

Химия гетероциклических соединений 2023, 59(11/12), 826-832

Однореакторное тиометилирование пиррола и индолов

Внира Р. Ахметова¹*, Данил В. Леонтьев¹, Эльмира М. Галимова¹, Екатерина С. Мещерякова¹

¹ Институт нефтехимии и катализа– обособленное структурное подразделение

Уфимского федерального исследовательского центра РАН,

пр. Октября, 141, Уфа 450075, Россия; e-mail: vnirara@mail.ru

Поступило 15.06.2023 Принято после доработки 15.09.2023

Осуществлена C(sp²)Н-функционализация пиррола, индола, индолил-3-уксусной кислоты (гетероауксина) и 2-амино-3-(индол-3-ил)пропионовой кислоты (триптофана) однореакторной реакцией *С*-тиометилирования формальдегидом и меркаптанами в пиридине, одновременно играющем роль катализатора и растворителя. Показан синтез структурно разнообразных сульфанилметилиндолов в зависимости от природы реагентов.

Ключевые слова: гетероауксин, индол, пиррол, триптофан, формальдегид, S-нуклеофил, однореакторный синтез, тиометилирование.

Интерес к индольным биологически активным субстанциям¹⁻⁹ – триптофану, гетероауксину, мелатонину, серотонину, индометацину – связан с их фармакологическими и антиоксидантными свойствами, а также свойствами регуляторов роста растений и агентов их стрессоустойчивости. Известны серосодержащие соединения на основе пирролов и индолов как природного происхождения (например, брассинин, фаллоидин), которые в основном являются биологически активными алкалоидами, так и синтетического происхождения (умифеновир, ТМС647055),¹⁰ которые проявляют свойства антибиотиков, антисептиков, антиоксидантов, сорбентов, фунгицидов и т. п.

Использование однореакторного синтеза серосодержащих производных пиррола и индолов открывает удобный путь к получению соединений с полифункциональными свойствами. Известно, что подобные молекулы перспективны как полидентатные лиганды для металлокомплексов.¹¹ В литературе имеются данные о синтезах серосодержащих пирролов и индолов *С*-тиолированием, ^{12–14} функционализацией серосодержащими аминами и альдегидами с последующей гетероциклизацией, ^{15–17} а также трансформацией в тиометильные продукты в два этапа через хлорметильные, ¹⁸ аминометильные, ^{19,20} метилольные²¹ или альдегидные²² производные субстратов реакциями с *S*-нуклеофильными реагентами. Однако однореакторное *С*-тиометилирование пиррола и индолов не описано в литературе, хотя известно однореакторное *C*(sp²)Н-тиометилирование карбонильных CH-кислот в енольной форме смесью формальдегид– H_2S или альдегид–тиолы²³ по а-положению. С учетом этого целью настоящего исследования было разработать условия однореакторного *С*-тиометилирования ароматических N-гетероциклов, таких как пиррол и индолы.

На примере пиррола (1а) изучена реакция в однореакторном режиме с формальдегидом и тиолами – 2-меркаптоэтанолом (2а) и пропан-2-тиолом (2b) (схема 1). Показано, что на реакцию $C(sp^2)$ -функционализации пиррола 1а по положениям 2 и 5 влияют такие факторы, как порядок смешения, температура, растворитель, катализатор (табл. 1). Пиррол 1а в присутствии сильных оснований подвергается тиометилированию с образованием трудноразделимой смеси 1,2(2,5)-дисульфанилметил- и 1,2,5-трисулфанилметилзамещенных пирролов (табл. 1, опыты 2, 4, 5, 8, 12, 15, 22), тогда как под действием кислот Льюиса подвергается осмолению (опыты 1, 3, 7, 11, 18, 19, 20). Селективная $C(sp^2)$ Н-функционализация пиррола проходит в присутствии пиридина (опыты 6, 9, 10, 13, 14, 16, 17, 23), возможно, это связано с тем, что, по сравнению с другими основаниями, константа кислотности пиридина р K_{aBH+} 5.21²⁴ значительно выше чем, например, у триэтиламина – 11.01. Функционализация пиррола (**1a**) проходит также в эмульсии C₆H₁₄–H₂O с выходом целевого продукта **4a** 35–50% (опыты 10, 14, 16, 17). Реакция реализуется при смешении пиррола (**1a**) сначала с формальдегидом, а затем с меркаптаном (опыты 13, 14, 16, 17, 23) и несколько хуже в условиях многокомпонентной реакции (опыты 6, 9, 10, 21). В качестве побочного продукта наряду с целевыми продуктами во всех опытах образуется 1,3-оксатиолан (**3a**) (>30%) (схемы 1–4).

