В. В. Бахарев, А. А. Гидаспов, Д. Б. Криволапов^а, Е. В. Миронова^а, И. А. Литвинов^а

КОНДЕНСИРОВАННЫЕ ТЕТРАЗОЛО-1,3,5-ТРИАЗИНЫ

4*. СИНТЕЗ СОЛЕЙ 5-АМИНОТЕТРАЗОЛО[1,5-а]-1,3,5-ТРИАЗИН-7-ОНА

Последовательным замещением тринитрометильных групп в 2-амино-4,6-бис(тринитрометил)-1,3,5-триазинах под действием азид- и нитрит-иона синтезированы 2-амино-4азидо-1,3,5-триазин-6(1Н)-оны. Взаимодействие 2-амино-4-азидо-1,3,5-триазин-6(1Н)-онов со щелочами приводит к азидо-тетразольному таутомерному превращению с образованием солей 5-аминотетразоло[1,5-*a*]-1,3,5-триазин-7-она.

Ключевые слова: 2-амино-4-азидо-1,3,5-триазин-6(1Н)-он, 2-амино-4,6-бис(тринитрометил)-1,3,5-триазины, соли 5-аминотетразоло[1,5-*a*]-1,3,5-триазин-7-она, азидо-тетразольное таутомерное превращение.

Интерес к синтезу гетероциклической структуры 5-аминотетразоло[1,5-*a*]-1,3,5-триазин-7-онов обусловлен тем, что она является 5,8-диазааналогом гуанина (2-аминоимидазо[4,5-*d*]пиримидин-6-она) – одного из строительных блоков нуклеиновых кислот [2]. Разработанный ранее подход к синтезу структуры тетразоло[1,5-*a*]-1,3,5-триазин-7-она базировался на замещении тринитрометильной группы в тетраметиламмониевой соли 2гидрокси-4,6-бис(тринитрометил)-1,3,5-триазине под действием азид-иона, которое сопровождается лактим-лактамным и азидо-тетразольным таутомерными превращениями [3]. На основе реакций 5-тринитрометилтетразоло[1,5-*a*]-1,3,5-триазин-7-онов получен ряд производных этого нового гетероцикла [3, 4].

В настоящей работе в отличие от [3] изучен другой подход к синтезу солей 5-R-тетразоло[1,5-*a*]-1,3,5-триазин-7-онов. Теоретически для получения солей 5-R-тетразоло[1,5-*a*]-1,3,5-триазин-7-онов необходимо было сформи- ровать структуру 2-R-4-азидо-1,3,5-триазин-6(1H)-она **1**, которая при переводе в соль вследствие азидо-тетразольной таутомерной перегруп-пировки могла бы привести к структуре соли 5-R-тетразоло[1,5-*a*]-1,3,5-триазин-7-она **2** по схеме:

^{*} Сообщение 3 см. [1].

1211

Исходными соединениями для получения 5-аминотетразоло[1,5-*a*]-1,3,5-триазин-7-онов были выбраны 2-диметил(диэтил)амино-4,6-бис(тринитрометил)-1,3,5-триазины **3а,b** [3].

Из соединений **3а,b** по методике [3] получены 2-диметил(диэтил)амино-4-азидо-6-тринитрометил-1,3,5-триазины **4а,b**:

3, **4 a** $R^1 = R^2 = Me$; **b** $R^1 = R^2 = Et$

Последующее взаимодействие азидов **4а,b** с нитритом натрия в метаноле приводит к 2-диметил(диэтил)амино-4-азидо-1,3,5-триазин-6(1H)онам **1а,b** с выходом 60–65%, в качестве побочного продукта образуются 2-диметил(диэтил)амино-4-азидо-6-метокси-1,3,5-триазины **5а,b** с выходом 10–15%.

1, 5 a $R^1 = R^2 = Me$; **b** $R^1 = R^2 = Et$

Разделение продуктов не представляет труда, так как лактамы **1**а,**b** образуют растворимые в воде натриевые соли, из которых после отфильтровывания метоксипроизводных **5**а,**b** их можно выделить подкислением до pH 2–3.

