Е. В. Громачевская, Т. П. Косулина, А. А. Бородавко

ИССЛЕДОВАНИЯ В ОБЛАСТИ 4Н-3,1-БЕНЗОКСАЗИНОВ

14*. СТРУКТУРА И НЕКОТОРЫЕ СВОЙСТВА 2-[2-ГИДРОКСИФЕНИЛ(НАФТИЛ)]-1,2-ДИГИДРО-4Н-3,1-БЕНЗОКСАЗИНОВ

Установлено, что конденсация третичных аминофенилкарбинолов с 2-гидроксибенз-(нафт)альдегидами приводит как к соответствующим 1,2-дигидробензоксазинам, так и к их структурным изомерам – основаниям Шиффа. Взаимодействием 2-[2-гидроксифенил-(нафтил)]-1,2-дигидро-4H-3,1-бензоксазинов с алифатическими альдегидами получены замещенные 3,1-бензоксазино[1,2-c][1,3]бенз(нафт)оксазины.

Ключевые слова: 3,1-бензоксазино[1,2-*с*][1,3]бенз(нафт)оксазины, 2-гидроксибенз-(нафт)альдегиды, 1,2-дигидро-4H-3,1-бензоксазины, изомеры, масс-спектры.

Основным способом получения 1,2-дигидро-4H-3,1-бензоксазинов является конденсация *о*-аминобензиловых спиртов с карбонильными соединениями в условиях кислотного катализа [2, 3]. Спектральными методами доказана их структура [3, 4]. Однако установлено, что гетероцикл, не замещенный в положении 4, может находиться в таутомерном равновесии с открытой (азометиновой) формой [3]. Наиболее ярко эта тенденция выражена в соединениях, у которых альтернативная непредельная структура стабилизирована внутримолекулярной водородной связью [3, 5].

Развивая исследования в этой области, взаимодействием карбинолов 1а-с с салициловыми альдегидами 2а-d в уксуснокислой среде мы получили серию 2,4,4-тризамещенных 1,2-дигидро-4H-3,1-бензоксазинов 3a-f(схема 1) и изучили их свойства. При аналогичном взаимодействии карбинолов 1a,b с 3-гидрокси-2-нафтальдегидом были получены желтооранжевые кристаллы нафтилбензоксазинов 4a,b (табл. 1). Циклическая структура соединений 3a-f была подтверждена анализом их ИК, УФ и ЯМР ¹H спектров (табл. 2).

X = H, Br

* Сообщение 13 см. [1].

1 a R = Ph, b R = Et, c R = Me; 2 a R¹ = H, b R¹ = NO₂, c, d R¹ = Br, a-c R² = H, d R² = NO₂; 3 a-d, g, j-l R = Ph, e,h R = Et, f, i R = Me, a R¹ = H, b,e,f R¹ = NO₂, c, d R¹ = Br, a-c,e,f R² = H, d R² = NO₂, g-i R³ = 5-метилфурил-2, j R³ = фурил-2, k R³ = 5-нитрофурил-2, l R³ = CCl₃; 4 a R = Ph, b R = Et; 5 a-g R = Ph, h,i R = Et, j R = Me, a,e,g R¹ = H, b-d,f,h-j R¹ = NO₂, a-j R² = H, a,c,h,j R³ = H, b R³ = n-Pr, d R³ = n-C₆H₁₃, e, f, i R³ = Me, g R³ = *i*-Bu; 6 a, c, d R = Ph, b R = Et, a,b R³ = H, c R³ = Me, d R³ = n-C₆H₁₃