Для установления границ применимости метода изучено *С*-тиометилирование индола (**1b**) и его производных: гетероауксина (**1c**) и триптофана (**1d**).

Реакция прямого $C(sp^2)$ Н-тиометилирования индола (1b) протекает по положению 3 с низкой конверсией и низкой селективностью (<20%), основным продуктом в данных условиях является метиленбисиндол 3b. В режиме ГХ/МС был обнаружен промежуточный

Схема 1

$$\begin{array}{c}
\swarrow \\ N \\
H \\
 2a,b \\
 1a \\
a \\
R = (CH_2)_2OH, b \\
R = i-Pr \\
\end{array}
\begin{array}{c}
2CH_2O \\
Py, rt-70^{\circ}C, 4 \\
3a \\
(30-70\%) \\
\end{array}
\begin{array}{c}
S \\
+ \\
S \\
Aa,b \\
(30-60\%) \\
4a,b \\
(20-60\%) \\
\end{array}$$

Таблица 1. Условия синтеза и выходы соединений 4а, b

Опыт	Тиол	Порядок смешения	Растворитель	Катализатор	Продукт (выход, %)
1	2a	$\mathbf{2a} + CH_2O + \mathbf{1a}$	H ₂ O	NaOH	Смола
2	2a	$\mathbf{2a} + \mathrm{CH}_2\mathrm{O} + \mathbf{1a}$	H ₂ O	Et ₃ N	Смесь
3	2a	$\mathbf{2a} + \mathbf{CH}_2\mathbf{O} + \mathbf{1a}$	H_2O	InCl ₃	Смола
4	2a	$\mathbf{2a} + \mathbf{CH}_2\mathbf{O} + \mathbf{1a}$	MeOH	Et ₃ N	Смесь
5	2a	MKP*	H_2O	NaOBu	Смесь
6	2a	МКР	H_2O	Пиридин	4a (20)
7	2a	МКР	H_2O	Пиридин — $AlCl_3$	Смола
8	2a	МКР	MeOH	Et ₃ N	Смесь
9	2a	МКР	Пиридин	-	4a (20)
10	2a	МКР	C_6H_{14} , H_2O	Пиридин	4a (45)
11	2a	МКР	C_6H_{14} , H_2O	$Zn(OAc)_2$	Смола
12	2a	$\mathbf{1a} + \mathrm{CH}_{2}\mathrm{O} + \mathbf{2a}$	H_2O	Et ₃ N	Смесь
13	2a	$\mathbf{1a} + \mathrm{CH}_{2}\mathrm{O} + \mathbf{2a}$	Пиридин	-	4a (60)
14	2a	$\mathbf{1a} + \mathrm{CH}_{2}\mathrm{O} + \mathbf{2a}$	C ₆ H ₁₄ , CHCl ₃ , EtOAc, H ₂ O	Пиридин	4a (35)
15	2a	$\mathbf{1a} + \mathrm{CH}_{2}\mathrm{O} + \mathbf{2a}$	C ₆ H ₁₄ , CHCl ₃ , H ₂ O	Морфолин	Смесь
16	2a	$\mathbf{1a} + \mathrm{CH}_{2}\mathrm{O} + \mathbf{2a}$	C ₆ H ₁₄ , CHCl ₃ , H ₂ O	Пиридин	4a (45)
17	2a	$\mathbf{1a} + \mathrm{CH}_{2}\mathrm{O} + \mathbf{2a}$	C_6H_{14} , H_2O	Пиридин	4a (50)
18	2a	$\mathbf{1a} + \mathrm{CH}_{2}\mathrm{O} + \mathbf{2a}$	C_6H_{14} , H_2O	Zn(OAc) ₂	Смола
19	2b	$\mathbf{2b} + \mathrm{CH}_2\mathrm{O} + \mathbf{1a}$	H_2O	Zn(OAc) ₂	Смола
20	2b	МКР	H_2O	$Zn(OAc)_2$	Смола
21	2b	МКР	C_6H_{14} , H_2O	Пиридин	Смесь
22	2b	$\mathbf{1a} + \mathrm{CH_2O} + \mathbf{2b}$	H_2O	Et ₃ N	Смесь
23	2b	$\mathbf{1a} + \mathrm{CH_2O} + \mathbf{2b}$	Пиридин	-	4b (35)
24	2b	$\mathbf{1a} + \mathrm{CH_2O} + \mathbf{2b}$	C ₆ H ₁₄ , CHCl ₃ , H ₂ O	Пиридин	Смесь

* МКР – многокомпонентная реакция.

