2-хлор-3-хинолинкарбальдегида с 2-(1H-бензо[*d*]имидазол-2-ил)ацетонитрилом, приводящее к образованию 7-метилбензо[*g*]бензо[4,5]имидазо[1,2-*a*][1,8]нафтиридин-2-карбонитрила с выходом 85%.

Взаимодействие 2-(4-оксо-3,4-дигидрохиназолин-2-ил)ацетонитрилов 1 с 2-хлор-3-хинолинкарбальдегидами 2 ранее не изучалось. Оказалось, что нагревание реакционной смеси в течение 1.5–2 ч заканчивается образованием 3-(2-хлорхинол-3-ил)-2-(4-оксо-3,4-дигидрохиназолин-2-ил)-2-пропен- нитрилов 3 (схема 1).

В спектрах ЯМР ¹Н соединений **3** сигналы ароматических протонов хиназолинового цикла наблюдаются в области 7.2–8.0 м. д., сигнал протона группы NH – при 12.8–12.9 м. д. Метиновый протон характеризуется наличием однопротонного синглета в слабом поле (8.9–9.1 м. д.). Протоны хинолинового фрагмента молекулы проявляются в области 7.5–8.8 м. д.,

наиболее слабопольным является сигнал протона H-4. Валентные колебания групп C=O и C≡N в ИК спектрах наблюдаются при 1680–1665 и 2240–2220 см⁻¹ соответственно.

Состав и строение продуктов **3** подтверждаются результатами элементного анализа и данными спектров ЯМР ¹Н (табл. 1).

При нагревании соединений **3** в течение 5–6 ч в ДМФА, или 1–2 ч в присутствии эквивалентного количества триэтиламина образуются продукты внутримолекулярного гетарилирования – 15-оксо-15Н-бензо[6,7][1,8]нафтиридино[2,1-*b*]хиназолин-6-карбонитрилы **4** (метод А).

Схема 1

3 a $R^1 = R^5 = R^6 = Me$, $R^2 = R^3 = R^4 = H$; b $R^1 = R^2 = OMe$, $R^3 = R^4 = H$, $R^5 = R^6 = Me$; c $R^1 = I$, $R^2 = R^3 = R^4 = R^5 = R^6 = H$; d $R^1 = R^2 = OMe$, $R^3 = R^4 = R^5 = H$, $R^6 = Me$; e $R^1 = R^3 = R^6 = Me$, $R^2 = R^4 = R^5 = H$; f $R^1 = Br$, $R^2 = R^3 = R^5 = R^6 = H$, $R^4 = OMe$; g $R^1 = R^3 = Me$, $R^2 = R^4 = R^5 = H$, $R^6 = OMe$; h $R^1 = R^2 = R^3 = R^4 = R^5 = H$, $R^6 = OMe$; 4 a $R^1 = R^3 = R^6 = Me$, $R^2 = R^4 = R^5 = H$; b $R^1 = Me$, $R^2 = R^3 = R^5 = R^6 = H$, $R^4 = OMe$; c $R^1 = R^3 = R^4 = R^6 = Me$, $R^2 = R^5 = H$; d $R^1 = Br$, $R^2 = R^3 = R^4 = R^5 = R^6 = H$; e $R^1 = R^2 = OMe$, $R^3 = R^5 = R^6 = H$; e $R^1 = R^2 = OMe$, $R^3 = R^5 = H$, $R^4 = R^6 = Me$; f $R^1 = R^2 = OMe$, $R^3 = R^4 = R^5 = R^6 = H$

Как и в случае конденсации хиназолилацетонитрилов 1 с ароматическими *о*-галогенальдегидами [1, 2], циклизация проходит по атому $N_{(3)}$ хиназолонового цикла (схема 2, структура A), о чем свидетельствуют данные спектроскопии ЯМР ¹Н. Ароматические протоны хиназолиновой части молекулы соединений 4 наблюдаются в области 7.5–8.4 м. д. В случае реализации атаки по атому $N_{(1)}$ протон H-4 (схема 2, структура Б)

Таблица 1

Найдено, % Спектр ЯМР ¹Н (ДМСО-d₆), δ, м. д., КССВ (*J*, Гц) Вы-Вычислено, % Т. пл., Соеди-Бруттоход, нение формула °C * NH -CH=CCN % Cl (Br) Ν Н_{хинолина} Н_{хиназолона} (1H, c) (1Н, уш. с) 14.05 8.96 8.73 (1H, c, H-4); 3a C₂₃H₁₇ClN₄O 284-285 7.97 (1H, c, H-5); 8.91 12.85 67 7.85 (1H, д, ${}^{3}J$ = 8.3, H-5,); 13.98 8.84 7.66 (2Н, м, Н-7,8); 7.53 (1H, д, ${}^{3}J$ = 8.3, H-6); 2.56 (3H, c, 6-CH₃) 2.68 (3H, c, 8-CH₃); 2.53 (3H, c, 7-CH₃) 3b $C_{24}H_{19}CIN_4O_3$ 12.73 8.12 >360 59 7.49 (1H, c, H-5); 8.74 (1H, c, H-4); 8.97 12.86 7.89 (1H, д, ${}^{3}J$ = 8.4, H-5); 12.54 7.93 7.20 (1H, c, H-8); 7.60 (1H, д, ${}^{3}J$ = 8.4, H-6,); 3.95 (3H, c, 7-OCH₃); 2.62 (3H, c, 8-CH₃); 3.92 (3H, c, 6-OCH₃) 2.55 (3H, c, 7-CH₃) 8.54 (1Н, д, ⁴*J*=2.0, Н-5); 8.89 (1H, c, H-4), 8.83 3c C₂₀H₁₀ClIN₄O 11.75 7.40 329-331 61 12.85 7.31 8.19 (1Н, д. д. ${}^{3}J$ = 8.4, 8.19 (1H, \exists , ${}^{3}J$ = 8.2, H-8), 11.56 $^{4}J = 2.0, \text{ H-7};$ 8.02 (1H, π , ${}^{3}J$ = 8.2, H-5), 7.97 (1H, T, ${}^{3}J$ = 8.2, H-6), 7.56 (1Н, д, Н-8) 7.74 (1H, T, ${}^{3}J$ = 8.2, H-7) $C_{23}H_{17}CIN_4O_3$ 3d 13.08 8.26 285-286 60 7.50 (1H, c, H-5); 8.77 (1H, c, H-4); 9.02 12.88 7.99 (1H, д, ${}^{3}J$ = 8.0, H-5), 12.94 8.19 7.22 (1H, c, H-8); 7.80 (1H, π , ${}^{3}J$ = 8.0, H-7), 7.65 (1H, π , ${}^{3}J$ = 8.0, H-6); 3.96 (3H, c, 7-OCH₃); 3.92 (3H, c, 6-OCH₃) 2.69 (3H, c, 8-CH₃)