Порядок введения азидо- и оксогрупп может быть изменен на обратный. При взаимодействии соединений **3a,b** с нитритом натрия в метаноле образуются 2-диметил(диэтил)амино-4-тринитрометил-1,3,5-триазин-6(1H)-оны **6a,b** (выход 55–60%) с примесью 2-диметил(диэтил)-амино-4-метокси-6-тринитрометил-1,3,5-триазинов **7a,b** (выход 25–30%).

При реакции тринитрометильных производных **6а,b** с азидом натрия 1212

в ацетоне (ацетонитриле) получены азидопроизводные **1а,b** с выходом 80–85%.

$$6a,b \xrightarrow{+ \operatorname{NaN}_3} 1a,b$$

Депротонирование азидопроизводных **1**а,**b** при их превращении в соли путем обработки водной суспензии соединений **1**а,**b** эквимолярным количеством гидроксида натрия приводит к образованию, по данным ИК и ЯМР ¹Н спектров, целевых натриевых солей 5-диметил(диэтил)аминотетразоло[1,5-*a*]-1,3,5-триазин-7-онов **2**а,**b**. Этот процесс является обратимым. Обработка водных растворов натриевых солей тетразоло[1,5-*a*]-1,3,5триазин-7-онов **2**а,**b** кислотой приводит к обратной перегруппировке тетразольного фрагмента в азидный с образованием азидопроизводных **1**а,**b**.

1,2 a
$$R^1 = R^2 = Me$$
; **b** $R^1 = R^2 = Et$

Структура соединения 2а была подтверждена РСА (рисунок, табл. 1-3).

Молекулярная и кристаллическая структура соединения 2а

Таблица 1

Длины связей (d) в анионе структуры 2a

Связь	d, Å	Связь	<i>d</i> , Å
N(2)–C(3)	1.346(4)	N(4)–C(5)	1.359(3)
N(2)–N(7)	1.366(3)	N(9)–C(3)	1.344(3)
N(2)–C(1)	1.428(3)	N(9)–N(8)	1.375(4)
N(6)–C(1)	1.327(4)	N(7)–N(8)	1.290(4)
N(6)–C(5)	1.363(4)	N(10)–C(5)	1.346(4)
O(13)–C(1)	1.234(3)	N(10)-C(12)	1.446(4)
N(4)–C(3)	1.329(3)	N(10)–C(11)	1.453(4)

Таблица 2

Валентные углы (ω) в анионе структуры 2а

Угол	ω, град.	Угол	ω, град.
C(3)–N(2)–N(7)	110.7(2)	N(10)-C(5)-N(4)	116.6(2)
C(3)–N(2)–C(1)	121.7(2)	N(10)-C(5)-N(6)	116.9(2)
N(7)–N(2)–C(1)	127.6(2)	N(4)-C(5)-N(6)	126.5(2)
C(1)–N(6)–C(5)	120.4(2)	N(4)-C(3)-N(9)	128.4(2)
C(3)–N(4)–C(5)	112.8(2)	N(4)-C(3)-N(2)	124.1(2)
C(3)–N(9)–N(8)	104.2(2)	N(9)–C(3)–N(2)	107.5(2)
N(8)–N(7)–N(2)	103.7(2)	O(13)–C(1)–N(6)	127.1(2)
C(5)–N(10)–C(12)	121.2(2)	O(13)–C(1)–N(2)	118.3(2)
C(5)–N(10)–C(11)	120.5(2)	N(6)-C(1)-N(2)	114.6(2)
C(12)-N(10)-C(11)	118.1(2)	N(7)–N(8)–N(9)	113.8(2)

