Х. А. Асадов, Ф. И. Гусейнов, Б. П. Струнин, Д. В. Бескровный, И. А. Литвинов

С-ФОСФОРИЛИРОВАННЫЕ ФУРАЗАНО[3,4-b]ПИПЕРАЗИНЫ

Взаимодействием фосфорилированных α-хлорацетальдегидов с 3,4-диаминофуразаном синтезированы енамины, бисенамины, полуаминали и О,N-ацетали, циклизация которых приводит к ранее неизвестным представителям С-фосфорилированных фуразано[3,4-*b*]-пиперазинов.

Ключевые слова: O,N-ацеталь, бисенамины, 3,4-диаминофуразан, енамины, полуаминаль, фосфорилированные α-хлорацетальдегиды, фуразано[3,4-*b*]пиперазины.

Производные фуразано[3,4-*b*]пиперазинов используются в качестве энергоемких материалов, полупродуктов в органическом синтезе и биологически активных веществ. Однако препаративные методы получения и химические свойства фосфорилированных фуразанопиперазинов, которые могут быть потенциальными биологически активными веществами, исследованы недостаточно [1, 2].

Для синтеза С-фосфорилированных фуразанопиперазинов мы изучили реакции α -хлорацетальдегидов 1 с диаминофуразаном. Конденсация фосфорилмонохлорацетальдегидов 1a,b с 3,4-диаминофуразаном протекает в кипящем спирте и в зависимости от соотношения исходных реагентов приводит к образованию моно- и бисенаминов 2, 3.

Енамины **2**, **3** являются белыми кристаллическими веществами, в их ИК спектрах аминогруппа регистрируется при 3350 см⁻¹ и, накладываясь на полосу валентных колебаний вторичной аминогруппы, дает сложную форму

результирующего суммарного поглощения. Низкие значения v_{NH2} (таблетки KBr) свидетельствуют о включении указанной группы в водородную связь.

В спектрах ЯМР ¹Н (ДМСО-d₆ и ацетон-d₆) соединений **2**, **3** протоны фрагмента NH–CH=CCl регистрируются в виде характерной группы сигналов: дублет в области 7.7–7.8 м. д. (CH=) с КССВ ${}^{3}J_{PH} = 12.5$ Гц и дублет в более слабом поле 8.9–9.0 м. д. (NH).

В спектре ЯМР ¹Н соединений **3** не происходит смещения сигнала метинового протона в еще более слабое поле, при этом отсутствует уширенный синглет, соответствующий протонам группы NH₂.

Как предполагалось, соединение **2b** при высокой температуре (в кипящем ксилоле) в результате внутримолекулярного нуклеофильного замещения гетероциклизуется в гидрохлорид **4**.

В спектре ЯМР ¹Н (ДМСО-d₆) соединения **4** присутствуют двойной дублет протона группы =СН в области 7.75 м. д., а также два дублета в области 8.10 (⁺NH₂) и 9.00 м. д. (NH) с интенсивностью 2:1. Сигнал в виде синглета, характерный для протонов группы NH₂ в области 6.2 м. д. (для соединения **2b**), полностью исчезает. В спектре ЯМР ³¹Р сигнал меняется с 9.89 до 11.00 м. д.

В ИК спектре соединения **4** имеются полосы валентных колебаний фосфорильной группы при 1280, связи C=C (1635), вторичной аминогруппы (3100) и группы ⁺NH₂ (3280 см⁻¹).

Показано [3], что диэтоксифосфорилфенил- α -хлорацетальдегид в полярном растворителе (MeCN) реагирует с диаминофуразаном с образованием полуаминаля **5**a, а в растворе EtOH образуется O,N-ацеталь **5**b, структура которого доказана методом PCA.