Схема 1

1231

Соеди- нение	Брутто- формула	<u>Найдено,%</u> Вычислено, %		Т. пл., °С	R_f	Выход,	
		С	Н	N		(0000303)	%
3a	C ₂₆ H ₂₁ NO ₂	$\frac{82.53}{82.32}$	<u>5.31</u> 5.54	<u>3.92</u> 3.69	160–170	0.35	75
3b	$C_{26}H_{20}N_2O_4\\$	<u>73.85</u> 73.58	<u>4.55</u> 4.72	$\frac{6.35}{6.60}$	155–158	0.30	72
3c	C ₂₆ H ₂₀ BrNO ₂	<u>68.33</u> 68.27	<u>4.42</u> 4.38	<u>3.10</u> 3.06	146–148	0.80	65
3d	$C_{26}H_{19}BrN_2O_4$	<u>62.21</u> 62.15	<u>3.72</u> 3.78	<u>5.49</u> 5.58	191–193 0.65		65
3e	$C_{18}H_{20}N_2O_4$	<u>65.52</u> 65.58	<u>6.42</u> 6.09	<u>8.92</u> 8.54	123–125 0.30		65
3f	$C_{16}H_{16}N_2O_4$	<u>64.08</u> 64.00	<u>5.42</u> 5.33	<u>9.28</u> 9.33	130–132	0.35	60
3g	$C_{25}H_{11}NO_2$	<u>81.78</u> 81.74	<u>5.59</u> 5.72	<u>3.68</u> 3.81	163–165 0.75		60
3h	$C_{17}H_{21}NO_2$	<u>75.32</u> 75.28	<u>7.61</u> 7.75	$\frac{5.05}{5.17}$	45–47	0.6	55
3i	C ₁₅ H ₁₇ NO ₂	<u>74.18</u> 74.07	<u>6.83</u> 6.99	<u>5.59</u> 5.76	109–110	0.45	52
5a	C ₂₇ H ₂₁ NO ₂	<u>82.42</u> 82.86	<u>5.62</u> 5.37	<u>3.20</u> 3.58	215	0.59	70
5b	$C_{30}H_{26}N_2O_4$	<u>75.74</u> 75.31	<u>5.31</u> 5.44	<u>5.52</u> 5.86	170–172	0.70	55
5c	$C_{27}H_{20}N_2O_4$	<u>74.55</u> 74.31	<u>4.31</u> 4.58	<u>6.15</u> 6.42	228-230	0.60	65
5d	$C_{33}H_{32}N_2O_4$	<u>76.48</u> 74.15	<u>6.34</u> 6.15	<u>5.12</u> 5.38	200–201	0.75	45
5e	$C_{28}H_{23}NO_2$	<u>82.51</u> 82.96	<u>5.83</u> 5.68	<u>3.21</u> 3.46	200–205	0.73	60
5f	$C_{28}H_{22}N_2O_4$	<u>74.42</u> 74.67	<u>4.65</u> 4.89	<u>6.53</u> 6.22	218–220 0.40		60
5g	C ₃₁ H ₂₉ NO ₂	<u>83.57</u> 83.22	$\frac{6.72}{6.48}$	$\frac{3.28}{3.13}$	172–173	0.57	60
5h	$C_{19}H_{20}N_2O_4$	$\frac{67.42}{67.06}$	<u>5.62</u> 5.88	<u>8.48</u> 8.23	123–124	0.70	65
5i	$C_{20}H_{22}N_2O_4$	<u>67.45</u> 67.79	<u>6.03</u> 6.21	<u>7.64</u> 7.90	140–142	0.55	68
5j	$C_{17}H_{16}N_2O_4$	<u>65.32</u> 65.38	<u>5.16</u> 5.12	<u>8.91</u> 8.97	135–137	0.65	70
6a	C ₃₁ H ₂₃ NO ₂	<u>84.72</u> 84.35	<u>5.44</u> 5.21	<u>3.41</u> 3.17	250–252	0.48	72
6b	$C_{23}H_{23}NO_2$	$\frac{80.21}{80.80}$	<u>6.82</u> 6.66	$\frac{4.11}{4.06}$	102–105	0.52	70
6c	$C_{32}H_{25}NO_2$	<u>84.58</u> 84.39	<u>5.22</u> 5.49	$\frac{3.35}{3.07}$	236–237	0.68 (Бензол +	65
6d	$C_{37}H_{35}NO_2$	<u>84.82</u> 84.57	$\frac{6.31}{6.67}$	$\frac{2.43}{2.67}$	198–201	эфир) 0.58	35

Таблица 1 Физико-химические характеристики соединений За–i, 5а–j и 6а–d

Charmana			2. :	5	Co d
спектральные ха	рактеристики	соединении	Ja−i	, ja-j	, oa-u