Характеристики синтезированных соединений За-h

1522

3e	C ₂₃ H ₁₇ ClN ₄ O	<u>14.05</u> 13.98	<u>8.97</u> 8.84	304–305	67	7.80 (1H, c, H-5); 7.58 (1H, c, H-7); 2.57 (3H, c, 8-CH ₃); 2.44 (3H, c, 6-CH ₃)	 8.80 (1H, c, H-4); 8.00 (1H, д, ³J= 8.0, H-5); 7.81 (1H, д, ³J= 8.0, H-7); 7.66 (1H, т, ³J= 8.0, H-6); 2.70 (3H, c, 8-CH₃) 	9.06	12.94
3f	C ₂₁ H ₁₂ BrClN ₄ O ₂	<u>12.11</u> 11.98	7.72 7.58 (17.21) (17.08)	314–315	63	8.32 (1H, \exists , ${}^{4}J$ = 2.0, H-5); 8.02 (1H, \exists , \exists , ${}^{3}J$ = 8.0, ${}^{4}J$ = 2.0, H-7); 7.70 (1H, \exists , ${}^{3}J$ = 8.0, H-8)	 8.67 (1H, с, H-4); 7.89 (1H, д, ³<i>J</i> = 8.5, H-8); 7.55 (1H, д. д, ³<i>J</i> = 8.5, ⁴<i>J</i> = 2.4, H-7); 7.51 (1H, д, ⁴<i>J</i> = 2.4, H-5); 3.93 (3H, с, 6-OCH₃) 	8.80	12.90
3g**	C ₂₃ H ₁₇ ClN ₄ O ₂	<u>13.69</u> 13.44	<u>8.61</u> 8.50	272–273	66	8.42 (1H, c, H-5); 7.98 (1H, c, H-7); 2.87 (3H, c, 8-CH ₃); 2.69 (3H, c, 6-CH ₃)	9.45 (1H, c, H-4); 8.11 (1H, т, ³ <i>J</i> = 8.3, H-6); 8.02 (1H, д, ³ <i>J</i> = 8.3, H-7); 7.85 (1H, д, ³ <i>J</i> = 8.3, H-5); 4.45 (3H, c, 8-OCH ₃)	8.66	Обмен с D ₂ O
3h**	C ₂₁ H ₁₃ ClN ₄ O ₂	<u>14.57</u> 14.41	<u>9.29</u> 9.12	284–285	63	8.76 (1H, μ , ${}^{3}J$ = 8.3, H-8); 8.26 (1H, π , ${}^{3}J$ = 8.3, H-6); 8.20 (1H, μ , ${}^{3}J$ = 8.3, H-5); 7.98 (1H, π , ${}^{3}J$ = 8.3, H-7)	9.50 (1H, c, H-4); 8.14 (1H, т, ³ <i>J</i> = 8.3, H-6); 8.06 (1H, д, ³ <i>J</i> = 8.3, H-7); 7.88 (1H, д, ³ <i>J</i> = 8.3, H-5); 4.45 (3H, c, 8-OCH ₃)	8.76	Обмен с D ₂ О

После перекристаллизации из ДМФА.
 ** Спектры ЯМР ¹Н измерены в CF₃CO₂D.

претерпевал бы значительный парамагнитный сдвиг относительно остальных хиназолиновых протонов вследствие пространственного сближения с атомом азота хинолинового цикла (схема 2). Очевидно, что структура **Б** не реализуется, в частности, вследствие пространственных препятствий, возникающих при ее образовании.

В наиболее слабом поле (8.7–9.4 м. д.) наблюдается сигнал протона H-8, который может совпадать с сигналом протона H-7 (8.6–8.8 м. д.). Остальные сигналы протонов хинолинового фрагмента молекулы проявляются в области 7.5–8.2 м. д. Сигналы протонов хиназолиновой части претерпевают парамагнитный сдвиг на 0.5–0.7 м. д. по сравнению с таковыми в исходных пропенонитрилах **3**. В ИК спектрах соединений **4** полоса поглощения группы С=О находится в области 1680–1670, С≡N – 2220 см⁻¹.

Пентациклические соединения 4 (табл. 2) можно синтезировать в одну стадию, одноколбовым методом, не выделяя продукты 3, нагревая смесь нитрила 1 с альдегидом 2 в присутствии 1 экв. триэтиламина в течение 4–5 ч (метод Б).

Таким образом, 15-оксо-15Н-бензо[6,7][1,8]нафтиридино[2,1-*b*]хиназолин-6-карбонитрилы 4 получают в результате региоселективного внутримолекулярного гетарилирования соединений 3, образующихся из нитрилов 1 и альдегидов 2, или непосредственно из последних реагентов в присутствии основания.

Следующим шагом в изучении взаимодействия 2-гетарилацетонитрилов с хлор(гет)арилкарбальдегидами было исследование поведения в этой реакции хлоркарбальдегидов азольного ряда, а именно, 1-арил-3-метил-5хлор-1Н-пиразол-4-карбальдегидов **5**. Ранее было исследовано взаимодействие 2-(1Н-бензо[*d*]имидазол-2-ил)ацетонитрила **6а** с 3-R-1-фенил-5-хлор-1Н-пиразол-4-карбальдегидом [3, 4].

