М. М. Краюшкин, М. А. Калик, Д. Л. Джавадов, Л. Г. Воронцова

СИНТЕЗ, СТРУКТУРА И НЕКОТОРЫЕ РЕАКЦИИ 1,2-БИС (2-АЛКИЛТИО-3-ТИЕНИЛ) ПЕРФТОРЦИКЛОПЕНТЕНА

Описан синтез 1,2-бис (2-этилтио-3-тиения) перфторциклопентена, металлированием которого *н*-BuLi с последующей обработкой ДМФА или CO₂ получены соответствующие 5,5'-диформил- и -дикарбоксипроизводные. Строение 1,2-бис (2этилтио-3-тиения) перфторциклопентена изучено методом PCA. Установлено, что элементарная ячейка содержит две кристаллографически независимые молекулы с близкими геометрическими и конформационными параметрами. Тиофеновые циклы повернуты относительно плоскости перфторциклопентенового фрагмента на угол 60°, тиоалкильные группы расположены по отношению к нему *анти*-параллельно.

Соединения, содержащие диарил- или дигетарил (дитиенил) алкеновые фрагменты, потенциально способные к валентной таутомерии, широко используются для получения органических материалов, применяемых в информационной технике и оптоэлектронике [1]. Для таких материалов характерна возможность широкого варьирования физико-химических и фотохромных свойств даже при небольших изменениях молекулярной структуры. Например, замена метильных заместителей на *н*-гексильные в положениях 2 тиофеновых циклов в соединениях типа A не только в 30 раз увеличивает растворимость в некоторых органических растворителях, но и сдвигает максимум полосы поглощения в электронном спектре на 20...30 нм [2]. Изменение природы заместителя в положении 5 тиофенового цикла оказывает значительное влияние на фотохромные свойства и термическую устойчивость одной из таутомерных форм [3, 4]. Влияние природы заместителей в положениях 2 тиофеновых циклов в подобных системах не изучалось.

В настоящей работе впервые получены производные 1,2-бис (дитиенил) перфторциклопентены (I), содержащие в положении 2 тиофенового цикла алкилтиогруппу, активирующую тиофеновое кольцо в реакциях электрофильного замещения и металлирования, что облегчает последующее введение различных функциональных заместителей в свободные положения гетероцикла.

Синтез соединения I осуществлен по приведенной ниже схеме исходя из 2-этилтиотиофена. Бромирование последнего и дальнейшее дебромирование полученного дибромсульфида (II) *н*-BuLi при -70 °C привело к 2-этилтио-3-бромтиофену (III) с хорошим выходом. Последовательным действием на бромид III BuLi в эфире и затем октафторциклопентена с выходом 60% синтезирован бисульфид I, который в условиях избытка 30% H₂O₂ практически количественно превращается в бисульфон (IV). Бисульфид I легко в течение нескольких минут металлируется BuLi в эфире

927

в оба тиофеновых цикла и после обработки ДМФА или CO₂ с хорошим выходом превращается в диальдегид (V) или дикарбоновую кислоту (VI) соответственно. Металлирование алкильного аналога — 1,2- бис (2-гексил-3-тиенил) перфторциклопентена — идет значительно труднее и требует применения ТМЭДА [2].

Структура полученных алкилтиотиенилперфторциклопентенов подтверждена данными элементного анализа, ПМР и масс-спектров, а фторид I исследован также методом PCA.

Кристаллы соединения I содержат в элементарной ячейке две кристаллографически независимые молекулы (Ia, Iб), геометрические параметры которых различаются не более чем ±0,1 Å и ±1,5°. Все длины связей и валентные углы не выходят за пределы стандартных среднестатистических значений [5]. На рисунке показано строение молекулы Ia, в табл. 1, 2 приведены усредненные по двум молекулам значения геометрических параметров. Как видно из табл. 3, конформация молекул Ia,б также одинакова, за исключением различного угла поворота Таблица 1