Соеди- нение	ИК спектр, v, см ⁻¹ (вазелиновое масло)	Спектр ЯМР ¹ Н (CDCl ₃)*, б, м. д. (<i>J</i> , Гц)
1	2	3
3 a	3330 (NH); 3200–3070 (OH)	4.40 (1H, уш. с, NH); 5.60 (1H, с, H-а); 6.90 (8H, м, Н _{аром}); 7.27 (10H, м, (С ₆ H ₅) ₂); 8.40 (1H, уш. с, OH)
3b	3350 (NH); 3300–3100 (OH); 1520, 1325 (NO ₂)	4.45 (1H, ym. c, NH); 5.60 (1H, c, H-a); 6.80 (5H, м, C ₆ H ₄ + H _γ); 7.32 (10H, м, (C ₆ H ₅) ₂); 7.95 (1H, c, H-α); 8.15 (1H, д, ${}^{3}J_{\beta\gamma}$ =8.0, H-β); 9.50 (1H, ym. c, OH)
3c	3600–3200 (OH), 3320 (NH)	5.70 (1H, c, H-a); 6.30 (1H, c, NH); 6.90 (16H, м, H _{аром}); 7.75 (1H, c, H-a); 9.70 (1H, c, OH)
3d	3600–3300 (OH), 3320 (NH); 1520, 1350 (NO ₂)	5.80 (1H, c, H-a); 6.20 (1H, yш. c, NH); 6.55 (1H, д. д, H-7), 6.62 (1H, д, H-8), 6.75 (1H, д, H-5), 7.00 (1H, д. д, H-6), ${}^{3}J_{8,7}$ = 7.7; ${}^{3}J_{7,6}$ = 6.5; ${}^{3}J_{5,6}$ = 7.7; 7.30 (10H, м, (C ₆ H ₅) ₂); 8.15 и 8.17 (2H, с. с, H-α + H-β); 10.55 (1H, уш. с, OH)
3e	3340 (NH); 3250–3300 (OH); 1510, 1330 (NO ₂)	0.55 и 1.25 (6H, два т, (CH ₃) ₂), 1.60, 1.80, 2.15 и 2.25 (4H, четыре к, (CH ₂) ₂), ${}^{3}J_{\text{CH}_{2}}$ сн ₃ = 7.0; 4.52 (1H, уш. с, NH); 5.45 (1H, с, H-а); 7.10 (5H, м, (C ₆ H ₄) + H- γ); 8.15 (1H, д, ${}^{3}J_{\beta\gamma}$ = 7.7; H- β); 8.25 (1H, с, H- α); 9.20 (1H, уш. с, OH)
3f	3400–3100 (OH); 3300 (NH); 1530, 1310 (NO ₂)	1.55 и 1.62 (6H, два с, (CH ₃) ₂); 5.80 (1H, уш. с, NH); 5.90 (1H, с, H-a); 6.80 (5H, м, (C ₆ H ₄) + H- γ); 8.00 (1H, д, ³ $J_{\beta\gamma}$ = 7.5, H- β); 8.35 (1H, с, H- α); 10.85 (1H, уш. с, OH)
3g	3450 (NH)	2.25 (3H, c, CH ₃); 4.35 (1H, π , NH), 5.45 (1H, π , H-a), ³ $J_{\text{H}\alpha\text{NH}}$ = 5.0; 5.85 (1H, π , H _{4ϕyp}), 6.30 (1H, π , H _{3ϕyp}), ³ $J_{3,4}$ = 3.0; 6.85 (4H, M, C ₆ H ₄); 7.25 (10H, M, (C ₆ H ₅) ₂)
3h	3400 (NH)	0.6 и 1.0 (6H, два т, (CH ₃) ₂), 1.60, 1.80, 1.92 и 2.15 (4H, четыре к, (CH ₂) ₂), ${}^{3}J_{CH_{2}}$ _{CH 3} = 7.5; 2.35 (3H, c, CH ₃); 5.50 (1H, c, H-a); 5.85 (1H, уш. c, NH); 6.00 (1H, д, H _{4фур}), 6.35 (1H, д, H _{3фур}) ${}^{3}J_{3,4}$ = 3.0; 6.80 (4H, м, C ₆ H ₄)
3i	3360 (NH)	1.50 и 1.60 (6Н, два с, (СН ₃) ₂); 2.35 (3Н, с, СН ₃); 5.55 (1Н, с, H-a); 5.90 (1Н, уш. с, NН); 6.00 (1Н, д, Н _{4фур}), 6.35 (1Н, д, Н _{3фур}), ³ J _{3,4} = 3.0; 6.80 (4Н, м, С ₆ Н ₄)
5a	-	5.15 и 5.25 (2Н, два д, ${}^{2}J_{bc}$ = 8.0, H _b +H _c); 5.35 (1Н, с, H _a); 7.20 (18Н, м, H _{аром})
5b	1510, 1330 (NO ₂)	0.90 (3H, T, ${}^{3}J_{CH_{2} CH_{3}} = 6.5$, CH ₃); 1.51 (4H, M, (CH ₂) ₂); 5.40 (1H, c, H _a); 5.72 (1H, T, ${}^{3}J_{CHCH_{2}} = 5.0$, H _b); 7.10 (15H, M, C ₆ H ₄ +(C ₆ H ₅) ₂ +H _{γ}), 8.05 (1H, c, H _a); 8.20 (1H, д, ${}^{3}J_{\beta\gamma} = 7.8$, H _β)