Таблица З

Торсионные углы (φ) в анионе структуры 2а

Угол	ф, град.	Угол	ф, град.
O(13)-C(1)-N(6)-C(5)	-177.18(26)	N(4)-C(3)-N(9)-N(8)	179.45(27)
O(13)-C(1)-N(2)-N(7)	-0.80(38)	C(3)-N(9)-N(8)-N(7)	0.93(28)
O(13)-C(1)-N(2)-C(3)	178.55(25)	N(9)-N(8)-N(7)-N(2)	-0.84(27)
C(1)-N(6)-C(5)-N(10)	177.19(23)	N(8)–N(7)–N(2)–C(1)	179.84(23)
N(6)-C(5)-N(10)-C(12)	-4.91(37)	N(8)-N(7)-N(2)-C(3)	0.42(27)
N(6)-C(5)-N(10)-C(11)	-178.69(24)	N(7)-N(2)-C(3)-N(4)	-179.91(24)
N(4)-C(5)-N(10)-C(12)	175.87(24)	C(3)-N(2)-C(1)-N(6)	-1.14(35)
N(4)-C(5)-N(10)-C(11)	2.09(37)	C(1)-N(2)-C(3)-N(9)	-179.32(22)
C(1)-N(6)-C(5)-N(4)	-3.68(41)	C(1)-N(2)-C(3)-N(4)	0.63(41)
N(6)-C(5)-N(4)-C(3)	2.88(39)	C(5)-N(6)-C(1)-N(2)	2.48(34)
C(5)-N(4)-C(3)-N(9)	178.61(27)	N(7)-N(2)-C(3)-N(9)	0.13(30)
C(5)-N(4)-C(3)-N(2)	-1.34(38)	N(6)-C(1)-N(2)-N(7)	179.50(23)

Цикл тетразола в солях 2a,b образуется при замыкании азидной группы по атому N(2) цикла 1,3,5-триазина в направлении карбонильной группы C(1)–O(13). Таким образом, характер заместителя в положении 5 цикла 1,3,5-триазина (электроноакцепторная тринитрометильная группа [3] или электронодонорная диалкиламиногруппа в соединениях 2a,b) не влияет на направление циклизации при азидо-тетразольном таутомерном превращении.

Молекула **2а** плоская (отклонение от плоскости не превышает 0.078 Å), диметиламинная группа лежит в плоскости цикла тетразоло[1,5-*a*]-1,3,5триазина. Сравнение геометрических параметров соли **2a** и дикалиевой соли 5-динитрометилтетразоло[1,5-*a*]-1,3,5-триазин-7-она [2] показывает, что различия в длинах связей и валентных углах циклической системы тетразоло[1,5-*a*]-1,3,5-триазина невелики и составляют 0.01–0.02 Å и 1–2°. Максимальные отклонения (0.04 Å и 3°) наблюдаются в цикле 1,3,5-триазина около заместителя в положении 5, что, по-видимому, обусловлено влиянием самого заместителя (диметиламино- или динитрометильная группа). Анализ длин связей и валентных углов в циклах 1,3,5-триазина и тетразола системы тетразоло[1,5-*a*]-1,3,5-триазина и сравнение их с длинами связей и валентными углами в структурах ковалентных 1,3,5-триазинов [4], тетразолов [5] и натриевой соли тетразола [6] показывает, что в делокализации отрицательного заряда в анионе в соединении **2a** участвует вся сопряженная циклическая система тетразоло[1,5-*a*]-1,3,5-триазина.

Анализируя кристаллическую структуру соединения 2а, можно дополнительно отметить следующее. В структуре 2а два независимых катиона натрия находятся в частном положении – в центрах симметрии. Анионы 5-диметиламинотетразоло[1,5-а]-1,3,5-триазин-7-она и четыре молекулы воды находятся в общем положении, таким образом соблюлается стехиометрическое соотношение. Катионы натрия в соли 2а имеют практически неискаженную октаэдрическую координацию за счет связей с четырьмя молекулами воды и двумя атомами кислорода двух молекул 5-диметиламинотетразоло[1,5-а]-1,3,5-триазин-7-она. Карбонильные атомы кислорода и одна из молекул воды являются мостиковыми между независимыми катионами натрия, две молекулы воды координируют ионы натрия, и одна не участвует в координационных связях, по-видимому, стабилизируя кристалл за счет водородных связей. В результате в кристалле образуются полимерные цепочки вдоль оси 0у, состоящие из четырехчленных циклов Na₂O₂. Четырехчленные циклы Na₂O₂ неплоские, угол перегиба по линии O(13)...O(15) равен 22.1°.

