С. И. Филимонов^{1*}, М. К. Корсаков¹, Ж. В. Чиркова¹, И. Г. Абрамов¹, Г. А. Сташина², С. И. Фирганг², Ю. А. Ковыгин³, Х. С. Шихалиев³

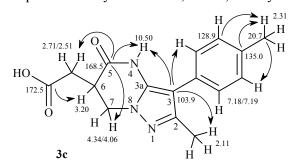
КОНДЕНСАЦИЯ 5-АМИНО-4-АРИЛПИРАЗОЛОВ С ИТАКОНОВОЙ КИСЛОТОЙ И МАЛЕИНОВЫМ АНГИДРИДОМ

Замещённые 5-амино-4-арилпиразолы при конденсации с итаконовой кислотой образуют замещённые тетрагидропиразоло[1,5-a]пиримидины, а при конденсации с малеиновым ангидридом — 2,3-дигидро-1H-имидазоло[1,2-b]пиразолы, которые при более длительном нагревании перегруппировываются в тетрагидропиразоло[1,5-a]-пиримидины.

Ключевые слова: 5-амино-4-арилпиразол, 2,3-дигидро-1H-имидазоло[1,2-b]пиразол, итаконовая кислота, малеиновый ангидрид, тетрагидропиразоло[1,5-a]пиримидины.

Известно, что бициклические производные на основе аминопиразолов проявляют различные виды биологической активности, обладая при этом низкой токсичностью [1–3]. Взаимодействие аминопиразолов с дикарбонильными соединениями изучено на примере β-дикетонов и производных ацетоуксусного эфира [4, 5]. Имеются данные о конденсации с некоторыми непредельными карбонильными соединениями [6] и о получении с очень низкими выходами диазепинов из *N*-алкиламинопиразолов и малеинового ангидрида [7]. Известно об образовании пиразолопиримидинов при взаимодействии аминопиразолов с арилмалеимидами [8]. Бициклические продукты реакции аминопиразолов с итаконовой кислотой и малеиновым ангидридом в литературе не описаны.

Цель нашей работы — изучение закономерностей взаимодействия производных непредельных дикарбоновых кислот (итаконовой кислоты и малеинового ангидрида) с замещёнными 5-амино-4-арилпиразолами.


Реакцию конденсации аминопиразолов 1a—e с итаконовой кислотой (2a) проводили в уксусной кислоте при температуре 80— $100\,^{\circ}$ С в течение 2—4 ч. В качестве основных продуктов были выделены замещённые тетрагидропиразоло[1,5-a]пиримидины 3a—e, выходы которых не превышали 40% (табл. 1). Проведение указанной реакции в диоксане или в ДМФА при различных температурных режимах (50— $140\,^{\circ}$ С) снижало чистоту и выходы целевых продуктов.

На первой стадии конденсации, вероятно, происходит присоединение нуклеофильного атома азота пиразольного цикла к двойной связи итаконовой кислоты по аналогии с взаимодействием производных акриловой кислоты [9, 10]. Однако из-за подвижности атома водорода, стоящего при атоме азота (прототропная кольцевая таутомерия) [11], возможно образование двух изомеров **A** и **B**, один из которых (изомер **B**) не способен к внутримолекулярной циклизации по аминогруппе (что значительно снижает выход целевого продукта), а второй может образовывать при циклизации как шестичленные соединения **3а**—е, так и семичленные соединения **4а**—е. Следует также отметить, что при проведении реакции при температурах выше 100 °C в уксусной кислоте может протекать ацилирование исходного аминопиразола, причём по обоим NH-реакционным центрам [12].