Окончание таблицы 2

1	2	3
5c	1520, 1340 (NO ₂)	5.35 и 5.45 (2H, два д, ${}^{2}J_{bc}$ = 7.5, H _b +H _c); 5.55 (1H, c, H _a); 7.25 (15H, м, C ₆ H ₄ +(C ₆ H ₅) ₂ +H _γ); 7.90 (1H, c, H _a); 8.20 (1H, д, ${}^{3}J_{\beta\gamma}$ = 8.0, H _β)
5d	1520, 1330 (NO ₂)	0.85 (3H, т, ³ <i>J</i> _{CH 2 CH 3} = 7.0, CH ₃); 1.65 (10H, м, (CH ₂) ₅); 5.30
	(1102)	(1H, c, H _a); 5.95 (1H, т, ${}^{3}J_{CHCH}{}_{2}$ = 5.5, H _b); 7.25 (15H, м, C ₆ H ₄ +(C ₆ H ₅) ₂ +H _γ); 7.85 (1H, c, H _α); 8.20 (1H, д, ${}^{3}J_{\beta\gamma}$ = 7.5, H _β)
5e	_	1.62 (3H, д, CH ₃), 5.35 (1H, к, H _b), ³ <i>J</i> _{CHCH 3} = 6.0; 5.50 (1H, с, H _a); 7.25 (18H, м, H _{аром})
5f	1510, 1350 (NO ₂)	1.57 (3H, д, CH ₃), 5.45 (1H, к, H _b), ${}^{3}J_{CHCH_{3}} = 6.0$; 5.75 (1H, c, H _a); 7.15 (15H, м, C ₆ H ₄ +(C ₆ H ₅) ₂ +H _γ); 7.9 (1H, c, H _α); 8.2 (1H, д, ${}^{3}J_{\beta\gamma} = 7.6, H_{\beta}$)
5g	_	1.10 (6Н, д, ³ <i>J</i> _{CHCH 3} = 6.9, (CH ₃) ₂); 1.57 (2Н, м, CH ₂); 2.55 (1Н,
		м, CH); 5.40 (1H, c, H _a); 5.71 (1H, т, ${}^{3}J_{CHCH_{2}} = 5.0, H_{b}$); 7.05 (18H, м, H _{аром})
5h	1510, 1330 (NO ₂)	0.55 и 1.20 (6H, два, т, (CH ₃) ₂), 1.65, 1.82, 2.15 и 2.35 (4H, четыре к, (CH ₂) ₂), ${}^{3}J_{CH_{2}CH_{3}} = 7.0$; 5.05 (2H, с, H _b +H _c); 5.45 (1H, с, H _a); 7.20 (5H, м, C ₆ H ₄ +H _γ); 8.15 (1H, д, ${}^{3}J_{\beta\gamma} = 7.8$, H _β); 8.25 (1H, с, H _a)
5i	1520, 1330 (NO ₂)	0.58 и 1.18 (6H, два т, (CH ₃) ₂), 1.55 (3H, д, CH ₃), 1.65, 1.85, 2.15 и 2.28 (4H, четыре к, (CH ₂) ₂), ³ J _{CH₂ CH₃} = 7.0, 5.30 (1H, к,
		³ J_{CHCH_3} = 5.5, H _b); 5.45 (1H, c, H _a); 7.15 (5H, м, C ₆ H ₄ +H _γ); 8.15 (1H, д, ³ $J_{\beta\gamma}$ = 7.8, H _β); 8.20 (1H, c, H _α)
5j	1520, 1340 (NO ₂)	1.50 и 1.65 (6H, два с, (CH ₃) ₂); 5.25 и 5.35 (2H, два с, H _b +H _c); 5.50 (1H, с, H _a); 7.10 (5H, м, C ₆ H ₄ +H _γ); 8.10 (1H, д, ${}^{3}J_{\beta\gamma}$ = 7.7, H _β); 8.35 (1H, с, H _α)
6a	3030, 1610, 1590; 1080, 1040	5.10 (1H, д, H _b), 5.42 (1H, д, H _c), ² J _{bc} = 8.0; 5.65 (1H, с, H _a); 7.35 (20H, м, H _{аром})
6b	3030, 1610, 1580; 1070, 1030	0.42 (3H, T, CH _{3(a)}), 1.25 (3H, T, CH _{3(e)}), ${}^{3}J_{\text{CH}_{2} \text{ CH}_{3}} = 7.1; 2.08$ (4H, M, (CH ₂) ₂); 4.95 (1H, д, H _b), 5.20 (1H, д, H _c), ${}^{2}J_{\text{bc}} = 7.0; 5.90$ (1H, c, H _a); 7.50 (10H, M, H _{apon})
6с	3030, 1610, 1580; 1080, 1060	1.68 (3H, м, CH ₃); 5.80 (1H, с, H _a); 6.35 (1H, к, ${}^{3}J_{CHCH_{3}} = 6.0$, H _b); 7.10 (20H, м, H _{аром})
6d	30.30, 1590, 1580, 1050, 1100	0.80 (3H, т, ${}^{3}J_{\text{CH}_{2} \text{ CH}_{3}} = 6.0$, CH ₃); 1.22 (10H, м, (CH ₂) ₅); 5.85 (1H, т, ${}^{3}J_{\text{CHCH}_{2}} = 7.0$, H _b); 7.05 (1H, с, H _a); 7.45 (20H, м, H _{аром})

* Спектр ЯМР ¹Н соединений **5с, d** снимали в ДМСО-d₆.