продукт А (m/z 147), который далее, очевидно, предпочтительней взаимодействует с индолом (1b), чем с меркаптаном, с образованием нецелевого метиленбисиндола 3b с выходом 32% (схема 2). Продукт 5с получен с выходом 15%, а соединения 5а, b – в следовых количествах (3-5%). Параллельно 2-меркаптоэтанол (2а) при взаимодействии с формальдегидом образует 1,3-оксатиолан (За).

В масс-спектрах соединений 5а, в проявляются молекулярные массы: для соединения 5а в массспектре высокого разрешения – m/z 206.0664 [M-H]⁻ (теоретическое значение *m/z* 206.0645), для соединения **5b** в спектре ГХ/МС -m/z 205 [M]⁺ (рис. S11, S12, файл сопроводительных материалов).

Реакционноспособным производным индола оказалась индолил-3-уксусная кислота (1с) (схема 3), известная своими природными рострегулирующими функциями растений как гормон гетероауксин.²⁵

При использовании 1,2-меркаптоэтанола (2а) многокомпонентная реакция гетероауксина (1c) реализуется в различных условиях (табл. 2). Оказалось, что реакция проходит в EtOAc в присутствии кислот Льюиса или SiO₂, однако наибольший выход целевого продукта 6а достигается в смеси EtOAc-пиридин, 4:1 или в пиридине.

дегидом и меркаптанами 2а-е образуются соединения 6а-е (табл. 3). Трансформация гетероауксина 1с при взаимодействии с 1,2-меркаптоэтиламинами 2f,g в конденсированные трициклические системы - тетрагидро-1Н-1,4,6-тиадизоцино[4,3-а]индолилуксусные кислоты 7а, b – проходит в пиридине по пути амино- и тиометилирования с участием реакционных центров $2-C(sp^2)$ и 1-NH субстрата. Реакция рацемического триптофана (1d) в однореак-

При взаимодействии гетероауксина (1с) с формаль-

торных условиях при последовательном смешении реагентов приводит к гетероциклизации субстрата через образование дигидро-β-карболина, что характерно для молекул 1d в реакциях с карбонильными соединениями.²⁶ Монотиолы не взаимодействуют с триптофаном в разработанных условиях вследствие их низкой реакционной способности, тогда как 2-меркаптоэтанол (2а) вступает в реакцию гетероциклизации с образованием тетрациклической конденсированной системы 8 с формированием дегидропиперидинового и 1.4-тиазинанового циклов (схема 4).

Однако L-цистеин вступает в реакцию с триптофаном (1d) с образованием конденсированной макро-

Таблица 3. Время реакций получения и выходы соединений 6а-е и 7а, b

	Габлица 2. Условия си		Тиол	Время, ч	Продукт	Выход, %		
	Порядок смешения	Растворитель	тель Катализатор Выход, %		2a	4	6a	92
-	_	PhH	$ZnCl_2 \cdot 2H_2O$	20	2b	12	6b	30
	MKP*	EtOAc	$MgSO_4$	45	2c	12	6c	35
	МКР	EtOAc	SiO_2	75	2d	6	6d	25
	МКР	Пиридин	-	50	2e	6	6e	30
	$\mathbf{1c} + \mathrm{CH_2O} + \mathbf{2a}$	EtOAc-пиридин	-	98	2f	2	79	90
_	$\mathbf{1c} + \mathrm{CH_2O} + \mathbf{2a}$	Пиридин	-	92	21	2	7a =1	
1	k MI/D		2g	2	7 b	67		

* МКР - многокомпонентная реакция.