Таблица 1

Соеди- нение	Брутто- формула	<u>Найдено, %</u> Вычислено, %			Тпл⁰С	Выход,
		Cl	Ν	Р	1. iiii., C	%
2a	$C_8H_{14}ClN_4O_4P$	<u>11.88</u> 11.97	<u>18.81</u> 18.89	<u>10.49</u> 10.45	130–132	85
2b	$C_{10}H_{18}ClN_4O_4P$	<u>10.91</u> 10.94	<u>17.22</u> 17.26	<u>9.44</u> 9.55	155–158	87
3 a	$C_{14}H_{24}Cl_2N_4O_7P_2$	<u>14.36</u> 14.40	<u>11.28</u> 11.36	<u>12.53</u> 12.58	145–146	78
3b	$C_{18}H_{32}Cl_2N_4O_7P_2$	<u>12.87</u> 12.93	$\frac{10.17}{10.20}$	<u>11.23</u> 11.29	168–170	81
4	$C_{10}H_{18}ClN_4O_4P$	<u>10.88</u> 10.94	<u>17.16</u> 17.26	<u>9.48</u> 9.55	220–221	83
5a	$C_{14}H_{20}ClN_4O_5P$	<u>9.18</u> 9.09	<u>14.27</u> 14.34	<u>7.98</u> 7.94	152–153	83
5b	$C_{16}H_{24}ClN_4O_5P$	<u>8.57</u> 8.48	<u>13.44</u> 13.38	<u>7.55</u> 7.41	158–159	80
6	$C_{16}H_{23}N_4O_5P$	-	<u>14.34</u> 14.66	<u>8.22</u> 8.12	150–151	76
7	$C_{14}H_{20}ClN_4O_4P$	<u>9.24</u> 9.09	<u>14.42</u> 14.34	<u>8.01</u> 7.94	166–167	69

Характеристики синтезированных соединений

Поскольку кристалл соединения **5b** центросимметричный, то данное соединение находится в форме рацемата (рис.1).

Рис. 1. Геометрия молекулы 5b в кристалле

Соеди- нение	ИК спектр, v, см $^{-1}$	Спектр ЯМР ¹ Н, δ, м. д. (<i>J</i> , Гц)*	Спектр ЯМР ³¹ Р,
2a	1280 (P=O), 1610 (C=C), 3100 (NH), 3350 (NH ₂)	1.25 (6H, τ , ${}^{3}J_{HH} = 12.5$, 2CH ₃); 4.00 (4H, M, 2OCH ₂); 6.00 (2H, ym. c, NH ₂); 7.70 (1H, μ , μ , ${}^{3}J_{HH} = 8.75$, ${}^{3}J_{PH} = 12.5$, =CH); 8.90 (1H, μ , ${}^{3}J_{HH} = 12.5$, NH)	9.8
2b	_	1.25 (12H, μ . μ , ${}^{3}J_{HH} = 7.5$, 4CH ₃); 4.60 (2H, M, 2OCH); 6.20 (2H, ym. c, NH ₂); 7.75 (1H, μ . μ , ${}^{3}J_{HH} = 7.5$, ${}^{3}J_{PH} = 12.5$, =CH); 9.00 (1H, μ , ${}^{3}J_{HH} = 10.0$, NH)	9.89
3a	1280 (P=O), 1605 (C=C), 3140 (NH)	1.20 (12H, д. т, ${}^{3}J_{HH} = 12.5$, 4CH ₃); 4.00 (8H, м, 4OCH ₂); 7.75 (2H, д. д, ${}^{3}J_{PH} = {}^{3}J_{HH} = 12.5$, 2CH=); 8.90 (2H, д, ${}^{3}J_{HH} = 12.5$, 2NH)	12.3
3b	_	1.25 (24H, \exists . τ , ${}^{3}J_{HH} = 15$, 8CH ₃); 4.70 (4H, M, 4OCH); 7.80 (2H, \exists . \exists , ${}^{3}J_{PH} = 12.5$, ${}^{3}J_{HH} =$ = 17.5, 2CH=); 9.00 (2H, \exists , ${}^{3}J_{HH} = 10.0$, 2NH)	12.5
4	1280 (P=O), 1635 (C=C), 3100 (NH), 3280 (H_2N^+)	1.20 (12H, μ , T, ${}^{3}J_{HH} = 17.5$, 4CH ₃); 4.60 (2H, M, 2OCH); 7.75 (2H, μ , μ , ${}^{3}J_{HH} = 7.5$, ${}^{3}J_{PH} = 10.0$, CH=); 8.10 (2H, μ , ${}^{3}J_{HH} = 10.0$, ${}^{+}NH_{2}$); 9.00 (1H, μ , NH)	11.0
5a	1280 (P=O), 1650 (CH–O), 3100 (NH), 3250 (NH ₂), 3340 (OH)	1.10 (6H, д. т, ${}^{3}J_{HH}$ = 22.5, 2CH ₃); 3.90 (4H, м, 2OCH ₂); 5.50 (1H, д, ${}^{3}J_{PH}$ = 5, OCH); 6.00 (2H, уш. с, NH ₂); 7.25 (3H, м, C ₆ H ₅); 7.60 (2H, м, C ₆ H ₅); 10.30 (1H, уш. с, OH); 11.50 (1H, уш. с, NH)	15.0
5b	1280 (P=O), 1640 (CH–O), 3100 (NH), 3250 (NH ₂)	1.0 (9H, д. т, ${}^{3}J_{HH} = 20$, 3CH ₃); 3.75 (4H, м, 2OCH ₂); 4.00 (2H, κ , ${}^{3}J_{HH} = 12.5$, OCH ₂); 5.75 (1H, д, ${}^{3}J_{PH} = 5$, OCH); 6.10 (2H, ym. c, NH ₂); 7.30 (3H, м, C ₆ H ₅); 7.80 (2H, м, C ₆ H ₅); 11.70 (1H, ym. c, NH)	15.15, 15.20
6	1280 (P=O), 1620 (C- O), 3250 (NH)	1.15 (9H, μ . T, ${}^{3}J_{HH} = 22.5$, 3CH ₃); 3.80 (4H, M, 2OCH ₂); 4.10 (2H, κ , ${}^{3}J_{HH} = 10.0$, OCH ₂); 5.00 (1H, μ . T, ${}^{3}J_{HH} = 7.5$, ${}^{3}J_{PH} = 10.0$, OCH); 5.50 (2H, c, NH ₂); 7.35 (3H, M, C ₆ H ₅); 7.50 (2H, M, C ₆ H ₅)	20.83, 20.91
7	1287 (P=O), 1570 (C– O), 3200 (NH)	1.15 (6H, μ . T, ${}^{3}J_{HH} = 20$, 2CH ₃); 4.00 (4H, M, 2OCH ₂); 5.30 (1H, μ . μ , ${}^{3}J_{HH} = 7.5$, ${}^{3}J_{PH} = 12.5$, OCH); 7.25 (3H, M, C ₆ H ₅); 7.50 (2H, M, C ₆ H ₅); 8.20 (2H, μ , ${}^{3}J_{PH} = 7.5$, ${}^{+}NH_{2}$); 9.00 (1H, μ , ${}^{3}J_{HH} = 12.5$, NH); 10.50 (1H, μ , ${}^{3}J_{HH} = 10.0$, OH)	19.8