В ИК спектрах этих соединений наблюдаются полосы поглощения валентных колебаний связей N–H в области 3320–3350 см⁻¹ и уширенные полосы поглощения валентных колебаний связей OH в области 3000–3600 см⁻¹, свидетельствующие о наличии внутримолекулярной водородной связи [6]. Вместе с тем, в ИК спектрах соединений **4a**,**b** наряду с полосами валентных колебаний групп OH и NH в области 3600–3030 см⁻¹ наблюдаются полосы валентных колебаний азометинового фрагмента 1630–1610 см⁻¹.

В УФ спектрах соединения **За** присутствуют два максимума поглощения в области 242 и 277 нм, характеризующие бензоксазиновую структуру [2]. Однако в УФ спектрах соединений **4а,b** наряду с коротковолновыми максимумами поглощения при 231 и 263 нм (структура **A**) наблюдаются два длинноволновых максимума при 317 и 450 нм, которые, по-видимому, характеризуют более длинную цепь π - π *- и ρ - π *-сопряжения системы азометина (**B**), доказывая наличие в спиртовых растворах этих соединений таутомерного равновесия структур с циклической (**A**) и линейной (**B**) формами [6].

В спектрах ЯМР ¹Н соединений **За–f** присутствуют уширенные синглеты протонов фенольных групп в области δ 8.4–10.8, протонов NH (δ 4.4–6.3), а также синглеты протонов H_a (δ 5.4–5.9 м. д.), подтверждающие циклическую структуру бензоксазинов. В то же время в спектрах ЯМР ¹Н соединений **4a**,**b** присутствуют сигналы как протонов циклической формы **A** (H_a δ 4.2–4.8, фенольного OH δ 8.81–9.25 и NH δ 8.08–8.35 м. д.), так и линейной (азометиновой) формы **B** (CH=N δ 8.55, OH_{фен} δ 9.68–9.80 и OH_{сп} δ 6.32–6.42 м. д.). Сравнение интегральных интенсивностей этих сигналов позволило определить соотношение форм **A** – **B**, 1 : 4.

Анализ масс-спектров соединений **3а–d,f** и **4а,b** (табл. 3) показывает наличие во всех образцах пиков молекулярных ионов $[M]^+$. Для фрагментации M^+ дигидробензоксазинов **3а–d,f** (схема 2) характерен отрыв 2-гидроксибензальдегида [ретродиеновый распад (РДР)] либо радикала ароматического альдегида (РДР + Н) с образованием ионов Φ_2 и Φ_4 , которые, в свою очередь, элиминируют атом или молекулу водорода [Φ_3 (процесс РДР–H)]. Ионы $\Phi_2-\Phi_4$ являются характеристическими при масс-спектральном распаде M^+ 2,4-замещенных 1,2-дигидро-4H-3,1-бензоксазинов [4].

Кроме того, актом фрагментации молекулярного иона исследуемых соединений является потеря воды с образованием иона Φ_1 , что специфично для распада насыщенных спиртов [7] и может указывать на наличие в изучаемых структурах гидроксильной группы. Таким образом, на основании данных спектрального анализа (см. табл. 2, 3) нами установлено, что продукты **3а–f** являются замещенными дигидробензоксазинами, а соединения **4a,b** – смесью структурных изомеров **A** и **B** (см. схему 1) с преобладанием последнего.

Схема 2

Масс-спектры соединений 3a-d,f, 4a,b, 5a,d,h,j, 6b

Соеди- нение*	<i>m/z (I</i> _{отн} , %)**
3 a	379 (12), 361 (23), 258 (30), 256 (100), 255 (16), 254 (22), 180 (95), 165 (30), 152 (22), 121 (30), 105 (26), 77 (38)
3b	424 (25), 406 (15), 258 (23), 256 (100), 255 (19), 254 (20), 180 (45), 165 (18), 105 (19), 77 (30)
3c	457 (20), 439 (90), 272 (6), 258 (50), 256 (100), 255 (31), 254 (38), 180 (35), 165 (15), 152 (10), 105 (12), 77 (18)
3d	502 (10), 484 (8), 258 (10), 256 (100), 254 (15), 180 (22), 165 (5), 105 (8), 77 (5)
3f	300 (28), 285 (18), 282 (5), 267 (9), 144 (30), 134 (60), 133 (100), 132 (65), 118 (28), 106 (10), 91 (31), 77 (16)
4a	429 (28), 411 (95), 272 (18), 258 (51), 256 (100), 255 (81), 254 (38), 180 (60), 172 (13), 165 (42), 105 (30), 77 (71)
4b	333 (29), 315 (5), 304 (35), 286 (13), 162 (36), 160 (100), 159 (40), 144 (61), 132 (20), 115 (40), 91 (15), 77 (20)
5a	391 (25), 313 (10), 270 (100), 194 (5), 180 (9), 165 (22), 152 (8), 132 (3), 121 (8), 105 (4), 91 (10), 77 (12)
5d	520 (52), 435 (80), 354 (100), 270 (19), 254 (3), 206 (4), 180 (3), 165 (22), 91 (3), 77 (4)
5h	340 (18), 311 (100), 265 (6), 174 (12), 144 (10), 132 (15), 130 (15), 118 (6), 91 (8), 77 (10)
5j	312 (15), 297 (12), 146 (100), 131 (20), 130 (30), 118 (10), 117 (13), 106 (6), 91 (18), 77 (16)
6b	345 (15), 316 (48), 174 (100), 144 (39), 132 (21), 130 (40), 118 (27), 115 (33), 91 (19), 77 (35)