гетероциклической структуры 9. Вероятно, реакция триптофана 1d с формальдегидом проходит аналогично с образованием дигидро-β-карболина, который под действием аминокислоты подвергается рециклизации– внедрению по механизму, сходному для конденсированных пирролоазагетероциклов.²⁷

Для всех полученных соединений 3а-с, 4a,b, 5c, 6а-е, 7а, b, 8 в масс-спектрах высокого разрешения проявляется соответствующий квазимолекулярный ион. В спектрах ЯМР общим характеристическим сигналом для тиометилированных производных 4a,b, 6a-e, 7a,b, 9 является метиленовая группа между атомом серы и N-гетероциклическим фрагментом, проявляющаяся в спектрах ЯМР ¹Н в интервале 3.67-3.89 м. д., а в спектре ЯМР ¹³С в области 31.22–34.39 м. д. в зависимости от заместителя. В случае гетероауксина (1с) характерный сигнал для метиленовой группы между индолом и карбоксильной группой у серосодержащих производных смещен в более сильное поле на $\Delta\delta$ 1–2 м. д. в спектрах ЯМР ¹Н и на $\Delta\delta$ 10–30 м. д. в спектрах ЯМР ¹³С. С целью отнесения сигналов ЯМР в спектре трициклического соединения 7а были проведены гомогетерокорреляционные эксперименты И COSY. ¹H-¹³C HSQC, ¹H-¹³C HMBC. Согласно эксперименту 1 H– 13 C HSQC, найдены следующие корреляции (δ_{H}/δ_{C}): 2.92/29.5, 3.05/55.2, 3.66/31.1, 4.00/57.9 и т. д. (рис. 1а). Отнесения сигналов с учетом спин-спиновых взаимодействий в спектрах COSY и ¹H-¹³C HMBC представлены на рис 1b. Гетероядерные взаимодействия в спектре ¹H-¹³С НМВС метиленовых атомов углерода при карбоксильной группе СН₂СООН с метиленовыми атомами водорода группы CH₂N, а также карбонильного атома углерода с метиленовыми атомами водорода группы CH₂S наблюдаются, вероятно, как результат образования ассоциатов из молекул 7а (рис. 1*с*). Очевидно, в растворе ДМСО- d_6 происходит образование цвиттер-иона взаимодействием аминогруппы одной молекулы с карбоксильной группой другой молекулы, что приводит к сближению в пространстве метиленовых групп соседних молекул. Как результат, вследствие образования цвиттер-иона –⁺NH₂/COO⁻ в спектре ЯМР ¹Н кислотный протон при карбоксильной группе смещен в более сильное поле.

Кристаллы соединения **3с**, полученные выращиванием из ДМСО- d_6 (рис. S3, S4, файл сопроводительных материалов), отличаются от ранее описанных кристаллов (*R*)-1,3-тиазолидин-3-иум-4-карбоксилата (NELSEC), выращенных из H₂O. Молекула **3с**, как и ранее описанная молекула, кристаллизуется в форме цвиттериона, однако значения геометрических параметров в структуре отличаются от литературных данных.²⁸ Так, N,S-содержащий гетероцикл принимает конформацию "конверт", отклонение атома серы от средней плос-

Рисунок 2. Молекулярная структура соединения **3с** в представлении атомов эллипсоидами тепловых колебаний с 50% вероятностью

Рисунок 1. *а*) Гетероядерные корреляции сигналов в спектре ${}^{1}\text{H}{-}{}^{13}\text{C}$ HSQC, *b*) спин-спиновые взаимодействия в спектрах COSY (синие стрелки) и ${}^{1}\text{H}{-}{}^{13}\text{C}$ HMBC (зеленые стрелки), *c*) межмолекулярные взаимодействия в спектре ${}^{1}\text{H}{-}{}^{13}\text{C}$ HMBC (розовые стрелки) соединения **7а**.

кости N(1)–C(2)–C(3)–C(4) составляет 0.861(2) Å. В кристаллах описанного (R)-тиопролина между молекулами формируются водородные связи N–H···O, которые в молекуле **3с** меньше, по сравнению с литературными данными,²⁸ и составляют соответственно 2.06(2) и 1.78(3) Å для связей N(1)–H(1b)···O(2) и N(1)–H(1a)···O(1). Кроме того, описанный в статье²⁸ короткий контакт S···S имеет большую длину по сравнению с аналогичным контактом в кристаллах **3с**.

Таким образом, разработаны условия прямого *С*-тиометилирования пиррола и индолов в пиридине. Показано, что, в зависимости от природы индолов и тиолов, реакция проходит либо как $C(sp^2)H$ -функционализация (пиррола, индола, гетероауксина), либо как гетероциклизация с участием одновременно групп $C(sp^2)H$ и NH или групп $C(sp^2)H$ и OH субстратов (гетероауксина, триптофана).