Спектры ИК, ЯМР ¹Н и ³¹Р синтезированных соединений

*Растворители: (CD₃)₂SO (соединения 2a, 4, 5a,b, 7) и (CD₃)₂CO (соединения 2b, 3a,b и 6).

Конформация вдоль связей Р–С₍₁₂₎ и С₍₈₎–С₍₁₂₎ скрещенная (шахматная), что, возможно, определяется стерическими причинами (при такой конформации терические взаимодействия минимальны). В молекуле **5b**

связи Р=О и С–СІ находятся в гош-положении, а в транс-положении к фосфорильной связи находится связь $C_{(8)}$ – $C_{(12)}$. Фенильный заместитель при атоме $C_{(12)}$ находится в заслоненной конформации со связью $C_{(12)}$ –СІ, по-видимому, также вследствие стерических причин – наличия объемистых заместителей при атоме $C_{(12)}$. Аминофуразановый заместитель имеет плоскую конформацию – торсионный угол $N_{(2)}$ – $C_{(3)}$ – $N_{(7)}$ – $C_{(8)}$ равен 11.5(4)°, что обусловлено сопряжением неподеленной пары электронов атома $N_{(7)}$ с π -системой фуразанового кольца. Длина связи $C_{(3)}$ – $N_{(7)}$ (1.345(4) Å) соответствует этому сопряжению.

Длины связей и валентные углы в фосфонатном фрагменте, бензольном и фуразановом кольце обычные.

Кристалл соединения **5b** стабилизируется системой водородных связей типа N–H...O и N–H...N (рис. 2): между аминофуразановой группой и атомом кислорода фосфорильной группы N₍₇₎–H...O_(21') (3/2–*x*, ¹/₂ +*y*, ¹/₂–*z*), N₍₇₎–H 0.93, N₍₇₎...O_(21') 3.042(3), H...O_(21') 2.15 Å, угол N₍₇₎–H...O_(21') 161°; а также между аминогруппой NH₂, фосфорильной группой и одним из атомов азота фуразанового кольца: N₍₆₎–H₍₆₁₎...O_(21'), N₍₆₎–H₍₆₁₎ 0.75, N₍₆₎...O_(21') 2.903(4), H₍₆₁₎...O_(21') 2.16 Å, угол N₍₆₎–H₍₆₁₎...O_(21') 173°; N₍₆₎–H₍₆₂...N_(5") (2–*x*, 2–*y*, *–z*), N₍₆₎–H₍₆₂₎ 1.12, N₍₆₎...N_(5") 3.019(4), H₍₆₂₎...N_(5") 1.94 Å, угол N₍₆₎–H₍₆₂₎...N_(5") 161°.