Связь	d, Å	Связь	<i>d</i> , Å
S(1)C(7)	1,735	C(14)C(15)	1,435
S(1)-C(8)	1,724	S(4)-C(15)	1,722
S(2)C(7)	1,701	S(4)—C(16)	1,686
S(2)-C(6)	1,834	C(13)-C(16)	1,440
C(5)-C(6)	1,545	S(3)—C(16)	1,783
C(8)-C(9)	1,377	S(3)C(17)	1,810
C(9)-C(10)	1,480	C(17)-C(18)	1,480
C(7)-C(10)	1,480	C(12)-C(19)	1,506
C(10)-C(11)	1,430	C(19)-C(22)	1,510
C(11)-C(12)	1,277	$C_{(20)} - C_{(21)}$	1,521
C(12)-C(13)	1,445	C(11)-C(21)	1,480
C(13)-C(14)	1,420	(C-F)cp	1,321

Длины связей в структуре I, усредненные по двум кристаллографически независимым молекулам Ia, Iб

Строение и конформация молекулы Ia (без учета атомов водорода). Нумерация атомов приведена в машинных кодах

тиоалкильных групп относительно тиофеновых циклов (T^1, T^2) : 113,67 и 68,98° соответственно. Перфторциклопентеновый фрагмент (F) плоский. Углы $T^1, T^2/F$ близки 60°; угол между циклами T^1 и T^2 составляет 75,7° (Ia) и 73,20° (Iб). Тиоалкильные группы имеют анти-параллельную ориентацию относительно F-цикла. В структуре 1,2-бис (5-формил-2-метил-3-тиенил) перфторциклопентена, как упомянуто в работе [4], метильные заместители также ориентированы анти-параллельно, а тиофеновые циклы повернуты относительно перфторциклопентенового фрагмента на угол 45°.

Таблица 2

Угол	ω (град.)	Угол	ω (град.)
C(7)—S(1)—C(8)	95,1	C(22)-C(25)-C(11)	102,1
$S_{(1)}-C_{(8)}-C_{(9)}$	111,3	$C_{(12)} - C_{(13)} - C_{(14)}$	124,8
C(8)-C(9)-C(10)	114,0	$C_{(12)} - C_{(13)} - C_{(16)}$	120,9
$C_{(9)} - C_{(10)} - C_{(7)}$	110,1	$C_{(14)} - C_{(13)} - C_{(16)}$	113,5
$C_{(9)} - C_{(10)} - C_{(11)}$	127,5	$C_{(13)} - C_{(14)} - C_{(15)}$	109,1
$C_{(7)}-C_{(10)}-C_{(11)}$	121,9	$C_{(14)} - C_{(15)} - S_{(4)}$	112,6
$C_{(10)} - C_{(7)} - S_{(2)}$	127,0	$C_{(15)}$ — $S_{(4)}$ — $C_{(16)}$	92,4
S(1)-C(7)-C(10)	109,0	S(4)C(16)C(13)	111,6
$S_{(1)} - C_{(7)} - S_{(2)}$	123,6	$C_{(13)} - C_{(16)} - S_{(3)}$	126,6
$C_{(7)}-S_{(2)}-C_{(6)}$	98,2	S(3)—C(16)—S(4)	121,6
$S_{(2)}-C_{(6)}-C_{(5)}$	114,1	C(16)S(3)C(17)	102,9
$C_{(10)} - C_{(11)} - C_{(12)}$	128,2	S(3)-C(17)-C(18)	115,3
C(10)-C(11)-C(25)	116,3	$F_{(23)}-C_{(19)}-F_{(22)}$	105,6
$C_{(11)} - C_{(12)} - C_{(13)}$	131,0	$F_{(24)}-C_{(20)}-F_{(25)}$	104,4
$C_{(19)} - C_{(12)} - C_{(13)}$	117,9	F(26)—C(21)—F(27)	103,2
$C_{(11)} - C_{(12)} - C_{(19)}$	111,9		
$C_{(12)}-C_{(19)}-C_{(20)}$	105,9		· ·
$C_{(19)} - C_{(20)} - C_{(21)}$	108,2		

Валентные углы в структуре I, усредненные по двум кристаллографически независимым молекулам Ia, Iб

929

конформационные углы (φ , град.) в молекулах за	ia	_ 1		ax	лекулах	молек	в	град.)	$(\varphi,$	углы	рормационные	рно.	ĸ
--	----	-----	--	----	---------	-------	---	--------	-------------	------	--------------	------	---

Фрагмент	Ia	I6
$C_{(5)}-C_{(6)}-S_{(2)}-C_{(7)}$	121,52	116,72
$C_{(6)} - S_{(2)} - C_{(7)}/T^{1}$	113,67	68,98
⁻¹ /F	57,80	53,98
² /F	59,80	59,39
$C_{(16)} - S_{(3)} - C_{(17)}/T^2$	118,98	114,15
$C_{(18)} - C_{(17)} - S_{(3)} - C_{(16)}$	116,87	54,59
r^1/T^2	75,73	73,20