1, **3** a $R = R^1 = H$; b R = H, $R^1 = Cl$; c $R = R^1 = Me$; d R = Me, $R^1 = OMe$, e $R = CF_3$, $R^1 = OMe$

Строение синтезированных соединений определено на основании данных спектроскопии ЯМР и масс-спектрометрии (табл. 1–3). Из двух возможных структур **3** и **4** более вероятно образование шестичленного цикла (соединения **3a–e**), что подтверждается данными двумерной корреляционной спектроскопии ЯМР 1 Н $^{-1}$ Н и 1 Н $^{-13}$ С на примере соединения **3c**. Подтверждением декларируемой шестичленной структуры являются также кросс-пики одинаковой интенсивности метиленовых протонов с протоном карбоксильной группы в спектре NOESY, а также кросс-пик углерода метиновой группы (C-6) с протоном при атоме азота в спектре HMBC (рис. 1).

Ранее указывалось [8], что рециклизация малеимидов с аминопиразолами, замещёнными по положению 4, при кипячении в ДМФА или уксусной кислоте приводит к пиразоло[1,5-a]пиримидинам (выходы 65–80%) с примесью имидазо[1,2-b]пиразолов в качестве минорных продуктов. В работе приведены спектральные данные полученных гетероциклов, результаты РСА пиразоло[1,5-a]пиримидина, а также обсуждаются вероятные маршруты реакций, в которых аминопиразолы выступают как N,N- и C,N-бинуклеофилы.

 $\mathit{Puc.\ 1.}$ Основные взаимодействия в спектре HMBC соединения 3c

Таблица 1 Физико-химические характеристики полученных соединений 3а–е, 6а–d, 7а–d, 8е

Соеди-	Брутто- формула	<u>Найдено, %</u> Вычислено, %			Т. пл., °С	Выход, %
нение		С	Н	N	1. 1111., C	(метод)
3a	$C_{14}H_{13}N_3O_3$	61.73 61.99	4.90 4.83	15.73 15.49	270–272	31
3 b	$C_{14}H_{12}CIN_3O_3$	<u>54.98</u> 55.00	<u>4.11</u> 3.96	13.58 13.74	278–280	33
3c	$C_{16}H_{17}N_3O_3$	63.98 64.20	<u>5.61</u> 5.72	13.98 14.04	275–276	35
3d	$C_{16}H_{17}N_3O_4$	61.00 60.94	5.54 5.43	13.40 13.33	269–271	38
3e	$C_{16}H_{14}F_3N_3O_4$	51.82 52.04	3.74 3.82	11.33 11.38	256–258	27
6a	$C_{13}H_{11}N_3O_3$	60.68 60.70	<u>4.33</u> 4.31	16.30 16.33	260–262	20
6b	$C_{13}H_{10}CIN_3O_3$	53.40 53.53	3.32 3.46	14.35 14.41	277–279	26
6c	$C_{14}H_{13}N_3O_3$	61.65 61.99	<u>4.75</u> 4.83	15.36 15.49	265–267	29
6d	$C_{15}H_{15}N_3O_3$	63.25 63.15	5.21 5.30	14.80 14.73	275–276	38
7a	$C_{13}H_{11}N_3O_3$	60.68 60.70	<u>4.33</u> 4.31	16.30 16.33	241–243	15 (A)
7b	$C_{13}H_{10}CIN_3O_3$	<u>53.33</u> 53.53	3.38 3.46	14.39 14.41	262–264	20 (A)
7c	$C_{14}H_{13}N_3O_3$	61.69 61.99	4.63 4.83	15.42 15.49	255–256	26 (A)
7d	$C_{15}H_{15}N_3O_3$	63.25 63.15	5.16 5.30	14.80 14.73	223–225	69 (Б)
8e	$C_{15}H_{10}F_3N_3O_3$	<u>53.49</u> 53.42	2.83 2.99	12.41 12.46	198–200	63

Нами были проведены исследования реакции аминопиразолов 1a-c,e,f с малеиновым ангидридом (2b). Установлено, что взаимодействие протекает внесколько стадий, включающих ацилирование аминопиразола с последующей циклизацией, а также перегруппировку пятичленного циклического продукта в более устойчивый шестичленный. Существенное влияние на протекание реакций оказывает температура.