За счет этих водородных связей образуется двухмерный слой молекул в плоскости *XOZ* (перпендикулярной оси *0У*).

Параллельная укладка таких слоев в кристалле приводит к образованию стопок молекул.

Как видно из рис. 3, взаимное расположение бензольных и фуразановых колец в этих стопках дает повод предполагать наличие стекингэффекта. Однако геометрические параметры при этом не соответствуют формально принятым для π - π -взаимодействий.

Таблица З

Связь	d, Å	Связь	d, Å
Cl ₍₂₎ -C ₍₁₂₎	1.801(3)	N ₍₇₎ -C ₍₃₎	1.345(4)
P ₍₂₀₎ -O ₍₂₁₎	1.464(2)	N ₍₇₎ -C ₍₈₎	1.452(4)
P ₍₂₀₎ -O ₍₂₂₎	1.561(2)	C ₍₃₎ -C ₍₄₎	1.435(4)
P ₍₂₀₎ -O ₍₂₅₎	1.553(2)	$C_{(8)}-C_{(12)}$	1.542(4)
$P_{(20)} - C_{(12)}$	1.842(3)	$C_{(10)} - C_{(11)}$	1.409(9)
O ₍₁₎ -N ₍₂₎	1.382(4)	$C_{(12)} - C_{(13)}$	1.541(4)
O ₍₁₎ -N ₍₅₎	1.399(4)	$C_{(13)} - C_{(14)}$	1.386(5)
O ₍₉₎ -C ₍₈₎	1.406(4)	$C_{(13)} - C_{(18)}$	1.399(5)
$O_{(9)} - C_{(10)}$	1.437(5)	$C_{(14)} - C_{(15)}$	1.420(5)
O ₍₂₂₎ -C ₍₂₃₎	1.458(5)	C ₍₁₄₎ -H ₍₁₄₎	1.06(3)
O ₍₂₅₎ -C ₍₂₆₎	1.458(5)	$C_{(15)} - C_{(16)}$	1.346(6)
N ₍₂₎ -C ₍₃₎	1.305(4)	$C_{(16)} - C_{(17)}$	1.338(6)
N(5)-C(4)	1.299(4)	$C_{(17)} - C_{(18)}$	1.375(5)
N ₍₆₎ -C ₍₄₎	1.345(4)	$C_{(23)} - C_{(24)}$	1.463(8)