Таблица 4

Координаты неводородных атомов (×10⁴) и атомов водорода (×10³) в молекулах Іа, Іб

1 2 3 Ia Ia S(1) 4802(3) 8800(4) S(2) 4541(3) 6713(3) S(3) 5809(3) 9113(3) S(4) 4252(3) 7692(2) C(5) 5569(8) 6224(8) C(6) 4607(8) 6267(6) C(7) 5173(5) 7853(7)	4 8206(3) 8867(3) 12936(3) 13930(3)
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	8206(3) 8867(3) 12936(3) 13930(3)
S(1) 4802(3) 8800(4) S(2) 4541(3) 6713(3) S(3) 5809(3) 9113(3) S(4) 4252(3) 7692(2) C(5) 5569(8) 6224(8) C(6) 4607(8) 6267(6) C(7) 5173(5) 7853(7)	8206(3) 8867(3) 12936(3) 13930(3)
S(2) 4541 (3) 6713 (3) S(3) 5809 (3) 9113 (3) S(4) 4252 (3) 7692 (2) C(5) 5569 (8) 6224 (8) C(6) 4607 (8) 6267 (6) C(7) 5173 (5) 7853 (7)	8867(3) 12936(3) 13930(3)
S(3) 5809(3) 9113(3) S(4) 4252(3) 7692(2) C(5) 5569(8) 6224(8) C(6) 4607(8) 6267(6) C(7) 5173(5) 7853(7)	12936(3) 13930(3)
S(4) 4252(3) 7692(2) C(5) 5569(8) 6224(8) C(6) 4607(8) 6267(6) C(7) 5173(5) 7853(7)	13930(3)
C(5)5569(8)6224(8)C(6)4607(8)6267(6)C(7)5173(5)7853(7)	
C(6) 4607 (8) 6267 (6) C(7) 5173 (5) 7853 (7)	6191(10)
C ₍₇₎ 5173(5) 7853(7)	6937(9)
	8809(9)
C ₍₈₎ 5726(6) 9611(7)	8551 (9)
C ₍₉₎ 6307(5) 9238(7)	9201(11)
C(10) 5993(5) 8189(6)	9436(8)
C(11) 6436(5) 7542(6)	9945(8)
C(12) 6164(5) 7046(5)	10997(8)
C(13) 5358(4) 7049(7)	11910(9)
C ₍₁₄₎ 4763(6) 6177(7)	12113(9)
C ₍₁₅₎ 4142(6) 6461(7)	13292(9)
C(16) 5215(5) 7892(7)	12885(8)
C ₍₁₇₎ 6147(6) 9362(7)	14701(11)
C(18) 6769(6) 8658(8)	14908(11)
C(19) 6821 (6) 6389 (9)	11108(12)
C ₍₂₀₎ 7617(11) 6716(9)	10134(10)
C ₍₂₁₎ 7353(6) 7403(6)	9268(13)
F(22) 7141(4) 6460(5)	12299(8)
F ₍₂₃₎ 6573(4) 5452(5)	10787(8)
F(24) 7946(10) 5979(8)	9270(12)
F(25) 8294(6) 7179(11)	10820(12)
F(26) 7953(3) 8201(4)	9426(7)
F ₍₂₇₎ 7419(4) 7085(8)	7893(8)
H(55,C5) 560(5) 598(5)	516(6)
H(56,C5) 585(7) 577(5)	663(5)
H(57,C5) 590(5) 690(5)	634(5)
H(58,C18) 695(6) 879(6)	1588(6)
H(59,C18) 731(6) 873(5)	1421 (5)
H _(60,C18) 646(5) 797(6)	1474(6)
H _(67,C6) 432(6) 672(5)	649(7)
H _(68,C6) 427(6) 559(6)	678(5)

