Е. В. Болтухина, Ф. И. Зубков, А. В. Варламов

МЕТОДЫ ПОСТРОЕНИЯ [1,2]ИЗОИНДОЛОКОНДЕНСИРОВАННЫХ БЕНЗАЗЕПИНОВ, БЕНЗАЗОЦИНОВ, ХИНОЛИНОВ И ИЗОХИНОЛИНОВ

2.* ИЗОИНДОЛОХИНОЛИНЫ, ИЗОИНДОЛОИЗОХИНОЛИНЫ

(ОБЗОР)

Обобщены данные за 1966–2004 гг. о методах построения тетрациклических систем, в которых изоиндольный цикл конденсирован по стороне [1,2] с хинолиновым и изохинолиновым фрагментами. Рассмотрены подходы и условия синтеза изоиндолохинолинов и изоиндолоизохинолинов. Приведены примеры синтеза физиологически активных природных алкалоидов, обладающих строением упомянутых конденсированных изоиндолов.

Ключевые слова: алкалоиды, изоиндолоизохинолины, изоиндолохинолины, методы синтеза.

Теоретически при сочленении изоиндольного и хинолинового (изохинолинового) циклов возможно образование трех конденсированных гетероциклических систем.

Изоиндоло[2,1-а]хинолин

Изоиндоло[1,2-а]изохинолин

Изоиндоло[2,1-b]изохинолин

* Часть 1 см. [70].

Все упомянутые тетрациклы кроме последнего в достаточной мере изучены, поскольку производные изоиндоло[2,1-a]хинолинов и изоиндоло[1,2-a]изохинолинов обладают широким спектром биологической активности, а изоиндоло[1,2-a]изохинолиновый скелет является каркасом более десяти природных алкалоидов (см. раздел 2.1).

1. СИНТЕЗ ИЗОИНДОЛО[2,1-а]ХИНОЛИНОВ

Разработка методов синтеза различных изоиндоло[2,1-*a*]хинолинов представляет интерес с точки зрения как фармакологии (противогипоксийные препараты 1 [1], ингибиторы топоизомеразы 2 [2]), так и синтеза на их основе других гетероциклических структур, представляющих практический интерес.

R, R¹ = Me, Et, Bn, Het

Построение этих тетрациклических систем возможно двумя путями: аннелирование хинолинового фрагмента к изоиндольному ядру или наоборот изоиндольного к хинолиновому. Первый подход более распространен благодаря большей доступности изоиндолов.

1.1. Синтез изоиндоло[2,1-а]хинолинов из замещенных изоиндолов

Внутримолекулярная реакция Фриделя–Крафтса 2-арил-2,3-дигидро-3оксо-1Н-изоиндоло-1-ацетилхлоридов 6 приводит к изоиндоло[2,1-*a*]хинолинам и их азааналогам 7 [1, 3]. Исходными для синтеза ацетилхлоридов **6а–f** являются N-арилфталимиды **3а–f**, которые превращают в целевые хлорангидриды 6 последовательным восстановлением боргидридом натрия, действием реактива Виттига и тионилхлорида [1]. Для синтеза азапроизводных **6g–j** в качестве исходных соединений используют пиколини изоникотинанилиды **3g–j**, взаимодействием которых с бутиллитием и ДМФА получают промежуточные 2-арил-2,3-дигидро-3-гидроксиазаизоиндол-1-оны **4g–j** [3].

Таблица 1

Выходы соединений 4-7

Соеди-		Замест	ители		Выход, %				
нения 3 –7	R	Х	Y	Ζ	4	5	6*	7	
a	Н	С	С	С	90	71	87	95	
b	F	С	С	С	86	75	97	97	
c	Cl	С	С	С	94	70	99	96	
d	Me	С	С	С	79	81	96	91	
e	OMe	С	С	С	95	72	82	99	
f	Н	Ν	С	С	-	78		35	
g	Н	С	С	Ν	58	74		48	
h	OMe	С	С	Ν	51	87		40	
i	Н	С	Ν	С	70	95		46	
j	OMe	С	Ν	С	86	86		45	

* Соединения 6f-j в индивидуальном виде не выделялись.

Изоиндоло[2,1-*a*]хинолины могут быть получены в одну стадию из 2-арил-3-гидроксиизоиндол-1-онов **10** [4]. Исходные изоиндолоны **10** синтезируют литиированием бензанилидов **8** бутиллитием в ТГФ с последующим взаимодействием образующихся солей **9** с карбонильными соединениями. Гидроксиизоиндолиноны **10а, f**–**h** ($\mathbb{R}^5 \neq H$) в Ac₂O в присутствии

1125

метансульфокислоты реагируют с диэтилмалонатом с образованием смеси изоиндол-1-он-3-малонатов 11 и дигидроизоиндоло[2,1-*a*]хинолин-5,11дионов 12. Сдвинуть реакцию в сторону преимущественного образования дионов 12 за счет увеличения времени реакции не удалось. В случае изоиндолонов 10i,j ($R^5 = 4$ -нитрофенил или 4-пиридил) (табл. 2) реакция не идет. По-видимому, это объясняется снижением стабильности промежуточных N-ацилиминиевых катионов за счет сильного электроноакцепторного эффекта заместителей R^5 .

а) BuLi, ТГФ, -78 °C, 30 мин или 0 °C, 6 мин; b) R^5X , ТГФ, -78 °C, 30 мин $\rightarrow 20$ °C, 1 ч

			Выход, %							
11–14	\mathbb{R}^5	R⁵X	11+12 из 10	12 из 14	13	14 из 11	14 из 13			
a	Ph	PhCO ₂ Me	59+21	53	85	98	98			
b	$4-ClC_6H_4$	4-ClC ₆ H ₄ CO ₂ Me	_	-	66	_	-			
c	Н	ДМФА	Осмо- ление	42	60	-	97			
d	$4-ClC_6H_4$	4-ClC ₆ H ₄ CO ₂ Me	-	-	60	-	-			
e	Н	ДМФА	Осмо- ление	-	80	-	_			
f	Ph	PhCOMe	52+28	94	85	97	97			
g	$4-ClC_6H_4$	4-ClC ₆ H ₄ CO ₂ Me	49+26	88	60	94	94			
h	Ph	PhCO ₂ Me	56+26	57	80	77	90			
i	$4-O_2NC_6H_4$	4-O ₂ NC ₆ H ₄ CO ₂ Me	0	-	_	-	-			
j	4-Py	4-PyCONMe ₂	0	-	-	-	_			

Выходы соединений 11-14*

* **a**-**d** R^1 = H, **e**-**j** R^1 = OMe; **a**, **b**, **e**-**j** R^2 = H, **c**, **d** R^2 = OMe; **a**, **c**-**j** R^3 = H, **b** R^3 = Me; **a**, **h** R^4 = OMe, **b**-**g**, **i**, **j** R = H.