Соединение **2а** является кристаллогидратом и стабилизируется системой водородных связей (см. табл. 4). В кристаллах соединения **2а** обнаружены межмолекулярные водородные связи между анионом 5-диметиламинотетразоло[1,5-*a*]-1,3,5-триазин-7-она и сольватными молекулами воды, посредством которых молекулы соединения образуют двумерную сетку – слои, параллельные плоскости *a*0*c* кристалла.

Таким образом, разработан новый подход к синтезу гетероциклической солевой структуры – 5-диметил(диэтил)аминотетразоло[1,5-*a*]-1,3,5-триазин-7-она, основанный на последовательном замещении тринитрометильных групп в 2-диметил(диэтил)амино-4,6-бис(тринитрометил)-1,3,5-триазинах

D–H…A	D–H, Å	H…A, Å	D…A, Å	∠ DHA, град.	Операции симметрии
O(14)-H(141)····N(9)	0.82	2.360	2.898(4)	124.0	x, y, 1 + z
O(14)-H(142)····O(16)	0.85	2.270	2.860(4)	127.0	1 + x, -1 + y, z
O(15)-H(151)···O(16)	0.85	2.040	2.884(4)	169.0	1 - x, 1 - y, 1 - z
O(15)-H(152)····N(4)	0.85	2.120	2.919(4)	157.0	x, y, 1 + z
O(16)-H(161)···O(15)	0.86	2.500	2.884(4)	108.0	1 - x, 1 - y, 1 - z
O(16)-H(162)···O(15)	0.85	2.500	2.884(4)	108.0	1 - x, 1 - y, 1 - z
O(17)-H(171)···O(16)	0.82	2.090	2.748(4)	137.0	1 - x, 1 - y, 1 - z
O(17)–H(172)····O(14)	0.85	1.980	2.818(4)	169.0	1 - x, -y, 1 - z

Параметры водородных связей в кристалле соединения 2а

под действием азид- и нитрит-иона с последующим действием основания. Показано, что азидо-тетразольная перегруппировка: 2-диметил-(диэтил)амино-4-азидо-1,3,5-триазин-6(1H,6H)-оны **1а**,**b** – натриевые соли 5-диметил(диэтил)аминотетразоло[1,5-*a*]-1,3,5-триазин-7-онов **2а**,**b** носит обратимый характер.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

ИК спектры записаны на спектрофотометре Avatar в таблетках КВг (кроме соединений **4b** и **5b**, снятых в тонкой пленке). Спектры ЯМР ¹Н записаны на спектрометре Bruker AM-3 00 (300 МГц), внутренний стандарт ГМДС. РСА кристалла соединения **2a** проведен при 20 °C (Т 293 К) на автоматическом четырехкружном дифрактометре Enraf-Nonius CAD-4 (Си κ а-излучение [λ 1.54184 Å], графитовый монохроматор, ω -сканирование). Падения интенсивностей трех контрольных отражений за время съемки эксперимента не наблюдалось. Структура расшифрована прямым методом по программе SIR [8] и уточнена вначале в изотропном, а затем в анизотропном приближении по программе SHELX-97 [9]. Координаты атомов водорода при атомах углерода рассчитаны на основе стереохимических критериев и уточнены по модели "наездника". Все расчеты проведены с использованием комплекса программ WinGX [10]. Параметры ячейки и экспериментальные данные были получены с использованием программы MolEN [11] на ЭВМ DEC Alpha Station 200. Все рисунки и анализ межмолекулярных взаимодействий выполнены с помощью программы PLATON [12].