Авторы работы [3] сообщали, что при нагревании исходных веществ в ДМФА в присутствии 10% избытка пиридина образуется продукт внутримолекулярной циклизации – 3-метил-1-фенил-1Н-бензо[4,5]имидазо[1,2-*a*]пиразоло[4,3-*e*]пиридин-5-карбонитрил **7а** с выходом 83% (схема 3). Позже в работе [4] приведен синтез продукта конденсации – 2-(1Н-бензо[*d*]имидазол-2-ил)-3-(1,3-дифенил-1Н-5-хлор-4-пиразолил)-2-пропеннитрила типа **8**, образующегося с выходом 74% при нагревании в этаноле смеси 2-(1Нбензо[*d*]имидазол-2-ил)ацетонитрила **ба** с упомянутым выше альдегидом.

Таблица 2

Со- еди-	Брутто-	<u>Найдено, %</u> Вычислено, %		<u>Найдено, %</u> Вычислено, %		<u>Найдено, %</u> Вычислено, %		<u>Найдено, %</u> Вычислено, %		<u>Найдено, %</u> Вычислено, %		<u>Найдено, %</u> Вычислено, %		<u>Найдено, %</u> Вычислено, %		Т. пл.,	Выход,	Спектр ЯМР ¹ Н, δ, м. д., КССВ (<i>J</i> , Гц)**			
не- ние	формула	Ν	Br	°C*	%	H-1–H-4	H-7 (1H, c)	H-8–H-12													
4a	$C_{23}H_{16}N_4O$	<u>15.50</u> 15.37	_	328–329	77	7.92 (1H, c, H-1); 7.49 (1H, c, H-3); 2.63 (3H, c, 4-CH ₃); 2.53 (3H, c, 2-CH ₃)	8.62	8.73 (1H, c, H-8); 7.86 (1H, π , ³ <i>J</i> = 8.0, H-9); 7.70 (1H, π , ³ <i>J</i> = 8.0, H-11); 7.52 (1H, π , ³ <i>J</i> = 8.0, H-10); 2.78 (3H, c, 12-CH ₃)													
4b	$C_{22}H_{14}N_4O_2$	<u>15.41</u> 15.29	_	299–301	75	8.09 (1H, c, H-1); 7.70 (2H, м, H-3,4); 2.45 (3H, c, 2-CH ₃)	8.69	8.71 (1H, c, H-8); 7.95 (1H, д, ³ <i>J</i> = 8.5, H-12); 7.51 (1H, д. д, ³ <i>J</i> = 8.5, ⁴ <i>J</i> = 2.8, H-11); 7.45 (1H, д, ⁴ <i>J</i> = 2.8, H-9); 3.96 (3H, c, 10-OCH ₃)													
4c	$C_{24}H_{18}N_4O$	<u>14.96</u> 14.80	-	343–344	74	7.92 (1H, c, H-1); 7.49 (1H, c, H-3); 2.63 (3H, c, 4-CH ₃); 2.50 (3H, c, 2-CH ₃)	8.55	8.55 (1H, c, H-8); 7.56 (1H, c, H-9); 7.51 (1H, c, H-11); 2.72 (3H, c, 12-CH ₃); 2.50 (3H, c, 10-CH ₃)													
4d	C ₂₀ H ₉ BrN ₄ O	<u>14.14</u> 13.96	<u>20.19</u> 19.92	362–363	71	8.40 (1H, д, ${}^{4}J$ = 2.4, H-1); 8.00 (1H, д. д, ${}^{3}J$ = 8.4, ${}^{4}J$ = 2.4, H-3); 7.77 (1H, д, ${}^{3}J$ = 8.4, H-4)	8.81	8.91 (1H, c, H-8); 8.15 (1H, π , ³ <i>J</i> = 8.4, H-12); 8.06 (1H, π , ³ <i>J</i> = 8.4, H-9); 7.94 (1H, π , ³ <i>J</i> = 8.4, H-10); 7.71 (1H, π , ³ <i>J</i> = 8.4, H-11)													
4e	$C_{24}H_{18}N_4O_3$	<u>13.78</u> 13.65	_	237–239	75	8.14 (1H, c, H-1); 7.67 (1H, c, H-4); 4.27 (6H, c, 2-OCH ₃ , 3-OCH ₃)	8.73	9.41 (1H, c, H-8); 8.19 (1H, c, H-9); 8.12 (1H, c, H-11); 3.06 (3H, c, 12-CH ₃); 2.78 (3H, c, 10-CH ₃)													
4f	$C_{22}H_{14}N_4O_3$	<u>14.74</u> 14.65	_	346–348	73	8.15 (1H, c, H-1); 7.66 (1H, c, H-4); 4.00 (6H, c, 2-OCH ₃ , 3-OCH ₃)	8.70	8.86 (1H, c, H-8); 8.13 (1H, π , ³ <i>J</i> = 8.0, H-12); 8.05 (1H, π , ³ <i>J</i> = 8.0, H-9); 7.92 (1H, π , ³ <i>J</i> = 8.0, H-10); 7.69 (1H, π , ³ <i>J</i> = 8.0, H-11)													

Характеристики синтезированных соединений 4а-f

* Соединения 4 кристаллизовали из ДМФА.
 ** Спектры ЯМР ¹Н измерены в ДМСО-d₆ (соединения 4a-d, f)) и CF₃CO₂D (соединение 4e).

Схема 3

6a, **7a–c**, **8a**, **b** $R^1 = R^2 = H$; **6b**, **7d**, **e**, **f 8c**, **d** $R^1 = R^2 = Me$, **5a**, **7a**, **d**, **8a**, **c** Ar = Ph, **5b**, **7b**, **e**, **8b**, **d** Ar = 4-MeC₆H₄, **5c**, **7c**, **f** Ar = 4-FC₆H₄

Проведение реакции в присутствии пиперидина не позволяет остановить ее на стадии образования продукта **8**, и из реакционной смеси с выходом 63% авторы выделили циклический продукт типа **7a** – 1,3-дифенил-1H-бензо[4,5]имидазо[1,2-*a*]пиразоло[4,3-*e*]пиридин-5-карбонитрил (схема 3). Однако характеристики и спектральные данные соединений **7**, **8** в работе [4] не были приведены.