Изоиндолоны **10с**, е ($\mathbb{R}^5 = \mathbb{H}$) при взаимодействии с диэтилмалонатом дают смеси неидентифицируемых соединений. Это явилось причиной поиска других путей синтеза изоиндолохинолинов **12**. Взаимодействие соединений **10** с 1-метокси-1-триметилсилоксиэтеном в присутствии TiCl₄ приводит к образованию 3-карбоксиметилфталимидов **13** с высоким выходом.

Декарбоксилирование малонатов 11 или щелочной гидролиз фталимидов 13 приводит к образованию 3-карбоксиметилфталимидов 14 с количественным выходом. Обработка кислот 14 оксалилхлоридом и последующая электрофильная циклизация под действием хлорида алюминия дают изоиндоло[2,1-*a*]хинолины 12. Циклизация сопровождается частичным деметилированием, однако алкилирование реакционной смеси метилиодидом на последнем этапе приводит к образованию полностью метилированных производных 12.

В 1997 г. [5] был предложен подход к синтезу изоиндоло[2,1-*a*]хинолинов, основанный на циклизации *о*-амидоацетофенонов **15** в щелочной среде. При взаимодействии хинолонкарбоновой кислоты **16** с ортоэфиром образуется смесь хинолона **17** и изоиндоло[2,1-*a*]хинолина **18**. Эфир **17** при обработке карбонатом калия в ДМФА количественно превращается в целевое соединение **18**.

Исходный кетонимид 15 получен взаимодействием *о*-бромацетофенона с фталимидом (99%).

Позднее [2, 6, 7] для оптимизации выхода целевых изоиндоло[2,1-*a*]хинолинов были предприняты попытки модифицировать условия циклизации различных N-(2-ацетиларил)фталимидов. Так, изоиндоло[2,1-*a*]хинолины **23а–g** образуются при кипячении замещенных 2-аминоацетофенонов **19а,b** и замещенных фталевых ангидридов **20а–е** в ксилоле в присутствии основания [2]. Исходные метоксиацетиланилины **19** получают региоспецифичным ацилированием соответствующих ароматических аминов метоксиацетонитрилом (катализатор – BCl₃).

В случае фталевых ангидридов, не содержащих сильных электронодонорных групп, образование изоиндолохинолинов 23 происходит с хорошими или удовлетворительными выходами. В случае хинолина 23f $[R^1 = 2,4-(OMe)_2, R^2 = 8,9-(OMe)_2]$ был выделен интермедиат – фталимид 22, что, по-видимому, обусловлено низкой реакционной способностью его карбонильных групп. Этот имид был превращен в соответствующий изоиндолохинолин 23f нагреванием в бомбе Парра при 200 °C. Выделение промежуточного имида 22 указывает на то, что хинолиновое ядро образуется на последней стадии циклизации. Выход соединения 23g существенно ниже, чем с 23a, что связано с сильным электроноакцепторным влиянием атомов фтора. В случае 3-*t*-Ви-замещенного фталевого ангидрида 20c образуется смесь двух региоизомеров 23c и 23d в примерно равном соотношении.

Таблица З

Выходы соединений 23

Исходные	Продукт реакции	\mathbb{R}^1	R^2	Выход 23 , %
19a + 20a	23a	2,4-(OMe) ₂	Н	59
19a + 20b	23b	2,4-(OMe) ₂	8,9-Cl ₂	74
19a + 20c	23c/23d	2,4-(OMe) ₂	9- <i>t</i> -Bu/8- <i>t</i> -Bu	21/16
19a + 20d	23e	2,4-(OMe) ₂	8,9-Me ₂	35
19a + 20e	23f	2,4-(OMe) ₂	8,9-(OMe) ₂	65
19b + 20a	23g	2,4-F ₂	Н	35

В 1997 г. было осуществлено превращение *о*-фталимидобромацетофенона **24** в соответствующие изоиндоло[2,1-*a*]хинолины **25а,b** действием BuLi или NaN₃ [6].

1129

Лучше всего внутримолекулярная циклизация *о*-фталимидоацетофенона **15** идет в присутствии бистриметилсилиламида лития и приводит к образованию целевого изоиндоло[2,1-*a*]хинолина **26** с выходом, близким к количественному [7].

Взаимодействие 2-имидобензойных кислот **27а–с** с N-фенил(трифенилфосфоранилиден)этенимином приводит к образованию соответствующих изоиндоло[2,1-*a*]хинолинов **28** [8]. Предполагаемый механизм этого превращения включает присоединение карбоксильной группы соединения **27** по связи С=С илида с образованием О-ацилимидата **29** и отщепление фенилизоцианата, приводящее к ацилфосфорану **31**, который затем циклизуется по реакции Виттига в изоиндолохинолин **28**.

Исходные имиды 27 были синтезированы из антраниловой кислоты и соответствующих ангидридов.

Ключевой стадией нового метода синтеза изоиндоло[2,1-*a*]хинолинов из *о*-ацетилзамещенных анилинов [9, 10] является образование N-ацилиминиевого иона из изоиндольного фрагмента молекулы. Согласно этому подходу *о*-замещенные анилины **32** действием метилмагнийиодида или боргидрида натрия превращаются в спирты **33** с количественным 1130 выходом. Дегидратация спиртов **33а,b** в присутствии TsOH в толуоле приводит к аминостиролам **34а,b**, ацилирование которых фталевым ангидридом дает фталимиды **35а,b**. При попытках дегидратации соединения **33с** происходит полное осмоление реакционной смеси. Реакция N-арилфталимидов **35а,b** с боргидридом натрия или реактивом Гриньяра приводит к образованию гидроксилактамов **36а,b** ($R^2 = H$) или **36с,d** ($R^2 = Me$), соответственно, которые обладают высокой склонностью к дегидратации, и уже в процессе обработки реакционной массы наблюдается их частичное превращение в енамиды **37а,b** (**36+37** >95%). Гидроксилактамы **36** при кипячении в толуоле в присутствии TsOH циклизуются в изоиндоло[2,1-*a*]хинолины **38а,b** или **39а,b** соответственно.