Кристаллы соединения **2a**: бесцветные прозрачные кристаллы призматической формы, триклинные; $C_5H_6N_7O^- \cdot Na^+ \cdot 4H_2O$; M = 275.22; a = 6.981(4), b = 9.485(9), c = 9.80(1) Å; $\alpha = 111.69(8)$, $\beta = 91.74(6)$, $\gamma = 97.42(6)^\circ$; V = 596(1) Å³, $d_c = 1.53$ г/см³, Z = 2, пространственная группа *P*-1. Угол сканирования $4.87^\circ < \theta < 74.20^\circ$. Измерено 1906 независимых отражений, из них 1619 с $I \ge 2\sigma$. Проведен эмпирический учет поглощения μ (Cu) = 14.53 см⁻¹. Атомы водорода молекул воды (при атомах O(14), O(15), O(16) и O(17)) выявлены из разностных рядов электронной плотности и их вклад в структурные амплитуды учитывался с фиксированными позиционными и температурными параметрами в заключительной стадии уточнения. Окончательные значения факторов расходимости R = 0.0767 и $R_w = 0.2090$ по 1619 рефлексам с $F > 2\sigma(F^2)$. Структура депонирована в Кембриджском банке кристалло-труктурных данных (CCDC 297197).

Соединения 4а-b синтезированы по методике [3].

4-Азидо-2-диметиламино-1,3,5-триазин-6(1Н)-он (1а) и 4-азидо-2-диметиламино-6метокси-1,3,5-триазин (5а). К раствору 3.25 г (5 ммоль) нитрита натрия в смеси 30 мл метанола и 5 мл воды при температуре 20–25 °C и перемешивании в течение 1 ч дозируют 3.14 г (1 ммоль) соединения 4а. Реакционную массу выдерживают при температуре 20−25 °С и перемешивании до исчезновения исходного тринитрометильного производного, по данным ТСХ (4-4.5 ч). После окончания выдержки из реакционной массы удаляют метанол и остаток обрабатывают 50 мл воды. К полученной суспензии добавляют при температуре 20-25 °С и перемешивании 0.83 г (1 ммоль) карбоната натрия. Нерастворимый осадок 4-азидо-2-диметиламино-6-метокси-1,3,5-триазина 5a отфильтровывают, промывают водой и сушат на воздухе. Выход соединения 5а 0.195 г (10%), т. пл. 110–112 °С. ИК спектр, v, см⁻¹: 2964, 2944, 2164, 2124, 1598, 1542, 1528, 1496, 1426, 1360, 1244, 1212, 1120, 1092, 1064, 968, 800. Спектр ЯМР ¹Н (ацетон-d₆), б, м. д.: 3.10 (6H, с, NCH₃); 3.84 (3H, с, OCH₃). Найдено, %: С 43.36; Н 5.12; N 43.33. С₇H₁₀N₆O. Вычислено, %: С 43.29; Н 5.19; N 43.28.

Отделяют соединение **5a**, оставшийся водный фильтрат подкисляют 1 н. соляной кислотой до pH 2–3, выпавший осадок **1a** отфильтровывают, промывают водой и сушат на воздухе. Выход соединения **1a** 1.18 г (65%), т. пл. 195–196 °С (разл.). ИК спектр, v, см⁻¹: 3096, 2996, 2902, 2152, 1704, 1632, 1552, 1544, 1508, 1432, 1402, 1348, 1268, 1186, 1078, 1036, 956, 880, 816, 784. Спектр ЯМР ¹Н (ДМСО-d₆), δ , м. д. (*J*, Гц): 3.06 (6H, д, *J* = 9.0, NCH₃); 4.60 (уш. с, H₃O⁺). Найдено, %: С 40.04; H 4.42; N 46.56. С₆H₈N₆O. Вычислено, %: С 40.00; H 4.48; N 46.65.