Длины основных связей (d) в молекуле 5b

Рис. 2. Система водородных связей в кристалле 5b

Рис. 3. Стопочная укладка молекул 5b в кристалле

ω, град.	Валентный угол	ω, град.
116.2(1)	$C_{(8)} - C_{(12)} - C_{(13)}$	109.2(2)
114.2(1)	$C_{(12)} - C_{(13)} - C_{(14)}$	123.3(3)
112.2(1)	$C_{(12)} - C_{(13)} - C_{(18)}$	117.8(3)
104.2(1)	$C_{(14)} - C_{(13)} - C_{(18)}$	118.9(3)
100.8(1)	$C_{(13)} - C_{(14)} - C_{(15)}$	117.5(3)
108.0(1)	$C_{(14)} - C_{(15)} - C_{(16)}$	122.3(4)
110.5(2)	$C_{(15)} - C_{(16)} - C_{(17)}$	119.3(4)
114.6(3)	$C_{(16)} - C_{(17)} - C_{(18)}$	121.7(4)
119.1(2)	$C_{(13)} - C_{(18)} - C_{(17)}$	120.2(3)
124.6(2)	$N_{(5)}-C_{(4)}-C_{(3)}$	109.5(3)
106.1(3)	$N_{(6)} - C_{(4)} - C_{(3)}$	126.5(3)
105.3(3)	$O_{(9)} - C_{(8)} - N_{(7)}$	112.4(2)
120.8(2)	$O_{(9)} - C_{(8)} - C_{(12)}$	106.3(2)
124.1(3)	$N_{(7)} - C_{(8)} - C_{(12)}$	113.7(2)
108.6(3)	$O_{(9)} - C_{(10)} - C_{(11)}$	111.0(5)
127.3(3)	$Cl_{(2)}-C_{(12)}-P_{(20)}$	103.1(1)
123.9(3)	Cl ₍₂₎ -C ₍₁₂₎ -C ₍₈₎	108.8(2)
111.4(2)	$O_{(22)} - C_{(23)} - C_{(24)}$	110.0(4)
114.7(2)	O ₍₂₅₎ -C ₍₂₆₎ -C ₍₂₇₎	110.7(4)
109.5(2)		
	ω, град.116.2(1)114.2(1)112.2(1)104.2(1)104.2(1)100.8(1)100.8(1)108.0(1)110.5(2)114.6(3)119.1(2)124.6(2)106.1(3)105.3(3)120.8(2)124.1(3)108.6(3)127.3(3)123.9(3)111.4(2)114.7(2)109.5(2)	ω , град.Валентный угол116.2(1) $C_{(8)}-C_{(12)}-C_{(13)}$ 114.2(1) $C_{(12)}-C_{(13)}-C_{(14)}$ 112.2(1) $C_{(12)}-C_{(13)}-C_{(18)}$ 104.2(1) $C_{(14)}-C_{(13)}-C_{(18)}$ 104.2(1) $C_{(14)}-C_{(15)}-C_{(16)}$ 108.0(1) $C_{(13)}-C_{(14)}-C_{(15)}$ 108.0(1) $C_{(14)}-C_{(15)}-C_{(16)}$ 110.5(2) $C_{(15)}-C_{(16)}-C_{(17)}$ 114.6(3) $C_{(16)}-C_{(17)}-C_{(18)}$ 119.1(2) $C_{(13)}-C_{(18)}-C_{(17)}$ 124.6(2) $N_{(5)}-C_{(4)}-C_{(3)}$ 106.1(3) $N_{(6)}-C_{(4)}-C_{(3)}$ 105.3(3) $O_{(9)}-C_{(8)}-N_{(7)}$ 120.8(2) $O_{(9)}-C_{(8)}-C_{(12)}$ 124.1(3) $N_{(7)}-C_{(8)}-C_{(12)}$ 125.3(3) $O_{(9)}-C_{(10)}-C_{(11)}$ 127.3(3) $Cl_{(2)}-C_{(12)}-P_{(20)}$ 123.9(3) $Cl_{(2)}-C_{(12)}-C_{(8)}$ 111.4(2) $O_{(22)}-C_{(23)}-C_{(24)}$ 114.7(2) $O_{(25)}-C_{(26)}-C_{(27)}$ 109.5(2) $V_{114}-V_{12}-$

Валентные углы (@) между атомами в молекуле соединения 5b

В работе [3] мы сообщали, что при взаимодействии эфира **5b** с этилатом натрия в этиловом спирте с высоким выходом образуется конденсированное гетероциклическое соединение **6** – 3,4,5,6-тетрагидро-4-диэтоксифосфорил-4-фенил-5-этоксифуразано[3,4-*b*]пиперазин – первый представитель фосфорилированных фуразано[3,4-*b*]пиперазинов.

Продолжая исследование реакционной способности полуаминалей 5 и с целью получения новых представителей конденсированных С-фосфорилированных гетероциклических соединений на основе фуразана, мы изучили процесс внутримолекулярной гетероциклизации O,N-ацеталя 5а