При конденсации аминопиразолов 1a-c, f с малеиновым ангидридом (2b) в уксусной кислоте при нагревании до $50\,^{\circ}$ С первоначально образуются ациклические интермедиаты 5a-d [13], которые выпадают в осадок. Дальнейшее нагревание до $80\,^{\circ}$ С в течение $3-4\,^{\circ}$ ч приводит к постепенному растворению соединений 5a-d и образованию 2,3-дигидро-1H-имидазо[1,2-b]пиразолов 6a-d вместо предполагаемых имидов 8.

Выдерживание реакционной смеси при температуре 80–100 °C в течение 6 ч приводит к образованию с выходами до 26% 4,5,6,7-тетрагидропиразоло-[1,5-а]пиримидинов 7а-d или смеси соединений 6а-d и 7а-d с преобладанием последних. На основании вышесказанного можно предположить, что рециклизации с образованием пяти- и шестичленного цикла не являются конкурирующими процессами, как предполагалось ранее. Напротив, при взаимодействии аминоазола с малеиновым ангидридом образующееся вначале

Спектры ЯМР ¹Н полученных соединений 3а-е, 6а-d, 7а-d, 8е

Соеди-	Химические сдвиги, δ , м. д. (J , Γ ц)
3a	12.38 (1H, c, COOH); 10.73 (1H, c, NH); 7.64 (1H, c, H-2); 7.48 (2H, д, <i>J</i> = 7.7, H Ph);
	7.35 (2H, т, J = 7.7, H Ph); 7.20 (1H, т, J = 7.8, H Ph); 4.44 (1H, д. д, J = 7.0, J = 12.6) и 4.17 (1H, т, J = 12.6, 7-CH ₂); 3.25 (1H, д. д. д. д. д. J = 5.6, J = 6.0, J = 7.0, J = 12.6, 6-CH);
	2.73 (1H, д. д, $J = 5.6$, $J = 17.2$) и 2.53 (1H, д. д, $J = 6.0$, $J = 17.2$, С $\underline{\text{H}}_2$ СООН)
3 b	12.36 (1H, c, COOH); 10.79 (1H, c, NH); 7.66 (1H, c, H-2); 7.48 (2H, д, $J = 8.5$,
	H-2,6 Ar); 7.40 (2H, $_{\rm A}$, $_{\rm J}$ = 8.5, H-3,5 Ar); 4.45 (1H, $_{\rm A}$, $_{\rm A}$, $_{\rm J}$ = 7.0, $_{\rm J}$ = 12.6) $_{\rm H}$ 4.15 (1H, $_{\rm T}$, $_{\rm J}$ = 12.6, 7-CH ₂); 3.23 (1H, $_{\rm A}$, $_{\rm A}$, $_{\rm A}$, $_{\rm J}$ = 5.6, $_{\rm J}$ = 6.0, $_{\rm J}$ = 7.0, $_{\rm J}$ = 12.6, 6-CH); 2.75 (1H, $_{\rm A}$).
	д, $J = 5.6$, $J = 17.2$) и 2.52 (1H, д. д. д. д. д. д. д. $J = 6.0$, $J = 17.2$, С H_2 СООН)
3c	12.34 (1H, c, COOH); 10.50 (1H, c, NH); 7.19 (1H, д, $J = 8.7$, H Ar); 7.18 (2H, д, $J = 8.7$,
	H Ar); 4.34 (1H, д. д, $J = 7.0$, $J = 12.4$) и 4.06 (1H, т, $J = 12.4$, 7-CH ₂); 3.20 (1H, д. д. д. д. д. $J = 5.6$, $J = 6.0$, $J = 7.0$, $J = 12.4$, 6-CH); 2.71 (1H, д. д, $J = 5.6$, $J = 17.1$) и 2.51 (1H, д. д. д.
	$J = 5.0, J = 0.0, J = 7.0, J = 12.4, 0-CH), 2.71 (HI, \pm 0.4, J = 5.0, J = 17.1) W 2.31 (HI, \pm 0.4, J = 6.0, J = 17.1, CH_2COOH); 2.31 (3H, c, ArCH_3); 2.11 (3H, c, 2-CH_3)$
3d	12.33 (1H, c, COOH); 10.50 (1H, c, NH); 7.21 (2H, д, $J = 8.7$, H-3,5 Ar); 6.95 (2H, д,
	$J = 8.7$, H-2,6 Ar); 4.33 (1H, π , π , $J = 7.4$, $J = 12.5$) μ 4.05 (1H, π , $J = 12.4$, 7-CH ₂); 3.79
	(3H, c, OCH ₃); 3.20 (1H, д. д. д. д. д. <i>J</i> = 5.5, <i>J</i> = 6.6, <i>J</i> = 7.4, <i>J</i> = 12.5, 6-CH); 2.71 (1H, д. д, <i>J</i> = 5.5, <i>J</i> = 16.9) и 2.47 (1H, д. д, <i>J</i> = 6.6, <i>J</i> = 17.1, C <u>H</u> ₂ COOH); 2.11 (3H, c, 2-CH ₃)