Экспериментальная часть

Одномерные спектры ЯМР ¹Н, ¹³С (400 и 500, 100 и 125 МГц соответственно), двумерные спектры COSY и ¹H-¹³C HSQC, ¹H-¹³C HMBC зарегистрированы на спектрометрах Bruker Avance 400 и Bruker Avance 500 в CDCl₃, ДМСО-*d*₆ и D₂O, внутренний стандарт ТМС. Масс-спектры высокого разрешения записаны на массспектрометре Bruker Maxis impact ионизации электрораспылением, напряжение на капилляре 3.5 кВ, температура 200°С, скорость потока при вводе растворенного образца - 3 мкл/мин, элюенты: MeCN (по умолчанию, если не указан другой элюент), H₂O, 20% водный метанол или ДМСО. В режиме детектирования положительно заряженных ионов зафиксированы квазимолекулярные массы $[M+H]^+$, $[M+Na]^+$, $[M+K]^+$ или [2М+H]⁺. В режиме детектирования отрицательно заряженных ионов зафиксированы квазимолекулярные массы [М-Н]-или [2М-Н]-. Контроль за ходом реакций осуществлен методом TCX на пластинах Sorbfil (ПTCX-АФ-А), элюент гексан-ЕtOAc, 1:2, проявление парами иода. Соединения 7а, 8, 9 получены в чистом виде без очистки. Для колоночной хроматографии использован силикагель КСК (100-200 мкм). Контроль за чистотой полученных соединений осуществлен с помощью ТСХ, ГХ/МС и масс-спектрометрии высокого разрешения. Масс-спектры соединений 4b, 5b,с выполнены в режиме ГХ/МС на хроматографе Shimadzu GC2010 масс-спектрометрическим детектором GCMS-QP2010 Ultra в условиях химической ионизации при атмосферном давлении с капиллярной колонкой Supelco, газ-носитель гелий. Температура инжектора и интерфейса 260°С, ионного источника 200°С, элюент MeCN или EtOAc.

Получение С-тиометилированных N-гетероциклов 4a,b, 5c, 6a–e, 7a,b, 8, 9 (общая методика). В стеклянный реактор, установленный на магнитной мешалке, при комнатной температуре последовательно загружают 2 мл пиридина, 1 ммоль N-гетероцикла, избыток (1.5–2 ммоль) 37% формальдегида, перемешивают при 30°С. Через 10–15 мин смесь начинают нагревать и спустя полминуты добавляют 1 ммоль (2 ммоль для пиррола (1а)) тиола 2а–g. Реакционную смесь перемешивают при температуре 70°С в течение 4–12 ч. Реакционную смесь отмывают от пиридина C_6H_{14} , оставляют сушить на воздухе и далее очищают колоночной хроматографией (элюенты гексан, CHCl₃, EtOAc, EtOH).

1,3-Оксатиолан (3а).²⁹ Выход 30–70%. Спектр ЯМР ¹³С (125 МГц, ДМСО-*d*₆), δ, м. д.: 33.6 (S<u>C</u>H₂CH₂); 61.6 (O<u>C</u>H₂CH₂); 65.6 (OCH₂S).

Ди(1*H***-индол-3-ил)метан (3b)**.^{10,30} Выход 32%. Масс-спектр (ГХ/МС), m/z ($I_{\text{отн}}$, %): 246 [M]⁺.

Тиазолиндин-4-карбоксилат (3с).^{28,31} Оранжевые кристаллы (высаждение из ДМСО-*d*₆). Т. пл. 204–206°С.

2,2'-{[(1*H***-Пиррол-2,5-диил)бис(метилен)]бис-(сульфандиил)}бис(этан-1-ол) (4а)**. Выход 150 мг (60%), коричневое масло. R_f 0.18. Спектр ЯМР ¹Н (400 МГц, CDCl₃), δ , м. д. (*J*, Гц): 2.67 (4H, т, ³*J* = 5.8, HOC<u>H</u>₂CH₂); 3.66 (4H, т, ³*J* = 5.8, SC<u>H</u>₂CH₂); 3.75 (4H, с, SCH₂Ar); 3.83 (2H, с, OH); 5.93 (2H, д, ³*J* = 2.4, H Ar); 8.77 (1H, с, NH). Спектр ЯМР ¹³С (100 МГц, CDCl₃), δ , м. д.: 28.7 (S<u>C</u>H₂CH₂); 34.4 (SCH₂Ar); 60.7 (HO<u>C</u>H₂CH₂); 108.1 (CH Ar); 128.1 (C Ar). Найдено, *m/z*: 270.0593 [M+Na]⁺. C₁₀H₁₇NNaO₂S₂. Вычислено, *m/z*: 270.0593.