Таблица 5

Торсионный угол	τ, град.	Торсионный угол	τ, град.
O ₍₂₁₎ -P ₍₂₀₎ -O ₍₂₂₎ -C ₍₂₃₎	-60.5(3)	N ₍₇₎ -C ₍₈₎ -C ₍₁₂₎ -Cl ₍₂₎	68.9(3)
$O_{(25)} - P_{(20)} - O_{(22)} - C_{(23)}$	66.1(3)	$N_{(7)} - C_{(8)} - C_{(12)} - P_{(20)}$	-46.0(3)
$C_{(12)} - P_{(20)} - O_{(22)} - C_{(23)}$	177.9(3)	$N_{(7)}-C_{(8)}-C_{(12)}-C_{(13)}$	-169.3(2)
$O_{(21)} - P_{(20)} - O_{(25)} - C_{(26)}$	-19.57(3)	$O_{(1)} - N_{(2)} - C_{(3)} - N_{(7)}$	-179.0(3)
$O_{(22)} - P_{(20)} - O_{(25)} - C_{(26)}$	-147.3(3)	$O_{(1)} - N_{(2)} - C_{(3)} - C_{(4)}$	0.4(3)
$C_{(12)} - P_{(20)} - O_{(25)} - C_{(26)}$	106.1(3)	$O_{(1)} - N_{(5)} - C_{(4)} - N_{(6)}$	177.9(3)
$O_{(21)} - P_{(20)} - C_{(12)} - Cl_{(2)}$	74.5(2)	$O_{(1)} - N_{(5)} - C_{(4)} - C_{(3)}$	-1.5(4)
$O_{(21)} - P_{(20)} - C_{(12)} - C_{(8)}$	-167.3(2)	$C_{(8)} - N_{(7)} - C_{(3)} - N_{(2)}$	11.5(4)
$O_{(21)} - P_{(20)} - C_{(12)} - C_{(13)}$	-44.2(2)	$C_{(8)} - N_{(7)} - C_{(3)} - C_{(4)}$	-167.8(3)
$O_{(22)} - P_{(20)} - C_{(12)} - Cl_{(2)}$	-161.2(1)	$C_{(3)} - N_{(7)} - C_{(8)} - O_{(9)}$	-116.6(3)
$O_{(22)} - P_{(20)} - C_{(12)} - C_{(8)}$	-43.1(2)	$C_{(3)} - N_{(7)} - C_{(8)} - C_{(12)}$	122.5(3)
$O_{(22)} - P_{(20)} - C_{(12)} - C_{(13)}$	80.1(2)	$N_{(2)} - C_{(3)} - C_{(4)} - N_{(5)}$	0.7(4)
$O_{(25)} - P_{(20)} - C_{(12)} - Cl_{(2)}$	-52.3(2)	$N_{(2)} - C_{(3)} - C_{(4)} - N_{(6)}$	-178.7(3)
$O_{(25)} - P_{(20)} - C_{(12)} - C_{(8)}$	65.9(2)	$Cl_{(2)}-C_{(12)}-C_{(13)}-C_{(14)}$	-1.6(4)
$O_{(25)} - P_{(20)} - C_{(12)} - C_{(13)}$	-171.0(2)	$Cl_{(2)}-C_{(12)}-C_{(13)}-C_{(18)}$	178.7(2)
$N_{(5)} - O_{(1)} - N_{(2)} - C_{(3)}$	-1.4(3)	$P_{(20)}-C_{(12)}-C_{(13)}-C_{(14)}$	111.9(3)
$N_{(2)} - O_{(1)} - N_{(5)} - C_{(4)}$	1.8(3)	$P_{(20)}-C_{(12)}-C_{(13)}-C_{(18)}$	-67.9(3)
$C_{(10)} - O_{(9)} - C_{(8)} - N_{(7)}$	78.6(3)	$C_{(8)}$ - $C_{(12)}$ - $C_{(13)}$ - $C_{(14)}$	-121.8(3)
$C_{(10)} - O_{(9)} - C_{(8)} - C_{(12)}$	-156.4(3)	$C_{(8)}$ - $C_{(12)}$ - $C_{(13)}$ - $C_{(18)}$	58.5(3)
$C_{(8)} - O_{(9)} - C_{(10)} - C_{(11)}$	93.4(5)	$C_{(12)} - C_{(13)} - C_{(14)} - C_{(15)}$	-179.2(3)
$P_{(20)} - O_{(22)} - C_{(23)} - C_{(24)}$	-103.0(4)	$C_{(18)}$ - $C_{(13)}$ - $C_{(14)}$ - $C_{(15)}$	0.5(5)
$P_{(20)} - O_{(25)} - C_{(26)} - C_{(27)}$	94.7(4)	$C_{(12)} - C_{(13)} - C_{(18)} - C_{(17)}$	179.8(3)
$N_{(7)} - C_{(3)} - C_{(4)} - N_{(5)}$	-179.9(3)	$C_{(14)} - C_{(13)} - C_{(18)} - C_{(17)}$	0.03(6)
$N_{(7)}-C_{(3)}-C_{(4)}-N_{(6)}$	0.7(5)	$C_{(13)}$ - $C_{(14)}$ - $C_{(15)}$ - $C_{(16)}$	-0.8(6)
$O_{(29)}-C_{(8)}-C_{(12)}-Cl_{(2)}$	-55.3(3)	$C_{(14)} - C_{(15)} - C_{(16)} - C_{(17)}$	0.5(6)
$O_{(9)}-C_{(8)}-C_{(12)}-P_{(20)}$	-170.2(2)	$C_{(15)} - C_{(16)} - C_{(17)} - C_{(18)}$	0.2(6)
$O_{(9)}-C_{(8)}-C_{(12)}-C_{(13)}$	66.5(3)	$C_{(16)} - C_{(17)} - C_{(18)} - C_{(13)}$	-0.4(6)

Торсионные углы (τ) в молекуле соединения 5b

в жестких условиях. Установлено, что при кипячении соединения **5**а в толуоле происходит внутримолекулярная нуклеофильная реакция с образованием гидрохлорида фуразано[3,4-*b*]пиперазина 7.