3e	12.39 (1H, c, COOH); 10.79 (1H, c, NH); 7.32 (2H, д, <i>J</i> = 8.8, H-2,6 Ar); 6.98 (2H, д,
	J = 8.8, H-3,5 Ar); 4.51 (1H, д. д, $J = 7.1$, $J = 12.6$) и 4.27 (1H, т, $J = 12.7$, 7-CH ₂); 3.78
	(3H, c, OCH ₃); 3.34 (1H, д. д. д. д. д. $J = 5.5$, $J = 6.4$, $J = 7.1$, $J = 12.6$, 6-CH); 2.72 (1H, д. д, $J = 5.5$, $J = 17.2$) и 2.47 (1H, д. д, $J = 6.4$, $J = 17.2$, С $\underline{\text{H}}_2$ COOH)
6a	12.57 (1H, уш. c, COOH); 11.72 (1H, c, NH); 7.84 (1H, c, H-6); 7.54 (2H, д, <i>J</i> = 7.6, H-2,6
	Ph); 7.35 (2H, τ , $J = 7.6$, H-3,5 Ph); 7.16 (1H, τ , $J = 7.6$, H-4 Ph); 4.92 (1H, τ , $J = 4.6$, 3-CH);
a	3.10 (1H, μ , μ , μ , μ) 17.5) μ 2.80 (1H, μ , μ) 2.75, (2H, μ) 2.60 (2H, μ) 3.50
6b	12.61 (1H, уш. c, СООН); 11.79 (1H, c, NH); 7.87 (1H, c, H-6); 7.56 (2H, д, $J = 8.5$, H-2,6 Ar); 7.41 (2H, д, $J = 8.5$, H-3,5 Ar); 4.93 (1H, т, $J = 4.6$, 3-CH); 3.08 (1H, д. д,
	J = 4.5, J = 17.5) µ 3.01 (1H, д. д, $J = 4.7, J = 17.5$, CH ₂ COOH)
6c	12.40 (1H, уш. c, СООН); 11.48 (1H, c, NH); 7.39 (2H, т, <i>J</i> = 7.5, H-3,5 Ph); 7.35 (2H, д,
	J = 7.5, H-2,6 Ph); 7.22 (1H, т, J = 7.5, H-4 Ph); 4.84 (1H, т, J = 4.7, 3-CH); 3.04 (1H, д. д, J = 4.5, J = 17.3) и 2.95 (1H, д. д, J = 4.9, J = 17.3, С \underline{H}_2 СООН); 2.28 (3H, с, CH ₃)
6d	12.56 (1H, уш. с, СООН); 11.47 (1H, с, NH); 7.24 (1H, д, <i>J</i> = 8.1, H-2,6 Ar); 7.19 (1H, д,
	J = 8.1, H-3,5 Ar); 4.75 (1H, т, $J = 4.7$, 3-CH); 3.03 (1H, д. д, $J = 4.5$, $J = 17.3$) и 2.95
70	(1H, д. д, <i>J</i> = 4.9, <i>J</i> = 17.3, С <u>H</u> ₂ COOH); 2.31 (3H, с, ArC <u>H</u> ₃); 2.25 (3H, с, 6-CH ₃) 12.60 (1H, уш. с, COOH); 10.69 (1H, с, NH); 7.96 (1H, с, H-2); 7.24–7.16 (5H, м, H Ph);
7a	5.30 (1H, д. д, J = 8.0, J = 1.1, 7-CH); 3.46 (1H, д. д, J = 8.0, J = 16.5) и 2.81 (1H, уш. д,
	J = 16.5, 6-CH ₂)
7b	12.60 (1H, уш. с, СООН); 10.37 (1H, с, NH); 8.04 (1H, с, H-2); 7.57 (2H, д, $J = 8.5$,
	H-2,6 Ar); 7.41 (2H, д, J = 8.5, H-3,5 Ar); 5.31 (1H, д. д, J = 7.6, J = 1.2, 7-CH); 3.49 (1H, д. д, J = 7.6, J = 16.5) и 2.80 (1H, уш. д, J = 16.5, 6-CH ₂)
7c	12.50 (1H, уш. c, COOH); 10.56 (1H, c, NH); 7.36–7.28 (5H, м, H Ph); 5.03 (1H, д. д, <i>J</i> =
	1.0, $J = 8.0$, 7-CH); 3.30 (1H, д. д, $J = 8.0$, $J = 17.0$) и 2.74 (1H, д. д, $J = 1.0$, $J = 17.0$,
74	6-CH ₂); 2.18 (3H, c, CH ₃) 12.90 (1H, уш. c, COOH); 10.52 (1H, c, NH); 7.17 (4H, c, H Ar); 5.01 (1H, уш. д, <i>J</i> = 8.1,
7d	12.90 (1н, уш. с, СООН), 10.32 (1н, с, NH), 7.17 (4н, с, H AI), 3.01 (1н, уш. д, $J = 8.1$, 7-CH); 3.27 (1H, д. д, $J = 8.0$, $J = 17.0$) и 2.73 (1H, д, $J = 17.0$, 6-CH ₂); 2.34 (3H, с,
	ArCH ₃) 2.14 (3H, c, 2-CH ₃)
8e	14.10 (1H, c, NH); 7.23 (2H, c, CH=CH); 7.09 (2H, д, J = 8.8, H Ar); 6.92 (2H, д, J = 8.8,
	H Ar); 3.77 (3H, c, OCH ₃)