Как уже отмечалось в наших предыдущих исследованиях альтернативных направлений внутримолекулярного (гет)арилирования [1, 2], производные на основе 2-(1H-бензо[d]имидазол-2-ил)ацетонитрила являются удобными моделями при установлении направления циклизации. В связи с этим мы повторили работу авторов [4], расширив круг исследованных соединений и строго доказав структуры полученных продуктов конденсации 7а-f и 8а-d (схема 3). Следует отметить, что в результате взаимодействия нитрила 6 с альдегидом 5 при нагревании в диоксане в течение 1–1.5 ч впервые были выделены и охарактеризованы продукты первой стадии реакции – 8а-d.

В спектрах ЯМР ¹Н соединений **8а-d** (табл. 3) сигналы ароматических протонов наблюдаются в области 7.2–7.6 м. д., а сигналы винильного протона проявляются в виде синглета при 8.09–8.19 м. д. Валентные колебания группы NH в ИК спектрах проявляются при 3350–3300, CN – 2240–2230 см⁻¹.

О прохождении внутримолекулярного гетарилирования в соединениях 8 свидетельствует, в частности, отсутствие в спектрах ЯМР ¹Н и ИК продуктов 7 сигнала протона группы NH. Сигналы ароматических протонов циклических соединений 7а–f (табл. 4) наблюдаются в области 5.5–7.9 м. д. Следует отметить, что сигнал протона H-10 претерпевает существенный диамагнитний сдвиг по сравнению с его значением в исходных соединениях 8 (на 1.2–1.9 м. д.) вследствие влияния кольцевых токов фенильного кольца.

Продолжая наши исследования внутримолекулярного гетарилирования модельных соединений на основе гетарилацетонитрилов, мы изучили взаимодействия хиназолинилацетонитрилов 1 с альдегидами 5. Кипячение смеси этих веществ в диоксане в течение 7–10 ч привело к образованию 3-(1-арил-3-метил-1Н-5-хлор-4-пиразолил)-2-(4-оксо-3,4-дигидро-2-хиназолинил)-2-пропеннитрилов **9а–к**.

В спектрах ЯМР ¹Н соединений **9а**-k (табл. 3) сигналы ароматических протонов наблюдаются в области 7.2–8.4 м. д. В слабом поле проявляются синглет метинового протона и сигнал протона (8.3–8.4 м. д.) группы NH хиназолинового цикла (12.7–12.9 м. д.).

Нагревание пропеннитрилов **9** в ДМФА в присутствии триэтиламина в течение 2–3 ч приводит к образованию продуктов внутримолекулярного гетарилирования – 1-арил-3-метил-11-оксо-1,11-дигидропиразоло[4',3':5,6]-пиридо[2,1-*b*]хиназолин-5-карбонитрилов **10а–f** (схема 4, табл. 4).

9a–e, **10a**, **b** Ar = Ph; **9f–k**, **10c–f** Ar = $4-C_6H_4Me$; **9 a** $R^1 = Me$, $R^2 = R^3 = H$, **b**, **g** $R^1 = Br$, $R^2 = R^3 = H$, **c**, **h** $R^1 = I$, $R^2 = R^3 = H$, **d**, **i** $R^1 = R^3 = H$, $R^2 = Cl$, **e**, **k** $R^1 = R^3 = Me$, $R^2 = H$, **f** $R^1 = R^2 = R^3 = H$, **j** $R^1 = R^2 = OMe$, $R^3 = H$; **10 a** $R^1 = Me$, $R^2 = H$, **b**, **e** $R^1 = H$, $R^2 = Cl$, **e** $R^1 = H$, $R^2 = Cl$, **e** $R^1 = H$, $R^2 = Cl$, **e** $R^1 = H$, $R^2 = Cl$, **e** $R^1 = H$, $R^2 = Cl$, **e** $R^1 = H$, $R^2 = Cl$, **e** $R^1 = R^2 = H$, **f** $R^1 = R^2 = OMe$