* Соединение **3g** – M⁺ 367; соединение **3h** – M⁺ 271.

В дигидробензоксазинах **3а–d** и **4а,b** (форма **A**) имеются два потенциальных реакционных центра, способных взаимодействовать с карбонильными соединениями – аминогруппа NH и фенольная группа. Реакционная способность таких систем в подобных реакциях изучалась ранее в ряду дигидрохиназолинонов [8], имеющих гидроксильную группу в β-положении арильного заместителя, стоящего в положении 2 гетероцикла. Для дигидробензоксазинов такие реакции мало изучены и представлены единичными примерами [5, 9].

^{**} Приведены пики М⁺ и интенсивные пики ионов. Для соединений **3с,d** значения *m/z* рассчитаны на легкий изотоп галогена.

Мы изучили реакции соединений **3**а,**b**,**e**,**f** и **4**а,**b** с алифатическими, ароматическими и фурановыми альдегидами.

Установлено, что дигидробензоксазины **3a**,**b**,**e**,**f** и **4a**,**b** взаимодействуют с алифатическими альдегидами в уксусной кислоте [2], образуя с выходом 45 – 70% соответствующие замещенные тетра(пента)циклические структуры – 3,1-бензоксазино[1,2-c][1,3]бензоксазины **5a**–**j** и 3,1-бензоксазино[1,2-c][1,3]нафтоксазины **6a**–**d**. Получение последних возможно в случае смещения равновесия таутомеров **A** и **B** в сторону циклической формы **A** по мере ее участия в реакции (см. схему 1, табл. 1, 2).

Выходы и легкость осуществления описываемых реакций зависят от размера радикала атакующего алифатического альдегида. С формальдегидом реакция протекает при комнатной температуре. Взаимодействие соединений **3b** и смеси изомеров **4a** с гептаналем идет при более высокой температуре при 34–36 °C в течение 3 ч с образованием продуктов **5d** и **6d** с выходом 45 и 35% соответственно (табл. 1). Контроль осуществляли методом TCX.

В спектрах ЯМР ¹Н соединений **5а,с**, **6а,b** наблюдаются сигналы геминальных протонов H_b и H_c в виде двух дублетов, а в соединениях **5f,i**, **6c** и **5d,g**, **6d** – сигналы протона H_B в виде квадруплетов и триплетов, соответственно (табл. 2), подтверждающие структуру гетероцикла. В спектрах ЯМР ¹Н соединений **5h,j** отсутствует дублетное расщепление протонов H_b и H_c , но тетрациклическая структура этих соединений подтверждается данными масс-спектрометрии, поскольку фрагментация их молекулярных ионов [M]⁺ подчиняется общей схеме (табл. 3, схема 3). Начальный масс-спектральный распад M⁺ соединений **5a,d,h,j**, **6b** происходит с отрывом 2-гидроксибенз(нафт)оильных (процесс РДР + H [4]) и алифатических радикалов R и R³ с образованием катионов Φ_4 , Φ_7 , Φ_9 соответственно.

Согласно механизму взаимодействия аминоспиртов с альдегидами [10, 11], первым актом в образовании 3,1-бензоксазино[1,2-с][1,3]бенз(нафт)оксазинов 5а-j, 6а-d является, вероятно, нуклеофильное присоединение аминогруппы дигидробенз(нафт)оксазинов **3а–d**, **4а,b** к карбонильному углероду с образованием интермедиата С (см. схему 1). Далее реакция может протекать по двум направлениям, что определяется как структурой бензоксазинов, так и альдегида. Образование дополнительного шестичленного гетероцикла и, соответственно, структур 5а-j, 6а-d характерно лишь для алифатических альдегидов. При переходе к более объемным или ароматическим альдегидам (хлораль, фурфурол, нитрофурфурол, метилфурфурол) происходит замена в исходном субстрате 2-гидроксифенильного (нафтильного) или 2-гидрокси-5-нитрофенильного радикала на радикал атакующего альдегида. Константы образующихся при этом дигидробензоксазинов 3j-I соответствуют приведенным в [4]. Данные впервые описанных нами дигидробензоксазинов За-і представлены в экспериментальной части и в табл. 1 и 2.