Окончание табл. 4

1	2	3	4
		Іб	
S(28)	8477(3)	10756(4)	7079(4)
S(29)	7345(3)	12236(4)	8737(3)
S(30)	7896(3)	13208(5)	4001 (5)
S(31)	7557(4)	11106(3)	2505(7)
C(32)	9673(6)	11293(8)	9112(12)
C(33)	8847(7)	10599(9)	8699(12)
C(34)	8238(5)	11905(7)	7552(10)
C(35)	7567(6)	13500(8)	8677(11)
C(36)	8292(6)	13687(7)	7707(10)
C(37)	8683(6)	12830(7)	6996(7)
C(38)	9455(5)	12831 (5)	5940(9)
C(39)	9544(5)	12287(5)	4799(9)
C(40)	8915(5)	11646(7)	3923(8)
C(41)	8945(5)	10644(6)	3375(10)
C(42)	8260(8)	10243(8)	2487(10)
C(43)	8163(6)	11992(8)	3507(8)
C(44)	8054(8)	13694(10)	2372(10)
C(45)	8889(10)	13666(10)	1532(9)
C(46)	10482(6)	12393(7)	4060(11)
C(47)	10923(5)	13206(12)	5051(14)
C(48)	10269(7)	13417(7)	6361(12)
F(49)	10881(4)	11603(5)	3837(9)
F(50)	10607(4)	12771(7)	2912(8)
F(51)	11590(6)	12952(11)	5493(12)
F(52)	11399(8)	13879(9)	4599(12)
F(53)	10499(8)	13460(6)	7552(8)
F(54)	10214(4)	14386(5)	6328(9)
H(61,C32)	988(6)	1121(6)	1001(6)
H(62,C32)	1016(5)	1118(6)	834(6)
H(63,C32)	954(7)	1198(5)	921 (5)
H(64,C45)	898(6)	1394(6)	063(6)
H(65,C45)	935(6)	1404(6)	212(5)
H(66,C45)	899(5)	1296(6)	130(5)
H(71,C33)	835(6)	1071 (5)	946(6)
H(72,C33)	898(6)	991 (5)	860(6)
H(73,C44)	759(6)	1331 (6)	178(5)
H(74,C44)	795(6)	1440(5)	260(5)

Полученный 2-этилтиозамещенный перфторциклопентен I обладает высокой растворимостью в обычных органических растворителях (вымораживается из гептана при -50 °C). При УФ облучении он, его 5-формил- и 5-карбоксипроизводные V и VI, а также бисульфон IV не проявляют фотохромных свойств, что свидетельствует об исключительной устойчивости «открытой» (ароматической) формы А этого ряда соединений.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Спектры ПМР в CDCl₃ сняты на приборе Bruker WM-250 (250 МГц). Масс-спектры получены на приборе Kratos MS-30 при ионизирующем напряжении 70 эВ с прямым вводом вещества в ионный источник. 5-Этилтио-2,4-дибромтиофен (II). К раствору 10,65 г (74 ммоль) 2-этилтиофена в 50 мл СНСІз при интенсивном перемешивании и температуре 0...5 °С в течение 30 мин добавляют 23,66 г (148 ммоль) Вг2 в 100 мл СНСІз и полученную смесь выдерживают 4 ч при 20 °С. Реакционную массу выливают на лед, органический слой отделяют, промывают водой, 3% NaOH, 5% Na2S2O3, водой, высушивают СаСІ2, растворитель отгоняют. Из остатка (16,2 г зеленого масла) перегонкой в вакууме выделяют 15,9 г (71,2%) дибромида П. T_{KHII} 138...139 °С (10,6 ГПа), $n D^{20}$ 1,6409. Спектр ПМР: 6,99 (1H, с, 3-H); 2,84 (2H, к, CH2); 1,29 (3H, т, CH3); $J_{CH2,CH3} = 7,42$ Гц. Найдено, %: С 24,21; H 2,09; Br 52,49; S 21,06. С6H6Br2S2. Вычислено, %: С 23,83; H 2,00; Br 52,83; S 21,20.

2-Этилтио-3-бромтиофен (III). К раствору 10 г (33 ммоль) дибромида II в 100 мл сухого эфира при -75 °С в течение 40 мин в токе Ar добавляют 2,3 г (36 ммоль) ВuLi в 19,8 мл эфира. Реакционную смесь выдерживают 1 ч при -70 °С, затем последовательно добавляют 1,5 мл MeOH и 30 мл воды. Органический слой отделяют, промывают водой до нейтральной реакции, высушивают CaCl₂, эфир отгоняют. Из остатка (7,12 г темного масла) перегонкой в вакууме выделяют 5,56 г (75,5%) монобромида III. $T_{\text{кип}}$ 106...107 °С (10,6 ГПа); n_D^{20} 1,6085. Спектр ПМР: 7,32 (1H, д, 5-H); 7,02 (1H, д, 4-H); $J_{\text{H4,H5}}$ = 5,47 Гц; 2,87 (2H, к, CH₂); 1,29 (3H, т, CH₃); $J_{\text{CH2,CH3}}$ = 7,46 Гц. Найдено, %: С 32,86; H 3,18; Br 35,52; S 28,50. С₆H₇BrS₂. Вычислено, %: С 32,29; H 3,16; Br 35,52; S 28,74.