кинетически контролируемое соединение **6** является предшественником пиразолопиримидина **7**, в который оно превращается в результате перегруппировки. Подтверждением этого предположения является то, что нагревание соединения **6d** в уксусной кислоте при 80–90 °C в течение 6 ч приводит к образованию соединения **7d** с выходом 69%.

1f R = Me, R^1 = H; **5–7** a R = R^1 = H; b R = H, R^1 = Cl; c R = Me, R^1 = H; d R = R^1 = Me

Исключением является конденсация аминопиразола **1e** с малеиновым ангидридом **(2b)**. Так, при нагревании этих соединений при 80 °C в течение 1.5 ч образуется имид **8e** с выходом 63%, что, вероятно, объясняется влиянием электроноакцепторного трифторметильного заместителя.

Строение соединений **6a–d**, **7a–d**, **8e** подтверждается данными спектроскопии ЯМР и масс-спектрометрии (табл. 1–3). Так, в спектре ЯМР ¹Н соединений **7a–d** сигнал протона NH находится в более сильном поле (около 10.4 вместо 11.4 м. д. для соединений **6a–d**). Сигнал метинового протона в спектрах соединений **6a–d** из-за вырожденных КССВ имеет вид триплета с близкими константами 4.6–4.7 Гц, а в спектрах соединений **7a–d** – вид дублета дублетов (J_{ax} = 7.6–8.0 и J_{eq} = 1.0–1.2). Также строение соединений **6** подтверждено данными двумерной корреляционной спектроскопии ЯМР ¹Н–¹Н и ¹Н–¹³С. Определяющим пятичленную структуру является кросс-пик метинового углерода С-3 с протоном NH в спектре HMBC соединения **6d** (рис. 2).