С кетонами (ацетон, метилэтилкетон) дигидробензоксазины **3а-d** не реагируют, вероятно, из-за стерических препятствий.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

ИК спектры сняты на приборе Specord-71 и Инфралюм ФТ-02 в вазелиновом масле и в CCl₄, спектры ЯМР ¹Н – на приборах Tesla BS-467 (60 МГц), Varian VXR-400 (400 МГц) и Bruker DRX 500 (500 МГц), внутренний стандарт ТМС. Масс-спектры получены на приборе Varian МАТ CH-6 при прямом вводе вещества в ионизирующую камеру при температуре 50–180 °C и энергии ионизации 70 эВ. Электронные спектры записаны на спектрометре Specord UV-vis в этаноле. ТСХ осуществляли в бензоле и системе бензолэфир, 4:1, на пластинах Silufol UV-254, проявитель пары иода.

о-Аминофенилкарбинолы 1а-с получают взаимодействием метилового эфира антраниловой кислоты с соответствующими алкилмагнийгалогенидами [2]. Карбинол 1b. Выход 76%, т. пл. 59–60 °C. Найдено, %: С 73.9; Н 9.20; N 7.6. С₁₁Н₁₇NO. Вычислено, %: С 74.2; Н 9.5; N 7.8.

Дигидробензоксазины 3а-f получают по методике [2] в уксусной кислоте при комнатной температуре.

Смесь 2-(2-гидроксинафтил)-4,4-дифенил-1,2-дигидро-4H-3,1-бензоксазина (4а, A) и *о*-(3-гидрокси-2-нафтилиденаминофенил)дифенилметанола (4а, B). К раствору 1.76 г (6.4 ммоль) карбинола 1а в 5–7 мл уксусной кислоты при активном перемешивании добавляют 1.1 г (6.4 ммоль) 3-гидрокси-2-нафтальдегида, смесь нагревают 2 ч на водяной бане при температуре 40–50 °С, охлаждают, выделившийся осадок отфильтровывают и промывают небольшим количеством уксусной кислоты и воды. Выход 72%, т. пл. 160– 164 °С. ИК спектр (тонкий слой), v, см⁻¹: 3600, 3540, 3200, 3030, 1610, 1590. УФ спектр (EtOH), λ_{max} , нм (lg ε): 231 (4.65), 263 (4.6), 317 (3.99), 450 (4.01). Спектр ЯМР ¹Н (ДМСО-d₆), δ , м. д: **А** – 8.81 (1H, с, OH_ф), 8.08 (1H, с, NH), 6.5–7.8 (20H, м, H_{аром}), 4.2 (1H, с, H_a); **В** – 9.68 (1H, с, OH_ф), 8.55 (1H, с, CH=N), 6.5–7.8 (20H, м, H_{аром}) и 6.42 (1H, с, OH_{cn}). Найдено, %: С 84.72; H 5.44; N 3.41. C₃₁H₂₃NO₂. Вычислено, %: C 84.35; H 5.21; N 3.17. M⁺ 429.

Смесь 2-(2-гидрокси-нафтил)-4,4-диэтил-1,2-дигидро-4H-[3,1]-бензоксазина (4b, A) и *о*-(3-гидрокси-2-нафтилиденаминофенил)диэтилметанола (4b, B) получают аналогично. Выход 70%, т. пл. 98–103 °С. ИК спектр (тонкий слой), v, см⁻¹: 3400, 3290, 3100, 3030, 1630, 1590, 1580. Спектр ЯМР ¹Н (ДМСО-d₆), δ , м. д: A – 9.25 (1H, с, OH_{ϕ}), 8.35 (1H, с, NH), 6.7–7.8 (10H, м, H_{аром}), 4.8 (1H, с, H_a), 2.25 (4H, м, 2CH₂) и 0.95 (6H, т, 2CH₃); B – 9.80 (1H, с, OH_{ϕ}), 8.55 (1H, с, CH=N), 6.7–7.8 (10H, м, H_{аром}), 6.32 (1H, с, OH_c), 1.75 (4H, м, 2CH₂), 0.75 (6H, т, 2CH₃). Найдено, %: С 80.21; H 6.82; N 4.11. C₂₃H₂₃NO₂. Вычислено, %: С 80.80; H 6.66; N 4.06. М⁺ 333.

4,4-Дифенил-2-(5-метилфур-2-ил)-1,2-дигидро-4Н-3,1-бензоксазин (**3g**). А. К раствору 0.32 г (0.84 ммоль) бензоксазина **3a** в 5 мл уксусной кислоты при комнатной температуре и перемешивании добавляют небольшими порциями раствор 0.09 г (0.84 ммоль) 5-метилфурфурола в 2–3 мл уксусной кислоты, перемешивают 30–40 мин, выпавшие кристаллы отфильтровывают, перекристаллизовывают из спирта и сушат. Выход 0.18 г (60%).