2,5-Бис(изопропил)сульфанилметил-1*H*-пиррол (4b). Выход 80 мг (35%), коричневое масло. $R_{\rm f}$ 0.78. Спектр ЯМР ¹H (400 МГц, CDCl₃), δ , м. д. (J, Гц): 1.23 (12H, д, ³J = 6.5, CH₃); 2.76 (2H, м, CH); 3.75 (4H, с, SCH₂Ar); 5.89 (2H, д, ³J = 2.5, H Ar); 8.49 (1H, с, NH). Спектр ЯМР ¹³C (100 МГц, CDCl₃), δ , м. д.: 23.1 (CH₃); 27.7 (CH); 34.3 (SCH₂Ar); 107.3 (CH Ar); 124.1 (C Ar). Массспектр (ГХ/МС), m/z: 243 [M]⁺.

3-[(Циклогексилсульфанил)метил]-1*Н***-индол (5с)**. Выход 30 мг (15%), красное масло. *R*_f 0.95 (ЕtOAc). Спектр ЯМР ¹H (500 МГц, CDCl₃ + EtOAc), δ, м. д. (*J*, Гц): 1.29 (4H, т, ³*J* = 7.3, CH₂); 2.06 (3H, с, CH, CH₂); 3.27 (1H, с, NH); 4.12–4.16 (2H, м, SCH₂Ar); 5.29–5.51 (4H, м, CH₂); 7.05–7.25 (3H, м, H Ar); 7.37–7.46 (1H, м, H Ar); 7.59–7.65 (1H, м, H Ar). Спектр ЯМР ¹³C (125 МГц, CDCl₃ + EtOAc), δ, м. д.: 25.9; 26.1; 69.6 (CH₂); 33.4 (SCH₂Ar); 69.2 (CH); 102.7; 125.6; 127.5; 136.1 (C Ar); 109.6; 119.4; 119.8; 122.2 (CH Ar). Масс-спектр (ГХ/МС), *m/z*: 245 [M]⁺.

2-(2-{[(2-Гидроксиэтил)сульфанил]метил}-1*H*-индол-**3-ил)уксусная кислота (6а)**. Выход 240 мг (92%), бесцветный порошок. R_f 0.33. Спектр ЯМР ¹H (500 МГц, CDCl₃), δ , м. д. (*J*, Гц): 2.51 (2H, т, ³*J* = 5.8, HOC<u>H</u>₂CH₂); 3.45 (2H, т, ³*J* = 5.8, SC<u>H</u>₂CH₂); 3.75 (2H, с, SCH₂Ar); 4.15 (2H, м, ArC<u>H</u>₂COOH); 5.08 (1H, с, NH); 5.08 (2H, с, OH); 7.15 (1H, т, ³*J* = 7.3, H Ar); 7.24 (1H, т, ³*J* = 7.5, H Ar); 7.36 (1H, д, ³*J* = 8.0, H Ar); 7.58 (1H, д, ³*J* = 7.5, H Ar). Спектр ЯМР ¹³С (125 МГц, CDCl₃), δ , м. д.: 30.9 (S<u>C</u>H₂CH₂); 33.4 (SCH₂Ar); 47.7 (Ar<u>C</u>H₂COOH); 61.3 (HO<u>C</u>H₂CH₂); 108.1; 127.0; 128.4; 135.8 (C Ar); 110.2; 119.3; 120.1; 122.4 (CH Ar); 176.2 (COOH). Найдено, *m/z*: 266.0759 [M+H]⁺. C₁₃H₁₆NO₃S. Вычислено, *m/z*: 266.0845.