32 a X = OEt, b X = Ph, c X = Me; **33** a R^1 = Me, b R^1 = Ph, c R^1 = H; **34, 35, 37–40** a R^1 = Me, b R^1 = Ph; **36** a R^1 = Me, R^2 = H; b R^1 = Ph, R^2 = H; c R^1 = R^2 = Me; d R^1 = Ph, R^2 = Me

Циклизация алкенов 36а, в под действием трифторуксусной кислоты в

дихлорметане при 20 °C приводит к изоиндолохинолинам **40а**,**b**, которые с течением времени количественно изомеризуются в соответствующие енамиды **38а**,**b**.

Замена метилмагнийиодида на этилмагнийиодид приводит к образованию гидроксилактамов **41а,b**, аналогов аминостиролов **36**, в виде смесей *Z*-и *E*-изомеров [10].

a) EtMgI, Et₂O, 20 °C, 24 ч; b) PhMe, H⁺, Δ, 45 мин; c) фталевый ангидрид, NEt₃, PhMe, Δ, 48 ч; d) ПФК, PhMe, Δ, 48 ч; e) NaBH₄, MeOH, 10 °C

Под действием каталитических количеств TsOH гидроксилактам **41a** за 40 мин превращается в смесь изоиндолохинолинов **44a** (*Z*-,*E*-) и **43a** (*E*-) в соотношении 14:14:72 с суммарным выходом 90%. При этом обнаружены

следовые количества соединения **45а**. При увеличении продолжитель-1132 ности реакции содержание изомера **45**а возрастает: через 10 дн – **45**а (21%), *E*-**43**а (57%), *E*-**44**а (11%), *Z*-**44**а (11%); через 25 дн – **45**а (42%), *E*-**43**а (48%), *E*-**44**а (5%), *Z*-**44**а (5%).

При проведении циклизации в присутствии 1 экв. TsOH образуется смесь **45a**, *E*-**43a**, *E*-**44a** и *Z*-**44a** состава 22:68:5:5. При этом наблюдается смолообразование, которое усиливается с увеличением времени реакции.

В присутствии каталитических количеств TsOH из N-(*o*-бутенилфенил)гидроксилактама **41b** образуется карбокатион **42b**, депротонирование которого приводит к образованию трех изоиндолохинолинов: **43b** (33%), **44b** (33%) и **45b** (34%). Через 3 ч процентное соотношение продуктов реакции изменяется до 27:27:46, соответственно, через 1 сут в реакционной смеси остается только изоиндолохинолин **45b**, который был выделен с выходом 48%. При использовании 1 экв. TsOH через 30 мин образуется только изоиндолохинолин **45b** с выходом 75%.

Кипячение динитрила 47 в бутаноле приводит к образованию изоиндоло[2,1-*a*]хинолина 49. Исходный изоиндол 47 получают конденсацией альдегида 46 с малононитрилом в толуоле. По-видимому, циклизация бензилиденпроизводного 47 протекает через [1,5]-сдвиг водорода и образование диполярного интермедиата 48 с последующим присоединением карбаниона по иминиевому фрагменту [11].

При взаимодействии этилбромбензоилацетата **50** с фталимидом в присутствии оксида меди(I) образуется смесь 2-ацетилфенилфталимида **15** и 6-замещенных изоиндоло[2,1-*a*]хинолинов **18** и **51** [5]. Реакция протекает и в отсутствие катализатора, однако выход при этом существенно ниже.

Недавно предложен [12–15] одностадийный метод синтеза изоиндоло[2,1-*a*]хинолинов кислотно-катализируемой внутримолекулярной электрофильной циклизацией 2-алкенилзамещенных трициклодец-8-енов **54**, **55**. Исходные трициклодецены получают взаимодействием фурилзамещенных гомоаллиламинов **52**, **53** с малеиновым ангидридом. Циклизация N-*n*-арил- и N-*o*-арилзамещенных трициклов **54а–о**, **55а–k** под действием серной и/или фосфорной кислот протекает региоспецифично по свободному *орто*-положению фенильного ядра с образованием изоиндолохинолинкарбоновых кислот **56–58** [12–14]. В случае 2-металлилзамещенных аддуктов **54а–о** образующиеся тетрациклы **56а–о** представляют собой индивидуальные вещества, а в случае 2-аллилзамещенных **55а–k** – смеси геометрических изомеров *цис***-57а–k** и *транс***-58а–k** по расположению группы 5-Ме и протона H-6*a* с преобладанием первого изомера.

а) H₃PO₄, 75–85 °C, 45 мин (R¹ и R²=Alk или OAlk); b) H₃PO₄/H₂SO₄ (3:1), 125–140 °C, 1–2 ч (R¹ и R²=Hal); c) H₃PO₄/H₂SO₄ (3:1), 100–120 °C (R¹ и R²=Alk или OAlk); d) H₃PO₄/H₂SO₄ (3:1), 145–155 °C (R¹ и R²=Hal)

Выходы соединений 56-58

Таблица 4

56	a	b	c	d	e	f	g	h	i	j	k	l	m	n	0
\mathbb{R}^1	Н	Н	Me	Η	Н	MeO	Н	Me	<i>i</i> -Pr	Cl	Br	F	Η	Н	Η
R^2	Н	Me	Н	Et	MeO	Н	Bn	Me	Н	Н	Н	Н	Cl	Br	F
Выход	68	31	50	45	34	72	32	61	67	41	51	62	50	31	40
56, %															
57+58	a	b		c	d	e		f	g	h	j	i	j]	k
\mathbf{R}^1	Н	Η		Н	MeO-3	Me	-2	Cl-3	Br-3	F-3	I	H	Н	1	Η
\mathbb{R}^2	Н	M	e N	1eO	Н	M	e	Н	Н	Н	0	21	Br	I	F
57/58	4/1	4.5	/1 3	.5/1	12/1	6/1	1	3.5/1	3/1	3.6/1	4.2	2/1	1.6/1	8	/1
Выход	52	49)	32	31	55	5	41	63	54	4	4	40	3	0
57+58 ,															
%															

Внутримолекулярное алкилирование N-*м*-арилзамещенных трициклов **54p**-**r**, **55l**-**n** протекает по обоим свободным *орто*-положениям фенильного радикала с образованием смесей региоизомеров [15]. В случае циклизации аллилзамещенных аддуктов **55l**-**n** каждый региоизомер существует в виде смеси диастереомеров с псевдоэкваториальной (**57**+**57'l**-**n**) и псевдоаксиальной (**58**+**58'l**-**n**) группой 5-Ме.