4-Азидо-2-диэтиламино-1,3,5-триазин-6(1Н)-он (1b) и 4-азидо-2-диэтиламино-6метокси-1,3,5-триазин (5b) получают аналогично соединению **1a** из 3.25 г (5 ммоль) нитрита натрия и 3.42 г (1 ммоль) соединения **4b**. После обработки водной суспензии карбонатом натрия соединение **5b** экстрагируют 2×10 мл хлористым метиленом, раствор в хлористом метилене промывают 3×10 мл водой, сушат над сульфатом натрия и растворитель удаляют, остаток вакуумируют при 20–30 мм рт. ст. и температуре 20–25 °C. Получают соединение **5b** в виде вязкого светло-желтого масла, выход 0.334 г (15%). ИК спектр, v, см⁻¹: 2977, 2935, 2873, 2129, 1581, 1517, 1471, 1459, 1442, 1363, 1317, 1257, 1226, 1178, 1099, 1060, 956, 811, 784, 752. Спектр ЯМР ¹H (ДМСО-d₆), δ , м. д. (*J*, Гц): 1.04 и 1.19 (6H, дв. т, *J* = 7.2, *J* = 7.0, CH₃); 3.40 и 3.62 (4H, дв. к, *J* = 7.2, *J* = 7.0, NCH₂); 3.83 (3H, с, ОСН₃). Найдено, %: С 48.57; H 6.41; N 37.74. С₉H₁₄N₆O. Вычислено, %: С 48.64; H 6.35; N 37.81.

Отделяют соединение **5b**, оставшийся водный фильтрат подкисляют 1 н. соляной кислотой до pH 2–3, выпавший осадок **1b** отфильтровывают, промывают водой и сушат на воздухе. Выход соединения **1b** 1.25 г (60%), т. пл. 189–190 °C (разл.). ИК спектр, v, см⁻¹: 3106, 2975, 2933, 2134, 1668, 1600, 1538, 1502, 1442, 1405, 1359, 1340, 1317, 1294, 1232, 1205, 1162, 1089, 1025, 991, 954, 840, 792. Спектр ЯМР ¹Н (ДМСО-d₆), δ , м. д. (*J*, Γ ц): 0.96 (6H, т, *J* = 7.0, CH₃); 3.34 (4H, к, *J* = 7.0, NCH₂). Найдено, %: С 46.20; H 5.92; N 40.34. C₈H₁₂N₉O. Вычислено, %: С 46.15; H 5.81; N 40.36.

2-Диметиламино-4-тринитрометил-1,3,5-триазин-6(1Н)-он (6а) и 2-диметиламино-6-метокси-4-тринитрометил-1,3,5-триазин (7а). К раствору 4.22 г (1 ммоль) 2-диметил(диэтил)амино-4,6-бис(тринитрометил)-1,3,5-триазина **3а** в 35 мл метанола при температуре 20–25 °С и перемешивании добавляют порциями 0.76 г (1.1 ммоль) нитрита натрия. Реакционную массу выдерживают при температуре 20–25 °С и перемешивании до исчезновения исходного тринитрометильного производного, по данным TCX (1–1.5 ч). После окончания выдержки из реакционной массы удаляют метанол и остаток обрабатывают 50 мл воды. К полученной суспензии добавляют порциями при температуре 20–25 °С и перемешивании 0.83 г (1 ммоль) карбоната натрия. Нерастворимый осадок соединения **7а** отфильтровывают, промывают водой и сушат на воздухе. Выход соединения **7а** 0.76 г (25%), т. пл. 79–81 °С. ИК спектр, v, см⁻¹: 2926, 2882, 1616, 1592, 1502, 1476, 1448, 1382, 1312, 1294, 1200, 1164, 1048, 988, 962, 854, 792. Спектр ЯМР ¹Н (ацетон-d₆), δ , м. д. (*J*, Гц): 3.18 (6H, д. *J* = 9.4, NCH₃); 3.96 (3H, с, OCH₃). Найдено, %: С 31.85; H 3.41; N 27.73. C₈H₁₀N₆O₇. Вычислено, %: С 31.80; H 3.34; N 27.81.

Отделяют соединение **7a**, оставшийся водный фильтрат подкисляют 1 н. соляной кислотой до pH 2–3, выпавший осадок **6a** отфильтровывают, промывают водой и сушат на воздухе. Выход соединения **6a** 1.88 г (65%), т. пл. 178–180 °С. ИК спектр, v, см⁻¹: 3100, 3024, 2982, 1702, 1640, 1596, 1568, 1516, 1446, 1404, 1332, 1296, 1240, 1188, 1120, 1080, 992, 856,

800, 790. Спектр ЯМР ¹Н (ДМСО-d₆), δ, м. д. (*J*, Гц): 3.21 (6Н, д, *J* = 9.2, NСН₃). Найдено, %: С 29.22; Н 2.85; N 29.24. С₇Н₈N₆O₇. Вычислено, %: С 29.17; Н 2.80; N 29.16.