Гетероцикл 7 представляет собой кристаллическое вещество белого цвета, хорошо растворяющееся в спирте, ДМСО, ацетонитриле. Процесс протекает с участием группы NH₂ фуразана и атома галогена в α-положении. Реакция завершается за 8 ч при 105–110 °C.

ИК спектр соединения 7 характеризуется поглощением в области 1570 см⁻¹, что обусловлено валентными колебаниями группы СН–О, а также 1287 (Р=О), 3200 (NH), 3250 (⁺NH₂) и 3340 см⁻¹ (OH).

В спектре ЯМР³¹Р резонансный сигнал атома фосфора смещается с 15.0 до 19.8 м. д., что свидетельствует о протекании реакции в направ- лении гетероциклизации. Присутствие в спектре ЯМР³¹Р двух сигналов доказывает образование смеси диастереомеров.

В спектре ЯМР ¹Н соединения 7 сигнал полуаминального протона смещается в сильные поля (с 5.50 до 5.30 м. д.). Уширенный синглет протонов группы NH₂ в области 6.00 м. д. соединения **5а** исчезает и появляется дублет в области 8.20 м. д., характерный, вероятно, для протонов группы ⁺NH₂. Если в исходном полуаминале сигналы протонов групп OH и NH проявлялись в области 10.30 и 11.50, соответственно, в виде уширенного синглета, то в гетероцикле 7 они проявляются в виде дублета, в области 10.50 и 9.00 м. д.

Таким образом, продукты реакции фосфорилированных хлоральдегидов с диаминофуразаном – енамины **2**, **3**, полуацетали **5a** и O,N-ацетали **5b** являются удобными исходными соединениями для синтеза фосфорилзамещенных фуразано[3,4-*b*]пиперазинов.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

ИК спектры суспензий образцов в вазелиновом масле или таблетках КВг получали на спектрометре UR-20, РСА проводили на автоматическом четырехкружном дифрактометре Enraf-Nonius CAD-4 при температуре 20 °С. Спектры ЯМР ¹Н растворов в ацетоне- d_6 и ДМСО- d_6 регистрировали на спектрометре Tesla BW-567 (100 МГц, ГМДС), спектры ЯМР ³¹Р – на спектрометре Bruker WR-80 (32 МГц, 85% H₃PO₄).

Кристаллы соединения C₁₆H₂₄ClN₄O₅P, моноклинные, бесцветные, призматической формы. Параметры ячейки: a = 10.312(6), b = 11.529(5), c = 17.51(1) Å, $\beta = 92.33(6)^\circ$, V = 2080(2) Å³, $d_{\text{выч}} = 1.25$ г/см³, Z = 4, пространственная группа $P2_1/n$.

Параметры ячейки и интенсивности 4612 отражений, 3155 из которых с $I \ge 3\sigma$, измерены на Си $K\alpha$ -излучении ($\lambda = 1.54184$ Å, графитовый монохроматор, $\omega/2\theta$ -сканирование, $\theta \le 74^\circ$). Падения интенсивности контрольных отражений за время съемки экспериментов не наблюдалось. Был проведен эмпирический учет поглощения μ Cu = 2.639 мм⁻¹. Структура расшифрована прямым методом программой SIR [4] и уточнена вначале в изотропном, затем в анизотропном приближении. Атомы водорода выявлены из разностных рядов электронной плотности. Их вклад в структурные амплитуды учитывался с фиксированными позиционными и изотропными температурными параметрами. Окончательные факторы сходимости в структуре R = 0.052, $R_w = 0.066$ по 2899 независимым отражениям. Все расчеты проведены по комплексу программ MolEN [5] на компьютере AlphaStation 200. Анализ межмолекулярных взаимодействий и рисунки структур получены с помощью программы PLATON [6]. Координаты атомов и геометрические параметры молекулы приведены в табл. 3–5 соответственно.

Синтез енаминов и бисенаминов 2, 3 (общая методика). Смесь 0.02 моль альдегида 1а,b и 0.02 моль 3,4-диаминофуразана кипятят 16 ч в соответствующем спирте. Растворитель удаляют в вакууме, выпавшие кристаллы 3-амино-4-[(2-(диалкоксифосфорил)-2-хлорэтенил- амино)]фуразанов 2а,b отфильтровывают, промывают эфиром и сушат. Выход 85 (2а) и 87% (2b).