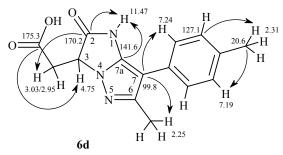


Рис. 2. Основные взаимодействия в спектре НМВС соединения 6d

Соеди-	$m/z~(I_{ ext{oth.}},~\%)$
3a	271 [M] ⁺ (100), 226 (61), 212 (20), 171 (25), 159 (64), 143 (28), 115 (22), 102 (31), 89 (23), 77 (23), 55 (27), 45 (28), 41 (37), 39 (46)
3b	305 [M] ⁺ (9), 260 (6), 193 (7), 149 (19), 142 (46), 123 (30), 114 (50), 101 (47), 75 (64), 55 (85), 39 (100)
3c	299 [M] ⁺ (100), 281 (94), 254 (95), 240 (39), 226 (40), 211 (19), 200 (41), 187 (47), 156 (44), 141 (22), 129 (23), 69 (42), 59 (88), 43 (64)
3d	315 [M] ⁺ (15), 269 (6), 145 (11), 119 (13), 115 (14), 103 (29), 85 (26), 77 (40)
3e	369 [M] ⁺ (17), 257 (100), 242 (50), 171 (52), 157 (44), 145 (27), 113 (30), 102 (26), 85 (73), 76 (33), 69 (37), 55 (59), 41 (98)
6a	257 [M] ⁺ (100), 212 (49), 184 (32), 142 (18), 115 (34), 102 (24), 89 (54), 77 (27), 63 (44), 55 (36), 51 (53), 45 (93)
6b	291 [M] ⁺ (100), 246 (97), 218 (42), 193 (22), 178 (32), 149 (24), 142 (37), 114 (52), 101 (23), 88 (18), 75 (36), 55 (40), 45 (78)
6c	271 [M] ⁺ (100), 227 (17), 226 (67), 225 (40), 212 (22), 198 (48), 173 (25), 157 (22), 142 (14), 130 (13), 115 (80), 89 (39), 63 (17), 42 (26)
6d	285 [M] ⁺ (100), 240 (50), 226 (21), 212 (33), 187 (12), 171 (12), 156 (16), 129 (33), 115 (16), 103 (23), 77 (23), 42 (32)
7a	257 [M] ⁺ (100), 212 (46), 192 (34), 159 (21), 143 (18), 142 (11), 130 (12), 115 (15), 89 (14), 43 (28)
7b	291 [M] ⁺ (59), 246 (100), 219 (30), 193 (24), 178 (24), 150 (24), 142 (55), 114 (48), 75 (36), 55 (40), 44 (78)
7c	271 [M] ⁺ (64), 226 (100), 198 (11), 173 (13), 157 (11), 115 (38), 89 (22), 77 (15), 63 (13), 44 (15), 42 (21)
7d	285 [M] ⁺ (39), 240 (100), 226 (13), 212 (32), 206 (11), 167 (11), 155 (12), 136 (31), 129 (18), 128 (17), 102 (19), 89 (11), 76 (17), 67 (15), 59 (13), 57 (17), 55 (11), 45 (11), 43 (44)
8e	337 [M] ⁺ (32), 268 (6), 240 (6), 190 (9), 157 (8), 144 (7), 82 (33), 69 (21), 54 (100)