1527

Таблица З

Характеристики синтезированных соединений 8 и 9

Со- еди-	Брутто-	<u>Найдено, %</u> Вычислено, %		<u>Найдено, %</u> Вычислено, %		<u>Найдено, %</u> Вычислено, % Т. пл., Вы- Спектр ЯМР ¹ Н (Η (ДМСО-d ₆), δ, м. д., КССВ (<i>J</i> , Гц)			
не- ние	формула	Ν	Cl (Br)	°C *	ход, %	H _{хиназолона} или бензимидазола	Н _{пиразола}	CH=CCN (1H, c)	NH (1Н, уш. с)		
8 a	$C_{20}H_{14}ClN_5$	<u>19.57</u> 19.46	<u>9.98</u> 9.85	103–104	65	7.61 (2H, д, ³ <i>J</i> = 7.6, H-4,7); 7.22 (2H, м, H-5,6)	7.50–7.60 (5Н, м, С ₆ Н ₅); 2.44 (3Н, с, 3-СН ₃)	8.14	12.96		
8b	C ₂₁ H ₁₆ ClN ₅	<u>18.86</u> 18.73	<u>9.70</u> 9.48	214–215	80	7.65 (2H, д, ³ <i>J</i> =7.6, H-4,7); 7.22 (2H, м, H-5,6)	7.47 (2H, π , ³ <i>J</i> = 8.0, H-2,6); 7.35 (2H, π , ³ <i>J</i> = 8.0, H-3,5); 2.43 (3H, c, 4- <u>CH</u> ₃ Ar); 2.45 (3H, c, 3-CH ₃)	8.13	12.98		
8c	C ₂₂ H ₁₈ ClN ₅	<u>18.21</u> 18.06	<u>9.29</u> 9.14	143–145	67	7.60 (1H, c, H-4); 7.34 (1H, c, H-7); 2.36 (6H, c, 5-CH ₃ , 6-CH ₃)	7.50–7.62 (5Н, м, С ₆ Н ₅); 2.47 (3Н, с, 3-СН ₃)	8.19	Обмен с D ₂ O		
8d	C ₂₃ H ₂₀ ClN ₅	<u>17.66</u> 17.43	<u>8.97</u> 8.82	210–212	64	7.47 (1H, c, H-4); 7.32 (1H, c, H-7); 2.35 (6H, c, 5-CH ₃ , 6-CH ₃)	7.48 (2H, π , ${}^{3}J$ = 8.0, H-2,6); 7.34 (2H, π , ${}^{3}J$ = 8.0, H-3,5); 2.43 (3H, c, 4- <u>CH</u> ₃ Ar); 2.49 (3H, c, 3-CH ₃)	8.09	Обмен с D ₂ O		
9a	C ₂₂ H ₁₆ ClN ₅ O	<u>17.58</u> 17.43	<u>8.91</u> 8.82	250–251	75	7.97 (1H, c, H-5); 7.62 (2H, м, H-7,8); 2.48 (3H, c, 6-CH ₃)	7.62 (5H, м, C ₆ H ₅); 2.44 (3H, с, 3-CH ₃)	8.38	12.73		
9b	C ₂₁ H ₁₃ BrClN ₅ O	<u>15.23</u> 15.01	<u>7.74</u> 7.60; <u>(17.24)</u> (17.12)	280–281	69	8.23 (1H, c, H-5); 8.00 (1H, д, ³ <i>J</i> = 8.0, H-7); 7.69 (1H, д, ³ <i>J</i> = 8.0, H-8)	7.60 (5H, м, C ₆ H ₅); 2.42 (3H, с, 3-CH ₃)	8.40	12.96		
9c	C ₂₁ H ₁₃ ClIN ₅ O	<u>13.75</u> 13.63	<u>7.05</u> 6.90	285–286	72	8.41 (1H, π , ⁴ <i>J</i> =2.0, H-5); 8.14 (1H, π . π , ³ <i>J</i> =8.4, ⁴ <i>J</i> =2.0, H-7); 7.52 (1H, π , ³ <i>J</i> =8.4, H-8)	7.60 (5H, м, C ₆ H ₅); 2.42 (3H, с, 3-CH ₃)	8.39	12.92		

1528

9d	$C_{21}H_{13}Cl_2N_5O$	<u>16.74</u> 16.59	<u>16.92</u> 16.79	253–254	74	8.15 (1H, д, ³ <i>J</i> = 8.3, H-5); 7.81 (1H, c, H-7); 7.61 (1H, м, H-6)	7.61 (5Н, м, С ₆ Н ₃); 2.44 (3Н, с, 3-СН ₃)	8.42	12.92
9e	C ₂₃ H ₁₈ ClN ₅ O	<u>16.97</u> 16.84	<u>8.71</u> 8.52	265–266	76	7.80 (1H, c, H-5); 7.62 (1H, c, H-7); 2.57 (3H, c, 8-CH ₃); 2.43 (3H, c, 6-CH ₃)	7.62 (5Н, м, С ₆ Н ₅); 2.43 (3Н, с, 3-СН ₃)	8.38	12.70
9f	C ₂₂ H ₁₆ ClN ₅ O	<u>17.62</u> 17.43	<u>8.98</u> 8.82	241–242	78	8.14 (1H, π , ³ <i>J</i> = 8.0, H-5); 7.82 (1H, τ , ³ <i>J</i> = 8.0, H-7); 7.74 (1H, π , ³ <i>J</i> = 8.0, H-8); 7.53 (1H, τ , ³ <i>J</i> = 8.0, H-6)	7.47 (2H, π , ³ <i>J</i> = 8.0, H-2,6); 7.35 (2H, π , ³ <i>J</i> = 8.0, H-3,5); 2.42 (3H, c, 4- <u>CH</u> ₃ Ar); 2.44 (3H, c, 3-CH ₃)	8.36	12.72
9g	C ₂₂ H ₁₅ BrClN ₅ O	<u>14.78</u> 14.57	<u>7.55</u> 7.37; (16.85) (16.62);	300–301	74	8.23 (1H, д, ⁴ <i>J</i> =2.0, H-5); 8.00 (1H, д. д, ³ <i>J</i> =8.4, ⁴ <i>J</i> =2.0, H-7); 7.69 (1H, д, ³ <i>J</i> =8.4, H-8)	7.49 (2H, π , ³ <i>J</i> = 8.0, H-2,6); 7.40 (2H, π , ³ <i>J</i> = 8.0, H-3,5),; 2.40 (3H, c, 4- <u>CH</u> ₃ Ar); 2.41 (3H, c, 3-CH ₃)	8.39	12.95
9h	C ₂₂ H ₁₅ CIIN ₅ O	<u>13.44</u> 13.27	<u>6.90</u> 6.72	293–294	71	8.41 (1H, π , ⁴ <i>J</i> =2.0, H-5); 8.13 (1H, π . π , ³ <i>J</i> =8.4, ⁴ <i>J</i> =2.0, H-7); 7.52 (1H, π , ³ <i>J</i> =8.4, H-8)	7.49 (2H, д, ³ <i>J</i> = 8.4, H-2,6); 7.39 (2H, д, ³ <i>J</i> = 8.4, H-3,5); 2.40 (3H, c, 4- <u>CH</u> ₃ Ar); 2.41 (3H, c, 3-CH ₃)	8.38	12.91
9i	$C_{22}H_{15}Cl_2N_5O$	<u>16.29</u> 16.05	<u>16.49</u> 16.25	253–254	73	8.15 (1H, д, ³ <i>J</i> = 8.0, H-5); 7.81 (1H, c, H-8); 7.61 (1H, д, ³ <i>J</i> = 8.0, H-6)	7.51 (2H, д, ³ <i>J</i> = 8.0, H-2,6); 7.41 (2H, д, ³ <i>J</i> = 8.0, H-3,5); 2.42 (3H, c, 4- <u>CH</u> ₃ Ar); 2.43 (3H, c, 3-CH ₃)	8.41	12.92
9j	C ₂₄ H ₂₀ ClN ₅ O ₃	<u>15.30</u> 15.16	<u>7.84</u> 7.68	288–289	75	7.47 (1H, c, H-5); 7.17 (1H, c, H-8); 3.97 (3H, c, 7-OCH ₃); 3.93 (3H, c, 6-OCH ₃)	7.47 (2H, μ , ${}^{3}J$ = 8.0, H-2,6); 7.35 (2H, μ , ${}^{3}J$ = 8.0, H-3,5); 2.43 (3H, c, 4- <u>CH</u> ₃ Ar); 2.44 (3H, c, 3-CH ₃)	8.30	12.58
9k	$C_{24}H_{20}ClN_5O$	<u>16.51</u> 16.29	<u>8.44</u> 8.25	269–270	77	7.80 (1H, c, H-5); 7.59 (1H, c, H-7); 2.56 (3H, c, 8-CH ₃); 2.42 (3H, c, 6-CH ₃)	7.50 (2H, π , ³ <i>J</i> = 8.0, H-2,6); 7.41 (2H, π , ³ <i>J</i> = 8.0, H-3,5); 2.41 (3H, c, 4- <u>CH</u> ₃ Ar); 2.43 (3H, c, 3-CH ₃)	8.37	12.69