Таблица 5

Выходы и соотношения изомеров 56-58

Соединение 56, 56'	R ¹	56 : 56'	Выход, %
р	Me	2:1	52
q	MeO	4.5 : 1	57
r	Cl	1:1.6	63
	l	I	I
Соединение 57, 57', 58, 58'	\mathbb{R}^1	57 : 58 : 57' : 58'	Суммарный выход, %
1	Me	35:11:5:1	41
m	MeO	18:7:2.5:1	40
n	Cl	1.3 : 1:1 : 0	44

1.2. Синтез изоиндоло[2,1-а]хинолинов из замещенных хинолинов

При обработке *o*-(α-хинолил)бензальдиацетата **59** разбавленной соляной кислотой образуется [16] 5Н-изоиндоло[2,1-*a*]хинолин-11-он (**60**). Превращение включает нуклеофильное присоединение атома азота по альдегидной группе хинолина **61**. Последующая обработка основанием вызывает прототропную изомеризацию в стабильный изоиндолохинолин **60**.

Циклоиммониевые соли, содержащие активную N-метиленовую группу, реагируют с пикрилхлоридом с образованием бенз[*a*]индолизинов и их аннелированных аналогов. Так, при взаимодействии N-фенацилхинолинийбромида с пикрилхлоридом в основной среде образуется 11-бензоил-8,10-динитроизоиндоло[2,1-*a*]хинолин **64** [17].

1.3. Синтез изоиндоло[2,1-а]хинолинов из дикетонов

Коллективом российских ученых [18-20] предложены оригинальные методы синтеза изоиндоло[2,1-a]хинолинов, основанные на превращениях α-арилзамещенных 1,5-дикетонов. Так, при взаимодействии замещенных дикетонов **65** с ацетатом аммония в уксусной кислоте ("улучшенный синтез пиридинов по Чичибабину") образуются гидрированные изоиндоло[2,1-a]хинолины **66а–d** [18]. Реакция протекает через внутримолекулярное ацилирование первоначально образующихся 2-*о*-карбоксифенил-1,4-дигидропиридинов.

66 a R = Ph (65%); **b** R = 4-MeOC₆H₄ (52%); **c** R = 4-FC₆H₄ (48%); **d** R = 2,4-Cl₂C₆H₃ (70%)

Позднее тем же авторским коллективом был разработан одностадийный метод синтеза изоиндоло[2,1-*a*]хинолинов, где в качестве исходных были использованы 2-(3-арилакрилоил)бензойные кислоты **68a,b** или *o*-(3диметиламинопропионил)бензойная кислота (**68c**) [19]. Взаимодействие кислот **68a,b** с димедоном **67** приводит к образованию целевых изоиндоло[2,1-*a*]хинолинов **69a,b**. Гидрохлорид основания Манниха **68c** в тех же условиях превращается в октагидрохинолин-2-спиродигидробензофуран **70**, обработка которого TsOH вызывает рециклизацию в кетон **69c**.

69 a R = Ph (54%), b R = 4-FC₆H₄ (45%), c R = H (43%)

Кислый гидролиз гидразона 71 дает кетофталазон 72, при восстановлении которого цинковой пылью образуется смесь изоиндоло[2,1-*a*]хинолина 73 и 7,8-диаза-*D*-гомостероида 74 [20].

2. ИЗОИНДОЛОИЗОХИНОЛИНЫ

2.1. Синтез изоиндоло[1,2-а]изохинолинов

Представители этого класса соединений широко распространены в природе. Так, из растения *Cocculus Hirsutus*, произрастающего в Пакистане, был выделен целый ряд алкалоидов: жамтинин **75** [21, 22], N-оксид жамтина (**76**) [23], хирсутин **77** [24], хейдерин **78** [25]. В кустарнике *Berberis darwinii Hook*, растущего в Чили, найден алкалоид нуевамин **79** [26, 27].

Интерес к синтезу аналогов упомянутых алкалоидов связан еще и с тем, что изоиндолоизохинолины **80** являются стимуляторами ЦНС и проявляют противовоспалительную активность [28–30].

80 a R = Ph, **b** R = $CH_2C_6H_4Cl-p$

Предполагаемый путь биосинтеза нуевамина был смоделирован *in vitro* американскими учеными [31]. Они осуществили сужение цикла чилени-на **81**, выделенного из растений семейства барбарисовых, в нуевамин **79**.

Процесс включает расщепление азепинового фрагмента чиленина под действием основания с образованием фталимида **82** и последующую рециклизацию в кислой среде с образованием нуевамина **79**.

Можно выделить два основных подхода к синтезу изоиндоло[1,2-*a*]изохинолинов: использование в качестве исходных соединений производных изоиндола или производных изохинолина.

2.1.1. Синтез изоиндоло[1,2-а]изохинолинов из производных изоиндола

Внутримолекулярное алкилирование, протекающее через кислотнокатализируемую циклизацию α-гидроксилактамов – удобный подход к построению конденсированных гетероциклов [28, 32–35]. Так, лактамы **85а–h** в кислых условиях превращаются в соответствующие изоиндолоизохинолины **87а–f**, **79** [28, 32–34] и их азааналоги **87g,h** [35]. Реакция протекает через образование N-ацилиминиевого катиона **86**. Исходные гидроксилактамы **85** синтезированы восстановлением соответствующих лактамов или конденсацией первичных аминов с соответствующими 3-галогензамещенными фталевыми ангидридами [28, 32–35].

Таблица б

Условия образования и выходы соединений 79, 87

Продукт реакции*	\mathbf{R}^1	\mathbb{R}^2	R ³	\mathbb{R}^4	R ⁵	Условия	Выход, %
79	00	CH ₂ O	OMe	Н	Н	CF ₃ CO ₂ H, CH ₂ Cl ₂ , 20 °C	100
87a	Н	Н	Н	Н	Ph	H ₂ SO ₄ , 20 °C, 2 ч	65
87b	OMe	OMe	Н	Н	Ph	POCl ₃ , 50 °C, 2 ч	91
						НСІ, МеОН, Δ, 3 ч	Не указан
87c	Н	Н	Н	Н	Н	H ₂ SO ₄ , 20 °C, 2 ч	84
87d	OMe	OMe	Н	Н	Н	CF ₃ CO ₂ H, CH ₂ Cl ₂ , 20 °C	100
87e	OMe	OMe	OMe	Н	Н	CF ₃ CO ₂ H, CH ₂ Cl ₂ , 20 °C	100
87f	00	CH ₂ O	Н	OMe	Н	CF ₃ CO ₂ H, CH ₂ Cl ₂ , 20 °C	100
87g	Н	Н	Н	Н	Н	СҒ₃СО₂Н, ∆, 3 ч	93
87h	Н	Н	Н	Н	Ph	СҒ ₃ СО ₂ Н, ∆, 3 ч	72

* 79, 87a-f X = C, 87g,h X = N

По описанной для синтеза соединений **87** методике [29, 30] может быть получен октагидроизоиндоло[1,2-*a*]изохинолин **88**. В этом случае для синтеза исходного гидроксилактама используют ангидрид циклогексан-1,2-дикарбоновой кислоты.