Таким образом, конденсация непредельных производных γ -дикарбоновых кислот с аминопиразолами приводит к образованию различных по строению структур, что в первую очередь определяется реакционной способностью дикарбонильного соединения, влиянием заместителей в аминопиразоле и температурным режимом реакции.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Спектры ЯМР 1 Н и 13 С зарегистрированы на приборе Bruker DRX-500 (500 и 125 МГц соответственно) в ДМСО- d_{6} при 30 $^{\circ}$ С. Стандарт – остаточные сигналы растворителя (2.50 м. д. для ядер 1 Н, 39.5 м. д. для ядер 13 С). Для записи двумерных спектров использованы стандартные методики фирмы Bruker. Время смешивания в спектрах NOESY – 0.3 с. Эксперименты HMBC оптимизированы для КССВ $J_{H,C}$ = 8 Гц. Масс-спектры записаны на спектрометре MX-1321 с прямым вводом образца при 100–150 $^{\circ}$ С и ионизирующем напряжении 70 эВ. Элементный анализ проведён на приборе Perkin Elmer 2400. Температуры плавления определены на приборе ПТП-М. Исходные соединения 1а-d синтезированы по известным методикам [12].

Синтез (2-R-3-арил-5-оксо-4,5,6,7-тетрагидропиразоло[1,5-а]пиримидин-6-ил)уксусных кислот 3а-е (общая методика). Смесь 0.01 моль аминопиразола 1а-е и 1.3 г (0.01 моль) итаконовой кислоты (**2a**) в 5 мл АсОН перемешивают при 80 °C в течение 2–4 ч до образования осадка. Выделившийся осадок отфильтровывают и перекристаллизовывают из смеси EtOH–ДМФА, 3:1.

Соединение 3с. Спектр ЯМР ¹³С, δ , м. д.: 172.5 (СООН); 168.5 (NHCO); 144.8 (С-2); 135.6 (С-3а); 135.0 (С-4 Ar); 128.9 (С-3,5 Ar); 128.7 (С-2,6 Ar); 128.5 (С-i Ar); 103.9 (С-3); 46.5 (С-7); 36.6 (С-6); 31.7 (СН $_2$ СООН); 20.7 (Ar $_2$ H $_3$); 12.8 (2-CH $_3$).

Синтез (6-R-7-арил-2-оксо-2,3-дигидро-1*H*-имидазоло[1,2-*b*]пиразол-3-ил)уксусных кислот 6а-d (общая методика). Смесь 0.01 моль аминопиразола 1а-c,f и 0.98 г (0.01 моль) малеинового ангидрида (2b) в 5 мл АсОН перемешивают при 80 °С в течение 3–4 ч до образования осадка. Выделившийся осадок отфильтровывают и перекристаллизовывают из смеси EtOH–ДМФА, 3:1.

Соединение 6d. Спектр ЯМР ¹³С, δ, м. д.: 175.3 (СООН); 170.2 (NHCO); 147.3 (С-6); 141.6 (С-7а); 134.6 (С-4 Ar); 129.2 (С-2,6 Ar); 129.0 (С-*i* Ar); 127.1 (С-3,5 Ar); 99.8 (С-7); 56.8 (С-3); 34.1 (<u>С</u>H₂COOH); 20.6 (Ar<u>С</u>H₃); 14.1 (6-CH₃).

Синтез 2-R-3-арил-5-оксо-4,5,6,7-тетрагидропиразоло[1,5-a]пиримидин-7-карбоновых кислот 7а-d (общая методика). А. Смесь 0.01 моль аминопиразола 1а-c,f и 0.98 г (0.01 моль) малеинового ангидрида (2b) в 5 мл АсОН перемешивают при 80–100 °С в течение 6-8 ч, затем добавляют 10 мл H_2O , образовавшийся осадок отфильтровывают, перекристаллизовывают из EtOH и промывают ацетоном.

Б. Раствор 0.001 моль соединения 6a–d в 3 мл AcOH перемешивают при 80–100 °C в течение 6 ч, затем добавляют 10 мл H_2O , образовавшийся осадок отфильтровывают, перекристаллизовывают из EtOH и промывают ацетоном.