1,2-Бис (2-этилтио-3-тиенил) перфторциклопентен (I). К раствору 2,15 г (9,68 ммоль) бромида III в 30 мл сухого эфира при –70 °С в токе Аг в течение 5 мин добавляют 6 мл эфирного раствора 0,68 г (10,65 ммоль) ВиLi. Полученную смесь перемешивают 1 ч при той же температуре, затем добавляют к ней 0,98 г (4,84 ммоль) октафторциклопентена двумя порциями по 0,49 г (0,31 мл). После выдерживания в течение 2 ч при –70 °С охлаждение прекращают и реакционную массу гидролизуют при 0 °С смесью 5 мл 10% HCl и 10 мл воды. Органический слой отделяют, промывают водой до нейтральной реакции, высушивают CaCl₂. После удаления эфира получают 2,14 г коричневого масла, из которого в вакууме отгоняют 0,26 г летучих компонентов с T_{KMII} до °С (10,6 ГПа), содержащих в основном исходный бромид III (0,18 г). Из остатка хроматографией на колонке с силикагелем (L 100...160 μ , элюент гептан) выделяют 1,36 г (62%) фторида I в виде густого кристаллизующегося масла, легко растворимого в органических растворителях. После перекристаллизации из гептана (-50 °C) T_{ILT} 47,5...48,5 °C. Спектр ПМР: 7,4 (1H, д, 5-H); 7,23 (1H, д, 4-H); $J_{H4,H5} = 5,79$ Гц; 2,57 (2H, к, CH₂); 1,12 (3H, т, CH₃); $J_{CH2,CH3} = 7,47$ Гц. Масс-спектр: 460 (80) [M] ⁺; 399 (98) [M-SC₂H₅] ⁺; 370 (65), 338 (100) [M-2SC₂H₅] ⁺. Найдено, %: С 44,68; H 3,11. C₁₇H₁₄F₆S4. Вычислено, %: С 44,34; H 3,06. М 460,54.

1,2-Бис (2-этилсульфонил-3-тиенил) перфторциклопентен (1V). К раствору 60 мг (0,13 ммоль) фторида I в 2 мл ледяной АсОН добавляют 0,16 мл (1,57 ммоль) 30% H₂O₂, нагревают на кипящей водяной бане 2 ч, охлаждают и выливают на лед. Выпавший осадок отфильтровывают, промывают водой, высушивают и получают 62 мг (90,6%) бисульфона IV, $T_{пл}$ 184...185 °C (из ЕtOH). Спектр ПМР: 7,71 (1H, д, 5-H); 7,42 (1H, д, 4-H); $J_{H4,H5} = 5,14$ Гц; 3,17 (2H, к, CH₂); 1,38 (3H, т, CH₃); $J_{CH2,CH3} = 7,57$ Гц. Найдено, %: С 38,34; H 2,60. С17H14F6S4O4. Вычислено, %: С 38,93; H 2,69.

1,2-Бис(5-формил-2-этилтио-3-тиенил) перфторциклопентен (V). К 140 мг (0,3 ммоль) фторида I в 7 мл сухого эфира при 0 °С в токе Ar добавляют 0,5 мл эфирного раствора 47 мг (0,75 ммоль) BuLi. Смесь перемешивают 30 мин при 20 °С, охлаждают до -40 °С и добавляют 0,22 г (3 ммоль) сухого ДМФА. Суспензию перемешивают 20 мин при -40 °С и 1,5 ч без охлаждения, далее гидролизуют 5% HCl. Водный слой отделяют, экстрагируют эфиром, экстракт и органический слой объединяют, промывают водой, высушивают MgSO4, эфир отгоняют и получают 150 мг желтого кристаллизующегося при стоянии масла (по данным ПМР, смесь соединений V и I в соотношении 85 : 15), которое хроматографируют на колонке с силикагелем (L 100...160 μ , элюент бензол) и выделяют 100 мг (65%) бисальдегида V. T_{III} 88...89°С (из гептана). Спектр ПМР: 9,82 (1H, с, CHO); 7,87 (1H, с, 4-H); 2,89 (2H, к, CH₂); 1,22 (3H, т, CH₃); *J*Сн₂сн₃ = 7,69 Гц. Macc-спектр: 516(100) [M]⁺, 456(90), 398(33), 338(28). Найдено, %: С 44,52; H 2,97. C₁9H₁₄F₆O₂S4. Вычислено, %: С 44,19; H 2,73. М 516,6.