3,4-Бис[(2-диалкоксифосфорил)-2-хлорэтениламино]фуразаны За,b получают в аналогичных условиях из 0.04 моль альдегида **1а,b** и 0.02 моль 3,4-диаминофуразана с выходом 78 и 81% соответственно.

Гидрохлорид 3H,6H-4-(диизопропоксифосфорил)фуразано[3,4-*b***]пиперазина (4). Раствор 3.25 г (0.01 моль) соединения 2b** в 20 мл ксилола кипятят 12 ч. Растворитель отгоняют в вакууме. Выпавшие кристаллы соединения **4** отфильтровывают, промывают эфиром и сушат. Выход 2.7 г (83%).

Диэтиловый эфир 2-[(4-аминофуразанил-3)амино]-2-гидрокси-1-фенил-1-хлорэтилфосфорной кислоты (5а). Смесь 5.81 г (20 ммоль) диэтоксифосфорилфенилзамещенного α-хлорацетальдегида и 2 г (20 ммоль) 3,4-диаминофуразана в 30 мл ацетонитрила кипятят 12 ч. Растворитель упаривают, к остатку добавляют 10 мл смеси эфир-этиловый спирт, 1:1. Выпавшие кристаллы отфильтровывают, сушат, перекристаллизовывают из спирта. Выход 6.48 г (83%).

Диэтиловый эфир 2-[(4-аминофуразанил-3)амино]-1-фенил-1-хлор-2-этоксиэтилфосфоновой кислоты (5b). Смесь 5.81 г (20 ммоль) диэтоксифосфорилфенил замещенного α-хлорацетальдегида и 2 г (20 ммоль) 3,4-диаминофуразана в 30 мл этилового спирта кипятят 10 ч. Растворитель удаляют, к остатку добавляют 10 мл смеси эфир-ацетонитрил, 1:1. Выпавшие кристаллы соединения **5b** отфильтровывают, промывают эфиром, перекристаллизовывают из ацетонитрила. Выход 6.7 г (80%).

3,4,5,6-Тетрагидро-4-(диэтоксифосфорил)-4-фенил-5-этоксифуразано[3,4-*b***]пиперазин (6). К раствору 0.23 г (10 ммоль) металлического натрия в 20 мл этилового спирта при 50 °C при перемешивании добавляют по каплям раствор соединения 5b** в 10 мл спирта. Реакционную смесь кипятят 8 ч. Растворитель упаривают, к остатку добавляют 15 мл эфира, осадок (NaCl) отфильтровывают, фильтрат упаривают в вакууме, выпавшие кристаллы соединения **6** отфильтровывают, перекристаллизовывают из ацетона. Выход 2.9 г (76%).

Гидрохлорид 3,4,5,6-тетрагидро-5-гидрокси-4-диэтоксифосфорил-4-фенилфуразано[3,4-*b*]пиперазина (7). Раствор 3.9 г (0.01 моль) соединения 5а в 20 мл толуола кипятят 8 ч. Растворитель отгоняют, к остатку добавляют 6 мл смеси эфир–гексана, 1:1. Выпавшие кристаллы соединения 7 отфильтровывают, промывают эфиром и сушат. Выход 2.7 г (69%).

СПИСОК ЛИТЕРАТУРЫ

- 1. А. Б. Шереметев, Успехи химии, 68, 154 (1999).
- 2. А. Б. Шереметев, И. Л. Юдин, *Успехи химии*, 72, 93 (2003).
- 3. Ф. И. Гусейнов, Х. А. Асадов, Р. Н. Бурангулова, В. В. Москва, *XTC*, 1140 (2001). [(*Chem. Heterocycl. Comp.*, **37**, 1052 (2001)].
- 4. A. Altomare, G. Cascarano, C. Giacovazzo, D. Viterbo, Acta Crystallogr., A47, 744 (1991).
- 5. L. H. Straver, A. J. Schreibeek, *MOLEN. Structure Determination System, Nonius B. V. Delft, Netherlands*, 1994, **1**, **2**.
- 6. A. L. Spek, Acta Crystallogr., A46, 34 (1990).

Казанский государственный технологический университет, Казань 420015, Россия e-mail: eltos@Kai.Ru Поступило 02.12.2003 После доработки 06.04.2006