Внутримолекулярную циклизацию 3-метокси(бензотриазолил)замещенных 2-арилизоиндолонов-1 89 можно осуществить действием кислот Льюиса [36-38].

Хиральные производные 89d,е образуют соединения 90d,е в виде смесей диастереомеров. Исходные бензотриазолилзамещенные изоиндолоны 89а-е получают конденсацией 2-арилэтиламинов, бензотриазола и 2-карбоксибензальдегида (толуол, Δ, азеотропная отгонка воды, 24 ч) [38].

Таблица 7

Условия получения и выходы соединений 90*

Соеди- нение	R^1	R ²	R ³	R^4	Условия	Выход, %
90a	Н	Н	Н	Н	TiCl ₄ , PhMe, Δ, 24 ч	50
90b	OMe	Н	Н	Н	TiCl ₄ , PhMe, ∆, 24 ч	65
90c	OMe	OMe	Н	Н	TiCl ₄ , PhMe, ∆, 24 ч	75
90d	Н	Н	(S)-CH ₂ OH	Н	TiCl ₄ , PhMe, ∆, 24 ч	60
90e	Н	Н	(<i>S</i>)-OH	(<i>R</i>)-Me	TiCl₄, PhMe, ∆, 24 ч	65
90f	Н	Н	Н	Н	TiCl₄, CH₂Cl₂, −78→20 °С, 24 ч	100
90g	OMe	OMe	Н	Н	TiCl₄, CH₂Cl₂, −78→20 °С, 24 ч	100
					Sc(OTf) ₃ , CH ₂ Cl ₂ , 20 °С, 3 ч	54
					Cu(OTf) ₂	56

* **89a–e** $R^5 = 6$ вензотриазол, **89f,g** $R^5 = 0$ Me.

Изоиндолоизохинолины могут быть получены взаимодействием 1143

N-арилфталимидов с бутиллитием [39, 40]. Так, обработка фталимида 91а бутиллитием в ТГФ приводит к кетону 92, существующему в таутомерном равновесии с циклической формой 93. Под действием CF_3CO_2H амидоспирт 93 превращается в изоиндоло[1,2-*a*]изохинолин 94. Из 2-иодзамещенного фталимида 91b аналогично в одну стадию получают изоиндолоизохинолин 95.

Вместо бутиллития можно применять и реактивы Гриньяра [28]. Фталимид **91a** реагирует с бензилмагнийхлоридом или *n*-хлорбензилмагнийхлоридом, с умеренным выходом образуя 12*b*-R-изоиндоло[1,2-*a*]изохинолины **96a**,**b**.

96 a R = Bn, **b** R = $CH_2C_6H_4Cl-p$

Фотохимическая циклизация тиооксофталимида **97** приводит к образованию смеси диастереомеров 12*b*-меркаптозамещенных изоиндоло[1,2-*a*]-изохинолинов **98** в соотношении 1:1 [41].

В условиях реакции Хека 2-[(*о*-иод)-*а*-фенэтил]-3-метиленфталимидин **99** с удовлетворительным выходом превращается в изоиндолоизохинолин **100** [42].

Под действием ПФК 3-бензил-3-(3,4-диметоксифенил)фталимидин-2уксусная кислота **101** региоспецифично превращается в соответствующий 12*b*-бензилизоиндоло[1,2-*a*]изохинолин **102** [43]. Исходный фталимидин **101** синтезирован из 3-бензилиденфталимидин-2-уксусной кислоты и вератрола в присутствии HClO₄.

ПФК вызывает внутримолекулярную циклизацию 3-(β -фенилэтиламино)фталида **103** в 5,6-дигидроизоиндоло[1,2-*а*]изохинолин **104** [44]. Исходный ангидрид **103** получают реакцией β -фенэтиламина с *о*-формилбензойной кислотой (толуол, Δ , 1 ч).

Оптически активные изоиндоло[1,2-*а*]изохинолины **106**, **107** могут быть получены из трициклического оксазолидина **105** [45], который под действием кислоты Льюиса генерирует N-ацилиминиевый катион, циклизующийся на ароматическое ядро. В зависимости от используемого катализатора наблюдается 2–6-кратное преобладание стереоизомера **106**. Триметилсилилтрифлат оказался наилучшим катализатором с точки зрения диастереоселективности: соотношение спиртов **106** и **107** составило ≥49:1.

Кислота Льюиса = SnCl₄, TiCl₄, BF₃OEt₂, Me₃SiOTf, H₂SO₄

Описанный метод использовали для рециклизации трициклических лактамов 108, 109.

2.1.2. Синтез изоиндоло[1,2-*a*]изохинолинов из замещенных изохинолинов 1146

Внутримолекулярная реакция Хека *о*-иодбензамидов **112** под действием ацетата палладия(II) приводит к образованию смеси продуктов 5-*экзо-триг*- (**113**) и 6-*экзо-триг*-циклизации (**114**) [46–48]. Соотношение продуктов реакции можно изменять, варьируя ее условия.

112 a R = Me, **b** R = H; **113 a** R = -CH=CH₂, **b** R = Me; **114 a** R = Me, **b** R = H

Таблица 8

Условия получения	, выходы и соотношения	соединений	113,	114	4
-------------------	------------------------	------------	------	-----	---

Исходное	Условия реакции	113/114	Выход, %
112a	Рd(OAc) ₂ (0.05 экв.), PPh ₃ (0.1 экв.), ДМФА, 100 °C, 2 ч	6.7/1	84
	Рd(OAc) ₂ (0.1 экв.), PPh ₃ (0.2 экв.), Na ₂ CO ₃ (2 экв.), ДМФА, 100 °С, 1 ч	3.9/1	80
	Pd(OAc) ₂ (0.1 экв.), PPh ₃ (0.2 экв.), Et ₄ NCl (1 экв.), MeCN, 80 °C, 1 ч	10/1	91
	Pd(OAc) ₂ (0.12 экв.), PPh ₃ (0.25 экв.), Et ₄ NCl (1 экв.), MeCN, 30–50 °C, 168 ч	13/1	83
112b	Рd(OAc) ₂ (0.05 экв.), PPh ₃ (0.1 экв.), HCO ₂ Na (1 экв.), ДМФА, 80 °C, 24 ч	2/1	74

Исходные енамиды **112а,b** получают ацилированием 1-алкенилиден-3,4-дигидроизохинолина *о*-иодбензоилхлоридом.