* Соединения 8а-d, 9а-k кристаллизовали из этанола.

Таблица 4

Характеристики синтезированных соединений 7а–f и 10а–f

Со- еди-	Брутто-	<u>Найде</u> Вычисл	<u>ено, %</u> 1ено, %	Т. пл.,	Выход,	Спектр ЯМР ¹ Н (ДМСО-d ₆), δ, м. д., КССВ (<i>J</i> , Гц)				
не- ние	формула	Ν	Cl (Br)	°C *	%	H-7–H-10	H-4 (1H, c)	1-Ar, 3-CH ₃		
7a	$C_{20}H_{13}N_5$	<u>21.89</u> 21.66	_	294–295, (300 [3])	85 (83 [3])	7.81 (1H, μ , ${}^{3}J$ = 7.6, H-7); 7.36 (1H, τ , ${}^{3}J$ = 7.6, H-8); 6.83 (1H, τ , ${}^{3}J$ = 7.6, H-9); 5.93 (1H, μ , ${}^{3}J$ = 7.6, H-10)	8.69	7.59 (5Н, м, C ₆ H ₅); 2.58 (3Н, с, 3-CH ₃)		
7b	$C_{21}H_{15}N_5$	<u>20.85</u> 20.76	_	293–294	87	7.85 (1H, μ , ${}^{3}J$ = 7.6, H-7); 7.40 (1H, τ , ${}^{3}J$ = 7.6, H-8); 6.89 (1H, τ , ${}^{3}J$ = 7.6, H-9); 6.03 (1H, μ , ${}^{3}J$ = 7.6, H-10)	8.72	7.47 (2H, μ , ${}^{3}J$ = 8.0, H-2,6); 7.39 (2H, μ , ${}^{3}J$ = 8.0, H-3,5); 2.54 (3H, c, 4- <u>CH</u> ₃ Ar); 2.59 (3H, c, 3-CH ₃)		
7c	C ₂₀ H ₁₂ FN ₅	<u>20.77</u> 20.52	-	259–260	79	7.88 (1H, д, ${}^{3}J$ = 7.6, H-7); 7.42 (1H, т, ${}^{3}J$ = 7.6, H-8); 6.98 (1H, т, ${}^{3}J$ = 7.6, H-9); 5.98 (1H, д, ${}^{3}J$ = 7.6, H-10)	8.82	7.73 (2H, м, H-2,6); 7.48 (2H, м, H-3,5); 2.57 (3H, с, 3-CH ₃)		
7d	C ₂₂ H ₁₇ N ₅	<u>20.08</u> 19.93	-	335–336	84	7.59 (1H, c, H-7); 5.49 (1H, c, H-10); 2.28 (3H, c, 8-CH ₃); 1.88 (3H, c, 9-CH ₃)	8.75	7.66 (5Н, м, C ₆ H ₅); 2.57 (3Н, с, 3-CH ₃)		
7e	C ₂₃ H ₁₉ N ₅	<u>19.35</u> 19.16	_	361–362	82	7.59 (1H, c, H-7); 5.53 (1H, c, H-10); 2.31 (3H, c, 8-CH ₃); 1.93 (3H, c, 9-CH ₃)	8.80	7.60 (2H, μ , ${}^{3}J$ = 8.0, H-2,6); 7.49 (2H, μ , ${}^{3}J$ = 8.0, H-3,5); 2.53 (3H, c, 4- <u>CH</u> ₃ Ar); 2.57 (3H, c, 3-CH ₃)		