2-Диэтиламино-4-тринитрометил-1,3,5-триазин-6(1H)-он (6b) и 2-диэтиламино-6метокси-4-тринитрометил-1,3,5-триазин (7b) получают аналогично соединению **6a** из 4.50 г (1 ммоль) соединения **3b** и 0.76 г (1.1 ммоль) нитрита натрия.

Выход соединения **7b** 0.99 г (30%), т. пл. 42–43 °С. ИК спектр, v, см⁻¹: 2991, 2941, 2877, 1631, 1585, 1504, 1483, 1459, 1446, 1386, 1365, 1324, 1290, 1251, 1216, 1193, 1091, 1018, 991, 966, 848, 800. Спектр ЯМР ¹H (ДМСО-d₆), δ, м. д. (*J*, Гц): 1.10 и 1.19 (6H, дв. т, *J* = 6.8, CH₃); 3.50 и 3.64 (4H, дв. к, *J* = 6.8, NCH₂); 3.95 (3H, с, OCH₃). Найдено, %: С 36.31; H 4.20; N 25.56. С₁₀H₁₄N₆O₇. Вычислено, %: С 36.37; H 4.27; N 25.45.

Выход соединения **6b** 1.90 г (60%), т. пл. 157–158 °С (разл.). ИК спектр, v, см⁻¹: 3160, 3088, 2992, 2904, 1700, 1632, 1588, 1564, 1504, 1472, 1456, 1424, 1392, 1368, 1336, 1296, 1192, 1176, 1096, 1072, 1008, 984, 848, 800. Спектр ЯМР ¹Н (CDCl₃), δ, м.д. (*J*, Гц): 1.08 и 1.28 (6H, дв. т, *J* = 6.8, CH₃); 3.42 и 3.65 (4H, дв. к, *J* = 6.8, NCH₂); 5.09 (1H, уш. с, NH). Найдено, %: С 34.19; H 3.75; N 26.49. С₉H₁₂N₆O₇. Вычислено, %: С 34.18; H 3.82; N 26.58.

4-Азидо-2-диметиламино-1,3,5-триазин-6(1Н)-он (1а). К раствору 2.89 г (1 ммоль) соединения **6а** в 30 мл 95% водного ацетона (ацетонитрила) при температуре 20–25 °C и перемешивании добавляют порциями 0.69 г (1.05 ммоль) азида натрия. Реакционную массу выдерживают при температуре 20–25 °C и перемешивании до исчезновения исходного тринитрометильного производного, по данным TCX (1.5–2 ч). После окончания выдержки, выпавший осадок целевого **1а** отфильтровывают, промывают ацетоном и сушат на воздухе. Выход 1.54 г (85%).

4-Азидо-2-диэтиламино-1,3,5-триазин-6(1Н)-он (1b) получают аналогично из 3.17 г (1 ммоль) соединения **6b** и 0.69 г (1.05 ммоль) азида натрия. Выход 1.67 г (80%).

Натриевая соль 5-диметиламинотетразоло[1,5-*a*]-1,3,5-триазин-7-она (2а). Суспендируют 1.81 г (1 ммоль) соединения 1а в 15 мл воды. К полученной суспензии при температуре 20–25 °С и перемешивании добавляют по каплям 10 мл 1 н. раствора гидроксида натрия. Исходное соединение постепенно растворяется (0.5–1 ч). Полученный раствор охлаждают при перемешивании до 0–5 °С и выдерживают 3 ч. Выпавший осадок соединения 2а отфильтровывают, промывают 3–4 мл ледяной воды и сушат на воздухе. Получают 1.62 г (выход 80%), т. пл. 264–265 °С (разл.). ИК спектр, v, см⁻¹: 3224, 3000, 2960, 1692, 1590, 1560, 1462, 1420, 1384, 1300, 1192, 1158, 1110, 1074, 1046, 1010, 776, 732. Спектр ЯМР ¹Н (ДМСО-d₆), δ , м. д.: 3.06 (6H, с, NCH₃).