При обработке *о*-(1-изохинолил)бензальдиацетата **115** разбавленной соляной кислотой образуется изоиндоло[1,2-*a*]изохинолин-12*b*H-8-он **116** [16].

Замещенные 1-арил-3,4-дигидроизохинолины 117 при взаимодействии с 4-N,N-диметиламинопиридином в метанольном растворе превращаются 1147

в ациламинол 118 [49].

DMAP - 4-N, N-диметиламинопиридин

При нагревании водно-спиртового раствора 6-(4,6-диокси-1,2,3,4-тетрагидроизохинолил-1)-2,3-диметоксибензойной кислоты **119а** вместо ожидаемого продукта дебензилирования образуется изоиндоло[1,2-*a*]изохинолин **120** [50]. Незамещенные по атому азота изохинолины **121а,b**, полученные из N-бензильных производных **119а,b** каталитическим гидрированием, превращаются в соответствующие изоиндолоизохинолины **120** при нагревании с соляной кислотой.

121 a R = H, b R = Et

8-Цианоизоиндоло[1,2-*a*]изохинолин **123** образуется при взаимодействии дицианометилилида изохинолиния **122** (полученного из изохино-1148

лина и эпокситетрацианоэтилена) с дегидробензолом [51].

Циклоприсоединение илидов изохинолиния **124а**,**b** к циклогексанону или димедону в присутствии вторичных аминов позволяет получать частично гидрированные изоиндолоизохинолины **125а–с** [52, 53].

124 a $R^3 = CO_2Et$, **b** $R^3 = CN$; **125 a** $R^1 = R^2 = H$, $R^3 = CO_2Et$; **b** $R^1 = R^2 = H$, $R^3 = CN$; **c** $R^1 = O$, $R^2 = Me$, $R^3 = CO_2Et$

Бетаин 126 под действием основания превращается в динитроизоиндолоизохинолин 127 [54].

Девятичленные непредельные амины **128** под действием уксусной кислоты претерпевают внутримолекулярное трансаннулярное присоединение аминогруппы к экзоциклическому метиленовому фрагменту с образованием 12*b*-метилизоиндоло[1,2-*a*]изохинолинов **129** [55], выделенных в виде перхлоратов.

128 a $R^1 = OMe$, $R^2 = H$, **b** $R^1 = H$, $R^2 = OMe$; **129 a** (76%), **b** (83%)

2.2. Синтез изоиндоло[2,1-b]изохинолинов

Как и для описанного выше класса соединений, для синтеза изоиндоло[2,1-*b*]изохинолинов могут быть использованы как производные изоиндола, так и производные изохинолина. Кроме того, разработан ряд специфических способов построения этой гетероциклической системы, отраженных в разделе 2.2.3.

2.2.1. Синтез изоиндоло[2,1-b]изохинолинов из производных изоиндола

Изоиндоло[2,1-*b*]изохинолины получают внутримолекулярной циклизацией различных енамидов изоиндольного ряда [42, 56, 57]. Так, 2-бензил-3-(α -бромбензилиден) ϕ талимидин **130** при кипячении в этиленгликоле в присутствии основания или при ϕ отолизе превращается в 12- ϕ енилизоиндоло[2,1-*b*]изохинолин **132** [56, 57].

Реакция Хека 3-метиленфталимидина **133**, полученного взаимодей-1150 ствием 2-ацетилбензойной кислоты с 2-бромбензиламином (толуол, Δ , 85%), приводит к изоиндолоизохинолину **134** [42].

Фотоциклизация 2-(*о*-метилбензил)фталимидов **135** в соответствующие 11*b*-гидроксиизоиндоло[2,1-*b*]изохинолины **136** протекает с конверсией 48–80% и низким выходом [58].

Таблица 9

Условия получения и выходы соединений 136

Исходное соединение	R	Условия (ртутная лампа)	Выход 136 , %	Возврат 135, %
135a	Н	MeCN, 7 ч, 20 °C, 1 кВт	18	52
135b	OMe	Me ₂ CO, 50 мин, 20 °C, 500 Вт	52	28
135c	OCH ₂ O	Ме ₂ СО, 1–5 ч, 20 °С, 500 Вт	25	20

Полиметоксизамещенный тетрацикл **138** образуется из метилиодида нарцеинимида **137а** под действием водного раствора оксида серебра [59] или из винильного аналога **137b** кипячением в водно-спиртовом растворе [60].

137 a $R = -CH_2CH_2NMe_3I$, **b** $R = -CH=CH_2$

Соединение 138 проявляет кокцидиостатическую активность [59] (кок-

цидии: внутриклеточные паразиты, вызывающие кокцидоз – инвазионную болезнь человека и животных, паразитируют главным образом в эпителии пищеварительной системы).

Для синтеза изоиндоло[2,1-*b*]изохинолинов можно использовать эфиры лактимов [61, 62]. Так, взаимодействие карбаниона, генерируемого из 1-(*n*-хлорфенил)-3-этокси-1Н-изоиндола **139** с эфиром *o*-бромметилбен-зойной кислоты приводит к бензилпроизводному **140**, кислый гидролиз и пиролиз которого дают изоиндоло[2,1-*b*]изохинолин **142**. Обработка ими-ноэфира **140** гидразином вызывает последовательность превращений, заканчивающуюся образованием триазола **143** [61].

Умеренный выход изоиндоло[2,1-*b*]изохинолинов **146** наблюдается при обработке гомофталевых ангидридов **144** эфирами лактимов **145** [62].

Перегруппировка Стивенса четвертичных спироиндановых солей 147 под действием гидрида натрия, фениллития или гидроксида натрия при-1152 водит к образованию изоиндолоизохинолинов **148** с низким выходом [63]. Присутствие акцепторных заместителей в исходном соединении (R = NO₂) полностью ингибирует реакцию.