7f	$\mathrm{C}_{22}\mathrm{H}_{16}\mathrm{FN}_5$	<u>19.26</u> 18.96	-	>300	80	7.67 (1H, c, H-7); 5.67 (1H, c, H-10); 2.32 (3H, c, 8-CH ₃); 1.99 (3H, c, 9-CH ₃)	8.80	7.80 (2H, м, H-2,6); 7.54 (2H, м, H-3,5); 2.57 (3H, с, 3-CH ₃)
10a	$C_{22}H_{15}N_5O$	<u>19.31</u> 19.17	-	207–208	94	7.65 (1H, c, H-10); 7.74 (1H, д, ${}^{3}J$ = 8.2, H-8); 7.68 (1H, д, ${}^{3}J$ = 8.2, H-7); 2.49 (3H, c, 9-CH ₃)	8.81	7.41 (5Н, м, C ₆ H ₅); 2.50 (3Н, с, 3-CH ₃)
10b	C ₂₁ H ₁₂ ClN ₅ O	<u>18.32</u> 18.15	<u>9.35</u> 9.19	310–311	94	7.82 (1H, д, ${}^{3}J$ = 8.2, H-10); 7.75 (1H, с, H-7); 7.41 (1H, д, ${}^{3}J$ = 8.2, H-9)	8.77	7.36 (5Н, м, C ₆ H ₅); 2.53 (3Н, с, 3-CH ₃)
10c	C ₂₂ H ₁₅ N ₅ O	<u>19.29</u> 19.17	-	214–215	97	8.22 (1H, $\exists_{J}, {}^{3}J = 8.0, H-10$); 7.53 (1H, τ , ${}^{3}J = 8.0, H-8$); 7.45 (1H, $\exists_{J}, {}^{3}J = 8.0, H-7$); 7.25 (1H, $\tau, {}^{3}J = 8.0, H-9$)	8.75	7.93 (2H, уш. д, H-2,6); 7.24 (2H, уш. д, H-3,5), ³ <i>J</i> = 8.0; 2.32 (3H, с, 4- <u>CH</u> ₃ Ar); 2.50 (3H, с, 3-CH ₃)
10d	C ₂₂ H ₁₄ BrN ₅ O	<u>15.91</u> 15.76	<u>(18.19)</u> (17.98)	>360	93	8.03 (1H, \exists , \exists , \exists) = 8.5, ${}^{4}J$ = 2.5, H-8); 7.93 (1H, \exists , ${}^{4}J$ = 2.5, H-10); 7.72 (1H, \exists , ${}^{3}J$ = 8.5, H-7)	8.87	7.31 (2H, д, ³ <i>J</i> = 8.2, H-2,6); 7.21 (2H, д, ³ <i>J</i> = 8.2, H-3,5); 2.35 (3H, c, 4- <u>CH</u> ₃ Ar); 2.50 (3H, c, 3-CH ₃)
10e	C ₂₂ H ₁₄ ClN ₅ O	<u>17.77</u> 17.52	<u>8.96</u> 8.87	301-303	97	7.83 (1H, д, ${}^{3}J$ = 8.2, H-10); 7.71 (1H, с, H-7); 7.39 (1H, д, ${}^{3}J$ = 8.2, H-9)	8.74	7.22 (2H, π , ${}^{3}J$ = 8.2, H-2,6); 7.15 (2H, π , ${}^{3}J$ = 8.2, H-3,5); 2.39 (3H, c, 4- <u>CH</u> ₃ Ar); 2.52 (3H, c, 3-CH ₃)
10f	C ₂₄ H ₁₉ N ₅ O ₃	<u>16.63</u> 16.46	_	296–297	86	7.20 (1H, c, H-10); 7.13 (1H, c, H-7); 3.97 (3H, c, 8-OCH ₃); 3.80 (3H, c, 9-OCH ₃)	8.77	7.27 (2H, π , ³ <i>J</i> = 8.0, H-2,6); 7.18 (2H, π , H-3,5); 2.34 (3H, c, 4- <u>CH</u> ₃ Ar); 2.49 (3H, c, 3-CH ₃)

* Соединения 7, 10 кристаллизовали из ДМФА.

Спектральные данные, полученые для модельных циклических соединений 7, позволяют однозначно определить направление внутримолекулярного гетарилирования, исходя из данных спектров ЯМР ¹Н циклических продуктов **10а–f**, а именно, по наличию диамагнитного сдвига сигнала одного из протонов: H-10 (в структуре **A**) или H-11 (в структуре **Б**).

В спектрах ЯМР ¹Н соединений **10а–f** протон H-10 претерпевает диамагнитный сдвиг на 0.3–0.4 м. д. по сравнению с исходными соединениями **9** и, кроме того, находится в более сильном поле, чем сигнал H-8, что не характерно для размещения сигналов протонов хиназолинонового фрагмента. Сигналы остальных ароматических протонов наблюдаются в области 7.2–8.0 м. д. Сигнал протона H-4 сдвинут в слабое поле на 0.4–0.5 м. д. относительно его значения в нециклических соединениях **9**.

Следовательно, строение продуктов 10 соответствует структуре A, а стерически перегруженная структура Б не реализуется.

Отметим, что все производные пропеннитрилов **3**, **8** и **9** при температуре плавления переходят в соответствующие продукты внутримолекулярной циклизации **4**, **7** и **10**.

Таким образом, тетрациклические продукты – соединение **10** и 1-арил-3-метил-1Н-бензо[4,5]имидазо[1,2-*a*]пиразоло[4,3-*e*]пиридин-5-карбонитрилы **7** – легко образуются в результате региоселективного внутримолекулярного аннелирования гетероциклического фрагмента в 2-гетарил-3-(1-арил-3-метил-1Н-5-хлор-4-пиразолил)-2-пропеннитрилах **9** и **8**, соответственно, получаемых конденсацией 2-гетарилацетонитрилов с 1-арил-3метил-1Н-5-хлор-4-пиразолкарбальдегидом.

Результаты, полученные при исследовании реакций внутримолекулярного (гет)арилирования производных на основе 2-(4-оксо-3,4-дигидро-2хиназолинил)ацетонитрилов, позволяют сделать вывод, что главным фактором, влияющим на направление атаки в этих реакциях, является стерический, а именно – пространственное окружение атома азота, на который направлена атака.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Контроль за ходом реакций и чистотой синтезированных соединений проводился методом TCX на пластинках Silufol UV-254 в системе хлороформ-метанол, 9 : 1. Спектры ЯМР ¹Н измерены на спектрометре Varian Mercury 400 (400 МГц), внутренний стандарт TMC. ИК спектры записаны на приборе Руе-Unicam SP 3-300 в таблетках КВг. Температуры плавления измерены на малогабаритном нагревательном столике типа Boetius с наблюдательным устройством PHMK 05 фирмы VEB Analytik. Исходные соединения синтезированы по известным методикам: нитрилы 1 – [5], нитрилы 6 – [6], 2-хлор-3-хино-линкарбальдегиды 2 – [7, 8], 1-арил-3-метил-1H-5-хлор-4-пиразолкарбальдегиды 5 – [9].