4-Азидо-2-диметиламино-1,3,5-триазин-6(1Н)-он (1а) из соединения 2а. Раствор 0.508 г (0.25 ммоль) соединения **2а** в 30 мл воды при температуре 20–25 °С и перемешивании подкисляют 1 н. соляной кислотой до рН 2–3, выпавший осадок **1а** отфильтровывают, промывают водой и сушат на воздухе. Выход 0.43 г (95%).

Натриевая соль 5-диэтиламинотетразоло[1,5-*a***]-1,3,5-триазин-7-она (2b**). Получают аналогично соединению **2a** из 2.09 г (1 ммоль) соединения **1b**. Выход соединения **2b** 1.39 г (60%), т. пл. 240–241 °C. ИК спектр, v, см⁻¹: 2975, 2935, 2873, 1683, 1579, 1533, 1440, 1384, 1322, 1290, 1234, 1174, 1151, 1103, 1051, 991, 933, 783. Спектр ЯМР ¹Н (ДМСО-d₆), δ, м. д. (*J*, Гц): 1.10 (6H, т, *J* = 7.0, CH₃); 3.54 (4H, к, *J* = 7.0, NCH₂).

4-Азидо-2-диэтиламино-1,3,5-триазин-6(1Н)-он (1b) из соединения 2b. Раствор 0.578 г (0.25 ммоль) соединения **2b** в 30 мл воды при температуре 20–25 °С и перемешивании подкисляют 1 н. соляной кислотой до pH 2–3, выпавший осадок соединения **1b** отфильтровывают, промывают водой и сушат на воздухе. Выход 0.47 г (90%).

СПИСОК ЛИТЕРАТУРЫ

- 1. В. В. Бахарев, А. А. Гидаспов, *XГС*, 466 (2006).
- 2. Общая органическая химия, под ред. Д. Бартона, Д. Оллиса, Химия, Москва, 1985, т. 8, с. 588.
- Б. С. Федоров, М. А. Фадеев, А. А. Гидаспов, Е. А. Косарева, В. В. Бахарев, XTC, 259 (2005). [Chem. Heterocycl. Comp. 41, 228 (2005)].
- Б. С. Федоров, А. Н. Утенышев, М. А. Фадеев, А. А. Гидаспов, Е. В. Качановская, В. В. Бахарев, XГС, 582 (2005). [Chem. Heterocycl. Comp. 41, 496 (2005)].

5. А. А. Гидаспов, В. В. Бахарев, Е. В. Качановская, Н. Г. Якунина, Ю. Н. Булычев, 1218

Хим.-фарм. журн., **36**, № 1, 26 (2002).

- 6. В. А. Островский, В. С. Поплавский, *Синтез гетероциклических соединений*, ЛТИ им. Ленсовета, Ленинград, 1985, с. 5.
- 7. *Общая органическая химия*, под ред. Д. Бартона, У. Д. Оллиса, Химия, Москва, 1985, т. 8, с. 434.
- 8. A. Altomare, G. Cascarano, C. Giacovazzo, D. Viterbo, Acta Crystallogr., A47, 744 (1991).
- G. M. Sheldrick, SHELXL 97, Program for Crystal Structure Refinement, Univ. of Göttingen, Göttingen, Germany, 1997.
- 10. L. J. Farrugia, J. Appl. Crystallogr., 32, 837 (1999).
- L. H. Straver, A. J. Schierbeek, MolEN. Structure Determination System. Nonius B. V. Delft, Netherlands, 1, 2 (1994).
- 12. A. L. Spek, Acta Crystallogr., A46, 34 (1990).

Самарский государственный технический университет, Самара 443100, Россия e-mail: knil@sstu.smr.ru Поступило 22.02.2006

^аИнститут органической и физической химии им. А. Е. Арбузова Казанского научного центра РАН, Казань 420088, Республика Татарстан