2.2.2. Синтез изоиндоло[2,1-b]изохинолинов из производных изохинолина

Изоиндоло[2,1-*b*]изохинолин **151** образуется в результате 5-*экзо-триг*циклизации 1-циано-2-(*о*-иодбензоил)-1,2-дигидроизохинолина (**149**), протекающей в присутствии ацетата палладия через интермедиат **150** [46].

Восстановительное ацилирование изохинолина *о*-бромбензоилхлоридом в присутствии трибутилстаннана служит удобным методом синтеза 1,2-дигидроизохинолина **152**, который затем подвергается радикальной циклизации в гидрированный изоиндолоизохинолин **153** [64]. Процесс может быть осуществлен в одну синтетическую стадию, добавлением к промежуточному изохинолину **152** азобис(изобутиронитрила) и толуола.

AINB - азобис(изобутиронитрил)

Окисление 1-аминоизохинолина 155, полученного конденсацией *о*-циано-бензилцианида и α,*о*-дицианостильбена 154 в присутствии метилата натрия, и последующая циклизация образующейся кислоты 156 позволяют перейти к полифункциональному изоиндоло[2,1-*b*]изохинолину 157 [65].

Аналогично внутримолекулярная циклизация 4-бром-3-(*о*-карбоксифенил)изохинолина **158** при нагревании с бензоилхлоридом в пиридине приводит к дикетопроизводному **159** [66].

1154

2.2.3. Другие методы синтеза изоиндоло[2,1-b]изохинолинов

Из специфических методов синтеза изоиндоло[2,1-*b*]изохинолинов следует отметить трансаннулярную циклизацию девятичленного енамина **160** в четвертичные изоиндоло[2,1-*b*]изохинолиниевые соли **161** [67].

Непредельный амид 162, полученный взаимодействием *о*-бромбензиламина с уксусным альдегидом и *о*-иодбензоилхлоридом, превращается в изоиндоло[2,1-*b*]изохинолин 163 в условиях последовательной реакции Хека [68].

Нагревание диаммонийной соли 2,2'-дикарбоксидезоксибензоина 164 в дифениламине приводит к изоиндоло[2,1-*b*]изохинолину 165 [69].

Анализируя данные, объединенные в обеих частях настоящего обзора, 1155

можно сделать вывод, что наиболее изученными тетрациклами, содержащими аннелированный [1,2]изоиндольный фрагмент, являются изоиндоло[1,2-*b*]бенз-3-азепины. Достаточно большой интерес был проявлен химиками и к изоиндоло[1,2-*a*]изохинолинам. В литературе практически отсутствует информация о химических превращениях и синтезе изоиндоло[2,1-*b*]бенз-2-азепинов и изоиндоло[2,1-*a*]хинолинов, интересных с точки зрения потенциальной физиологической активности.

Работа выполнена при финансовой поддержке РФФИ (грант 04-03-32433).

СПИСОК ЛИТЕРАТУРЫ

- 1. Y. Ishihara, Y. Kiyota, G. Goto, Chem. Pharm. Bull., 38, 3024 (1990).
- Z. Sui, J. Altom, V. N. Nguyen, J. Fernandez, J. I. Bernstein, J. J. Hiliard, J. F. Barrett, B. L. Podlogar, K. A. Ohemeng, *Bioorg. Med. Chem.*, 6, 735 (1998).
- 3. J. Epsztajn, R. Grzelak, A. Jóźwiak, Synthesis, 1212 (1996).
- 4. J. Epsztajn, A. Jóźwiak, P. Koluda, I. Sadokierska, I. D. Wilkowska, *Tetrahedron*, **56**, 4837 (2000).
- 5. G. Kim, G. Keum, Heterocycles, 45, 1979 (1997).
- 6. H. Z. Alkhathlan, K. A. Al-Farhan, Heterocycles, 48, 641 (1998).
- 7. Z. Hameršak, M. Litvić, D. Šepac, A. Lesac, Z. Raza, V. Šunjić, Synthesis, 2174 (2002).
- 8. P. Kumar, C. U. Dinesh, B. Pandey, *Tetrahedron Lett.*, **35**, 9229 (1994).
- 9. P. Pigeon, B. Decroix, Synth. Commun., 28, 2507 (1998).
- 10. P. Pigeon, M. Othman, P. Netchitaïlo, B. Decroix, J. Heterocycl. Chem., 36, 691 (1999).
- 11. W. H. N. Nijhuis, G. R. B. Leus, R. J. M. Egberink, W. Verboom, D. N. Reinhoudt, *Recl. Trav. Chim. Pays-Bas*, **108**, 172 (1989).
- 12. F. I. Zubkov, E. V. Boltukhina, K. F. Turchin, R. S. Borisov, A. V. Varlamov, *Tetrahedron*, **61**, 4099 (2005).
- 13. A. V. Varlamov, F. I. Zubkov, E. V. Boltukhina, N. V. Sidorenko, R. S. Borisov, *Tetrahedron Lett.*, 44, 3641 (2003).
- 14. E. V. Boltukhina, F. I. Zubkov, E. V. Nikitina, A. V. Varlamov, Synthesis, 1859 (2005).
- 15. Ф. И. Зубков, Е. В. Болтухина, Е. В. Никитина, А. В. Варламов, *Изв. АН, Сер. хим.*, 2703 (2004).
- 16. Y. Abe, A. Ohsawa, H. Igeta, *Heterocycles*, **19**, 49 (1982).
- 17. D.-B. Reuschling, F. Kröhnke, *Chem. Ber.*, **104**, 2103 (1971).
- 18. Л. Н. Дончак, М. А. Загоруйко, В. А. Каминский, *ЖОрХ*, **31**, 1872 (1995).
- 19. М. А. Загоруйко, Л. Н. Дончак, В. А. Каминский, *ЖОрХ*, **35**, 146 (1999).
- Л. Н. Дончак, В. А. Каминский, М. Н. Тиличенко, XTC, 1271 (1986). [Chem. Heterocycl. Comp., 22, 1031 (1986)].
- 21. V. U. Ahmad, S. Iqbal, Phytochemistry, 33, 735 (1993).
- 22. S. Durrani, T. Rasheed, Fitoterapia, 172 (1995).
- 23. V. U. Ahmad, Atta-ur-Rahman, T. Rasheed, Habib-ur-Rehman, *Heterocycles*, 26, 1251 (1987).
- 24. T. Rasheed, M. N. I. Khan, S. S. A. Zhadi, J. Nat. Prod., 54, 582 (1991).
- 25. V. U. Ahmad, S. Iqbal, Nat. Prod. Lett., 2, 105 (1993); Chem. Abstr., 120, 265790 (1994).
- 26. E. Valencia, A. J. Freyer, M. Shamma, V. Fajardo, *Tetrahedron Lett.*, 25, 599 (1984).
- 27. G. Manikumar, M. Shamma, Heterocycles, 14, 827 (1980).
- 28. W. J. Houlihan, R. E. Manning, Pat US 3644370; Chem. Abstr., 77, 34368 (1972).
- 29. W. J. Houlihan, R. E. Manning, Pat US 3644369; Chem. Abstr., 77, 34376 (1972).
- 30. W. J. Houlihan, R. E. Manning, Pat US 3686207; Chem. Abstr., 77, 152006 (1972).
- 31. J. L. Moniot, D. M. Hindenlang, M. Shamma, J. Org. Chem., 44, 4347 (1979).
- 32. M. Winn, H. E. Zaugg, J. Org. Chem., 33, 3779 (1968).
- 33. R. Alonso, L. Castedo, D. Domínguez, Tetrahedron Lett., 26, 2925 (1985).
- 34. G. J. Hitchings, M. Helliwell, J. M. Vernon, J. Chem. Soc., Perkin Trans. 1, 83 (1990).
- 35. G. J. Hitchings, J. M. Vernon, J. Chem. Soc., Perkin Trans. 1, 1757 (1990).
- 36. H. Heaney, K. F. Shuhaibar, Synlett, 47 (1995).