1,2-Бис (5-карбокси-2-этилтио-3-тиенил) перфторциклопентен (VI). К раствору 410 мг (0,89 ммоль) фторида I в сухом эфире, как описано для альдегида V, добавляют 1,43 г (2,2 ммоль) эфирного раствора BuLi. Полученную суспензию выдерживают 30 мин при 20 °C, выливают на сухой лед в эфире и выдерживают 12 ч при 20 °C. К реакционной смеси добавляют воду, водный слой отделяют, экстрагируют эфиром, подкисляют при охлаждении 5% HCl, выпавшую кислоту 932

экстрагируют эфиром, экстракт промывают водой, высупивают MgSO4, эфир отгоняют и получают 290 мг сырой кислоты, которую промывают гептаном и переосаждают из AcOH водой. Получают 160 мг чистой кислоты V. T_{IIII} 202...203 °C (разл.). Спектр ПМР: 7,98 (1H, c, 4-H); 2,83 (2H, к, CH₂); 1,22 (3H, т, CH₃); $J_{CH2,CH3} = 7,66$ Гц. Масс- спектр: 548(60) [M]⁺, 504(60), 443(50), 414(70), 382(78), 338(60), 208(100). Найдено, %: C 41,86; H 3,03. С₁₉H₁₄F₆O₄S4. Вычислено, %: C 41,60; H 2,57. М 548,56.

Рентгеноструктурное исследование 1,2-бис (2-алкилтио-3-тиенил) перфторциклопентена (1). Бесцветные прозрачные монокристаллы соединения I состава С₁₇Н₁₄F₆S₄, выращенные из метанола, принадлежат к триклинной сингонии. Параметры элементарной ячейки: a=15,392(2), b=13,922(2), c=9,724(2) Å, $\alpha=99,89(1), \beta=82,38(1)^\circ, \psi\gamma=98,96(1), V=2015,68$ Å³, пр. гр. Р1, Z=4. Интенсивности 1862 отражений с $I > 2\sigma(I)$ измерены на автоматическом четырехкружном дифрактометре РЭД-4 $(\lambda$ CuK α , графитовый монохроматор, $\theta/2\theta$ -сканирование). Структура распифрована прямым методом, координаты неводородных атомов уточнены МНК в анизотропном приближении, атомов водорода — в изотропном. Окончательное значение фактора расходимости равно 0,08. Расчеты выполнены по программе AREN-90 [6]. Координаты атомов и эквивалентные изотропные температурные параметры для двух кристаллографически независимых молекул (Ia,6) приведены в табл. 4.

СПИСОК ЛИТЕРАТУРЫ

1. Feringa B. L., Jager W. F., De Lange B. // Tetrahedron. - 1993. - Vol. 49. - P. 8267.

2. Tsivgoulis G. M., Lehn J. M. // Chem. Eur. J. - 1996. - Vol. 2, N 11. - P. 1399.

3. Irie M., Miyatake O., Uchida A. // J. Amer. Chem. Soc. - 1992. - Vol. 114. - P. 8715.

4. Gilat S. L., Kawai S. H., Lehn J.-M. // Chem. Eur.J. - 1995. - Vol. 1, N 5. - P. 275.

5. Allen F. H., Kennard O., Watson D. G., Brammer L., Orpen A. G., Taylor R. // J. Chem. Soc. Perkin Trans. II. - 1987. - N 12. - P. S1.

6. Андрианов В. И. // Кристаллография. — 1987. — Т. 32. — С. 228.

Институт органической химии им. Н. Д. Зелинского РАН, Москва 117913 e-mail: mkray@ioc.ac.ru Поступило в редакцию 01.10.97