Б. К раствору 0.38 г (0.84 ммоль) дигидробензоксазина **5a** (смесь изомеров **A** и **B**) в 5 мл уксусной кислоты при перемешивании добавляют небольшими порциями раствор 0.09 г (0.84 ммоль) 5-метилфурфурола в 3 мл уксусной кислоты. Смесь нагревают на водяной бане (40–45 °C) в течение 2–3 ч до исчезновения желтой окраски. Смесь охлаждают, перекристаллизовывают из спирта, сушат. Выход 0.14 г (45%).

4,4-Диэтил(метил)-2-(5-метилфур-2-ил)-1,2-дигидро-4H-3,1-бензоксазины 3h,i (см. табл. 1) получают аналогично из дигидробензоксазинов **3e,f** по методике А.

Дигидробензоксазины 3j-I получают по методикам А и Б.

4,4-Дифенил-3,1-бензоксазино[1,2-с][1,3]бензоксазин (5а). Смесь 0.95 г (2.5 ммоль) дигидробензоксазина **3а** и 0.2 мл формалина, содержащего 2.5 ммоль формальдегида, в 10 мл уксусной кислоты перемешивают при комнатной температуре в течение 40 мин. Наблюдают исчезновение осадка исходного дигидробензоксазина **3а** и выпадение нового осадка. Его отфильтровывают, промывают водным спиртом (3:1), сушат и перекристаллизовывают из толуола. Выход 0.69 г (70%).

Соединения 5b-j и 6а-с получают аналогично, используя дигидробензоксазины 3a,b,e,f, 4a,b и соответствующие альдегиды.

11-Гексил-4,4-дифенил-15-нитро-3,1-бензоксазино[1,2-с][1,3]бензоксазин (5d). Смесь 1.06 г (2.5 ммоль) дигидробензоксазина 3b и 0.28 г (2.5 ммоль) гептаналя в 10 мл уксусной кислоты перемешивают в течение 3 ч при температуре 35–40 °C. Образовавшийся осадок отфильтровывают, промывают водным спиртом (3:1), сушат и перекристаллизовывают из толуола. Выход 0.58 г (45%).

11-Гексил-4,4-дифенил-3,1-бензоксазино[1,2-с][1,3]нафтоксазин (6d) получают аналогично из 4а и гептаналя.

СПИСОК ЛИТЕРАТУРЫ

- 1. Е. В. Громачевская, Г. Д. Крапивин, В. Е. Заводник, В. Г. Кульневич, *XTC*, 1391 (1997). [*Chem. Heterocycl. Comp.*, **33**, 1209 (1997)].
- Е. В. Громачевская, В. Г. Кульневич, Т. П. Косулина, В. С. Пустоваров, XГС, 842 (1988). [Chem. Heterocycl. Comp., 24, 692 (1988)].
- Е. В. Громачевская, Ф. В. Квитковский, Т. П. Косулина, В. Г. Кульневич, ХГС, 163 (2003). [Chem. Heterocycl. Comp., 39, 137 (2003)].
- Е. В. Громачевская, Т. П. Косулина, В. Г. Кульневич, Ю. Ю. Самитов, А. И. Хаяров, В. Т. Дубоносов, XIC, 101 (1990). [Chem. Heterocycl. Comp., 26, 86 (1990)].
- 5. F. Fulop, L. Lazar, C. Bernath, Magy. Kem. Folyoirat, No. 5, 212 (1989).
- 6. Л. А. Казицина, Н. Б. Куплецкая, Применение УФ, ИК, ЯМР и масс-спектроскопии в органической химии, Высш. школа, Москва, 1979, 236 с.
- Г. Будзикевич, К. Джерасси, Д. Уильямс, Интерпретация масс-спектров органических соединений, Мир, Москва, 1966, 304 с.
- 8. О. А. Лукьянов, П. Б. Гордеев, Изв. АН СССР. Сер. хим., 2523 (1988).
- 9. L. Lazar, F. Fulor, G. Bernath, A. Kalmaw, G. Argay, J. Heterocycl. Chem., 28, 1213 (1991).
- Е. В. Громачевская, И. С. Арустамова, Р. Б. Валеев, Б. А. Баженов, А. Г. Сахабутдинов, В. Г. Кульневич, XГС, 1687 (1985). [Chem. Heterocycl. Comp., 21, 1391 (1985)].
- 11. Е. В. Громачевская, И. С. Арустамова, А. Г. Сахатбутдинов, В. Г. Кульневич, *ХГС*, 1670 (1988). [*Chem. Heterocycl. Comp.*, **24**, 1381 (1988)].

Кубанский государственный технологический университет, Краснодар 350072, Россия e-mail:kosylina@rambler.ru Поступило 22.04.2004 После доработки 28.09.2005