- 37. M. T. El Gihani, H. Heaney, K. F. Shuhaibar, Synlett, 871 (1996).
- 38. A. R. Katritzky, S. Mehta, H.-Y. He, J. Org. Chem., 66, 148 (2001).
- 39. M. I. Collado, N. Sotomayor, M.-J. Villa, E. Lete, Tetrahedron Lett., 37, 6193 (1996).
- 40. M. I. Collado, I. Manteca, N. Sotomayor, M.-J. Villa, E. Lete, J. Org. Chem., 62, 2080, (1997).
- 41. A. Padwa, M. N. Jacquez, A. Schmidt, Org. Lett., 3, 1781 (2001).
- 42. G. Kim, J. H. Kim, W.-J. Kim, Y. A. Kim, Tetrahedron Lett., 44, 8207 (2003).
- 43. P. L. Barili, V. Scartoni, J. Heterocycl. Chem., 22, 1199 (1985).
- 44. G. N. Walker, R. J. Kempton, J. Org. Chem., 36, 1413 (1971).
- 45. S. M. Allin, C. J. Northfield, M. I. Page, A. M. Z. Slawin, *Tetrahedron Lett.*, **39**, 4905 (1998).
- R. Grigg, V. Sridharan, P. Stevenson, S. Sukirthalingam, T. Worakun, *Tetrahedron*, 46, 4003 (1990).
- 47. B. Burns, R. Grigg, P. Ratananukul, V. Sridharan, P. Stevenson, T. Worakun, *Tetrahedron Lett.*, **29**, 4329 (1988).
- 48. R. Grigg, V. Sridharan, P. Stevenson, T. Worakun, J. Chem. Soc., Chem. Commun., 1697 (1986).
- 49. H. Heaney, K. F. Shuhaibar, Tetrahedron Lett., 35, 2751 (1994).
- Т. В. Алпатова, В. Г. Яшунский, ХГС, 1084 (1981). [Chem. Heterocycl. Comp., 17, 804 (1981)].
- 51. Y. Tominaga, Y. Shiroshita, Y. Matsuda, A. Hosomi, Heterocycles, 26, 2073 (1987).
- 52. T. Kato, T. Chiba, T. Sasaki, Yakugaku Zasshi (Japan), 99, 1051 (1979); Chem. Abstr., 92, 163827 (1980).
- 53. N. S. Basketter, A. O. Plunkett, J. Chem. Soc., Chem. Commun., 188 (1973).
- 54. W. Augstein, F. Krönke, *Liebigs Ann. Chem.*, 697, 158 (1966).
- 55. M. Sainsbury, D. W. Brown, S. F. Dyke, G. Hardy, Tetrahedron, 25, 1881 (1969).
- 56. A. Marsili, V. Scartoni, Gazz. Chim. Ital., 104, 165 (1974).
- 57. A. Marsili, V. Scartoni, Tetrahedron Lett., 2511 (1968).
- 58. M. Machida, M. Nakamura, K. Oda, H. Takechi, K. Ohno, H. Nakai, Y. Sato, Y. Kanaoka, *Heterocycles*, **26**, 2683 (1987).
- 59. Z. Koblicova, V. Suchan, J. Trojanek, Pat. Czech. 167097; Chem. Abstr., 87, 168002 (1977).
- 60. V. Suchan, Z. Koblicova, J. Trojanek, Pat. Czech. 167096; Chem. Abstr., 87, 168003 (1977).
- 61. M. K. Eberle, L. Brzechffa, W. J. Houlihan, J. Org. Chem., 42, 894 (1977).
- 62. V. I. Ognyanov, M. A. Haimova, N. M. Mollov, Monatsh. Chem., 113, 993 (1982).
- 63. J. H. Brewster, R. S. Jones Jr., J. Org. Chem., 34, 354 (1969).
- 64. R. Yamaguchi, T. Hamasaki, K. Utimoto, Chem. Lett., 913 (1988).
- 65. I. F. Barnard, J. A. Elvidge, J. Chem. Soc., Perkin Trans. 1, 1813 (1983).
- 66. S. Wawzonek, J. K. Stowell, R. E. Karll, J. Org. Chem., 31, 1004 (1966).
- 67. D. J. Brickwood, A. M. Hassan, W. D. Ollis, J. S. Stephanatou, J. F. Stoddart, J. Chem. Soc., Perkin Trans. 1, 1393 (1978).
- A. García, D. Rodríguez, L. Castedo, C. Saá, D. Domínguez, *Tetrahedron Lett.*, 42, 1903 (2001).
- 69. J. C. Godfrey, J. Org. Chem., 24, 581 (1959).
- 70. Е. В. Болтухина, Ф. И. Зубков, А. В. Варламов, *ХГС*, 963 (2006).

Российский университет дружбы народов, Москва 117198 e-mail: fzubkov@sci.pfu.edu.ru Поступило 29.08.2005

1157