3-(2-Хлорхинолин-3-ил)-2-(4-оксо-3,4-дигидрохиназолин-2-ил)-2-пропеннитрилы За-h (общая методика). Смесь 5 ммоль ацетонитрила 1 и 5 ммоль 2-хлор-3-хинолинкарбальдегида 2 в 25 мл ДМФА нагревают на водяной бане в течение 1.5–2 ч, до исчезновения исходного нитрила 1 (по данным TCX). Осадок отфильтровывают, промывают спиртом, сушат.

15-Оксо-15Н-бензо[6,7][1,8]нафтиридино[2,1-*b***]хиназолин-6-карбонитрил (4а). А. Раствор 5 ммоль пропеннитрила 3e** в 30 мл ДМФА кипятят в течение 5–6 ч или 1–2 ч в присутствии 5 ммоль триэтиламина. Осадок отфильтровывают, промывают спиртом, водой (в случае использования триэтиламина), сушат. Небольшое количество продукта **4a** можно выделить из маточника, добавив к нему 15 мл воды.

15-Оксо-15Н-бензо[6,7][1,8]нафтиридино[2,1-*b*]хиназолин-6-карбонитрилы 4b-f (общая методика). Б. Смесь 5 ммоль ацетонитрила 1, 5 ммоль альдегида 2 и 5 ммоль триэтиламина в 30 мл ДМФА кипятят в течение 4–5 ч, контролируя завершение реакции хроматографически. Осадок отфильтровывают, промывают спиртом, водой, сушат. Небольшое количество продукта 4 можно выделить дополнительно из маточника при добавлении 15 мл воды.

2-(1Н-Бензо[d]имидазол-2-ил)-3-(1-арил-3-метил-1Н-5-хлор-4-пиразолил)-2-пропеннитрилы 8а-d (общая методика). К раствору 6 ммоль ацетонитрила 6 в 15 мл диоксана добавляют 6 ммоль соответствующего 1-арил-1Н-5-хлор-4-пиразолкарбальдегида 5 и кипятят в течение 1.5–2 ч до исчезновения исходного ацетонитрила (по данным TCX). Реакционную смесь охлаждают, осадок отфильтровывают, промывают спиртом, сушат. Неболь-шое дополнительное количество продукта можно выделить после упаривания фильтрата.

Полученные соединения пригодны для дальнейших превращений без предварительной очистки.

1-Арил-3-метил-1Н-бензо[4,5]имидазо[1,2-а]пиразоло[4,3-е]пиридин-5-карбонитрилы 7а,b,d,e (общая методика). А. К раствору 5 ммоль пропеннитрила **8** в 20 мл ДМФА добавляют 0.7 мл (5 ммоль) триэтиламина и кипятят в течение 2 ч до исчезновения исходного соединения (по данным TCX). К реакционной смеси добавляют 10–15 мл воды. Образовавшийся осадок отфильтровывают, промывают спиртом, сушат.

1-Арил-3-метил-1Н-бензо[4,5]имидазо[1,2-а]пиразоло[4,3-е]пиридин-5-карбонитрилы 7с,f (общая методика). Б. К раствору 5 ммоль ацетонитрила 6 в 15 мл ДМФА добавляют 5 ммоль соответствующего альдегида 5 и 0.7 мл (5 ммоль) триэтиламина. Смесь кипятят в течение 4 ч до исчезновения исходного ацетонитрила (по данным TCX). Реакционную смесь охлаждают, осадок отфильтровывают (если осадок отсутствует – добавляют 10 мл воды для его образования), промывают спиртом, сушат. В первом случае дополнительное количество продукта можно выделить добавлением 10 мл воды к фильтрату реакционной смеси.

3-(1-Арил-3-метил-1Н-5-хлор-4-пиразолил)-2-(4-оксо-3,4-дигидро-2-хиназолинил)-2-пропеннитрилы 9а-к (общая методика). Смесь 10 ммоль ацетонитрила 1 и 10 ммоль альдегида 5 кипятят в 30 мл диоксана в течение 7–10 ч, контролируя окончание реакции хроматографически. Реакционную смесь охлаждают, осадок отфильтровывают, промывают спиртом, сушат.

1-Арил-3-метил-11-оксо-1,11-дигидропиразоло[4',3':5,6]пиридо[2,1-*b*]хиназолин-5карбонитрилы 10а-f (общая методика). К раствору 3 ммоль 2-пропеннитрила 9 в 30 мл ДМФА добавляют 3 ммоль триэтиламина и кипятят 2–3 ч, контролируя завершение реакции хроматографически. Из охлажденной реакционной смеси отфильтровывают осадок продукта 10, промывают спиртом, водой, сушат. Часть продукта виделяют из маточника при добавлении 15 мл воды.

СПИСОК ЛИТЕРАТУРЫ

- 1. О. В. Хиля, Т. А. Воловненко, А. В. Туров, Ю. М. Воловенко, Укр. хим. журн., **69**, № 7-8, 55 (2003).
- О. В. Хиля, Т. А. Воловненко, А. В. Туров, Ю. М. Воловенко, XГС, 1226 (2004). [Chem. Heterocycl. Comp., 40, 1063 (2004)].
- 3. U. V. Gokhale, S. Seshadri, Dyes Pigm., 8, 157 (1987).
- 4. F. M. Abd El Latif, M. A. Barsy, E. A. Elrady, M. Hassan, J. Chem. Research (S), 696 (1999).
- 5. Ю. М. Воловенко, О. В. Хиля, Т. А. Воловненко, Т. В. Шокол, *XTC*, 350 (2002). [*Chem. Heterocycl. Comp.*, **38**, 314 (2002)].
- 6. J. Buchi, H. Zwicky, A. Aebi, Arch. Pharm., 293, 758 (1960).
- 7. O. Meth-Cohn, B. Narine, B. Tarnovski, J. Chem. Soc., Perkin Trans. 1, 1531 (1981).
- 8. O. Meth-Cohn, B. Narine, *Tetrahedron Lett.*, 2045 (1978).
- 9. И. Я. Квитко, Б. А. Порай-Кошиц, *ЖОрХ*, 169 (1966).

Киевский национальный университет им. Тараса Шевченко, Киев 01033, Украина e-mail: olgakh@mail.univ.kiev.ua Поступило 30.12.2004