1-[4-(4-Метоксифенил)-3-(трифторметил)-1*H*-пиразол-5-ил]-1*H*-пирол-2,5-дион (8e) получен по методике синтеза соединений 6a—d из соединения 1e в течение 1.5 ч.

Работа выполнена в рамках тематического плана Минобрнауки РФ (проект № 3.1930.2011) и договора № 02.G25.31.0007 (постановление Правительства РФ № 218 при поддержке Минобрнауки РФ).

СПИСОК ЛИТЕРАТУРЫ

- 1. S. Selleri, F. Bruni, C. Costagli, A. Costanzo, G. Guerrini, G. Ciciani, P. Gratteri, C. Bonaccini, P. Malmberg Aiello, F. Besnard, S. Renard, B. Costa, C. Martini, *J. Med. Chem.*, **46**, 310 (2003).
- 2. L. K. Gavrin, A. Lee, B. A. Provencher, W. W. Massefski, S. D. Huhn, G. M. Ciszewski, D. C. Cole, J. C. McKew, *J. Org. Chem.*, 72, 1043 (2007).
- 3. F. J. Moy, A. Lee, L. K. Gavrin, Z. B. Xu, A. Sievers, E. Kieras, W. Stochaj, L. Mosyak, J. McKew, D. H. H. Tsao, *J. Med. Chem.*, **53**, 1238 (2010).
- 4. Е. Е. Емелина, А. А. Петров, А. В. Фирсов, *Журн. орган. химии*, **39**, 299 (2003).
- 5. Н. Л. Нам, И. И. Грандберг, В. И. Сорокин, *XГС*, 1555 (2002). [*Chem. Heterocycl. Compd.*, **38**, 1371 (2002).]
- 6. В. Д. Орлов, Х. Кирога, Н. Н. Колос, С. М. Десенко, *XГС*, 962 (1988). [*Chem. Heterocycl. Compd.*, **24**, 791 (1988).]
- A. Costanzo, F. Bruni, G. Auzzi, S. Selleri, L. Pecori Vettori, J. Heterocycl. Chem., 27, 695 (1990).
- 8. R. V. Rudenko, S. A. Komykhov, S. M. Desenko, V. I. Musatov, O. V. Shishkin, I. A. Konovalova, E. V. Vashchenko, V. A. Chebanov, *Synthesis*, 783 (2011).
- 9. A. A. El-Agamey, S. O. Abdalla, M. R. H. El-Moghayar, *Monatsh. Chem.*, **115**, 1413 (1984).
- 10. M. H. Elnagdi, D. H. Fleita, M. R. H. El-Moghayar, Tetrahedron, 31, 63 (1975).
- 11. V. I. Minkin, A. D. Garnovskii, J. Elguero, A. R. Katritzky, O. V. Denisko, *Adv. Heterocycl. Chem.*, **76**, 157 (2000).

- 12. С. И. Филимонов, В. Б Лысков, Л. П. Ватлина, С. А. Филимонова, С. И Фирганг, Г. А. Сташина, А. С. Шашков. *Изв. вузов. Химия и хим. технология*, **51**, № 8, 15 (2008).
- 13. В. Д. Орлов, М. Туэни, Н. Н. Колос, Н. В. Гетманский, Х. Кирога, *XГС*, 787 (1988). [*Chem. Heterocycl. Compd.*, **24**, 643 (1988).]
- 14. И. И. Грандберг, В.-П. Дин, А. Н. Кост, Журн. общ. химии, 31, 2311 (1961).

¹ Ярославский государственный технический университет, Поступило 11.07.2012 Московский пр., 88, Ярославль 150023, Россия e-mail: filimonovsi@ystu.ru

² Институт органической химии им. Н. Д. Зелинского РАН, Ленинский пр., 47, Москва 119991, Россия e-mail: galina_stashina@chemical-block.com

³ Воронежский государственный университет, Университетская пл., 1, Воронеж 394006, Россия e-mail: chocd261@chem.vsu.ru