2-{2-[(Изопропилсульфанил)метил]-1*Н***-индол-3-ил}уксусная кислота (6b)**. Выход 80 мг (30%), желтое масло. *R*_f 0.33 (гексан–ЕtOAc, 1:1). Спектр ЯМР ¹Н (500 МГц, CDCl₃), δ, м. д. (*J*, Гц): 1.30 (6H, д, ³*J* = 4.5, CH₃); 3.12– 3.22 (1H, м, CH); 3.69 (2H, с, SCH₂Ar); 3.76 (2H, т, ${}^{3}J$ = 6.5, ArC<u>H</u>₂COOH); 4.83 (1H, с, NH); 4.91 (1H, с, NH₂⁺/COO⁻); 7.10 (1H, т, ${}^{3}J$ = 7.3, H Ar); 7.16 (1H, т, ${}^{3}J$ = 7.3, H Ar); 7.36 (1H, д, ${}^{3}J$ = 8.0, H Ar); 7.56 (1H, д, ${}^{3}J$ = 7.5, H Ar). Спектр ЯМР ¹³С (125 МГц, CDCl₃), δ , м. д.: 23.6 (CH₃); 31.5 (SCH₂Ar); 34.2 (CH); 34.6 (ArCH₂COOH); 108.7; 126.7; 128.5; 135.9 (C Ar); 109.9; 119.1; 119.9; 122.2 (CH Ar); 176.3 (COOH). Найдено, *m/z*: 264.0956 [M+H]⁺. С₁₄H₁₈NO₂S. Вычислено, *m/z*: 264.1053.

2-{2-[(Циклогексилсульфанил)метил]-1*H*-индол-**3-ил}уксусная кислота (6с)**. Выход 100 мг (35%), оранжевое масло. R_f 0.63 (ЕtOAc). Спектр ЯМР ¹H (500 МГц, CDCl₃), δ , м. д. (*J*, Гц): 1.24–1.50 (8H, м, CH₂); 1.89 (1H, д, ³*J* = 13, CH); 2.01–2.20 (2H, м, CH₂); 2.93 (1H, с, NH); 3.81 (2H, с, SCH₂Ar); 4.77 (2H, с, ArCH₂COOH); 5.20 (1H, с, NH₂⁺/COO⁻); 7.17 (1H, т, ³*J* = 7.5, H Ar); 7.27 (1H, т, ³*J* = 7.8, H Ar); 7.43 (1H, д, ³*J* = 8.0, H Ar); 7.62 (1H, д, ³*J* = 7.5, H Ar). Спектр ЯМР¹³С (125 МГц, CDCl₃), δ , м. д.: 25.7; 26.1; 42.8 (CH₂); 33.4 (SCH); 34.0 (SCH₂Ar); 64.5 (ArCH₂COOH); 107.6; 126.6; 128.2; 136.1 (C Ar); 110.0; 119.2; 119.9; 122.2 (CH Ar); 177.4 (COOH). Найдено, *m/z*: 326.1194 [M+Na]⁺. C₁₇H₂₁NNaO₂S. Вычислено, *m/z*: 326.1185.

2-{2-[(Гептилсульфанил)метил]-1*Н***-индол-3-ил}уксусная кислота (6d). Выход 80 мг (25%), желтое масло. R_{\rm f} 0.5. Спектр ЯМР ¹Н (500 МГц, CDCl₃), \delta, м. д. (***J***, Гц): 0.91 (3H, т, ³***J* **= 7.0, CH₃); 1.22–1.40 (6H, м, CH₂); 1.50–1.53 (2H, м, CH₂); 1.62–1.69 (4H, м, CH₂); 3.80 (2H, с, SC<u>H</u>₂Ar); 4.82 (1H, с, NH); 4.95 (1H, с, COOH); 5.17 (2H, с, ArC<u>H</u>₂COOH); 7.17 (1H, т, ³***J* **= 7.5, H Ar); 7.27 (1H, т, ³***J* **= 7.8, H Ar); 7.42 (1H, д, ³***J* **= 8.0, H Ar); 7.62 (1H, д, ³***J* **= 7.5, H Ar). Спектр ЯМР ¹³С (125 МГц, CDCl₃), \delta, м. д.: 14.1 (CH₃); 22.6; 28.7; 28.9; 28.9; 29.9 (CH₂); 30.7 (S<u>C</u>H₂CH₂); 31.8 (SCH₂Ar); 47.6 (Ar<u>C</u>H₂COOH); 107.7; 126.7; 128.2; 136.2 (C Ar); 109.9; 119.2; 120.0; 122.3 (CH Ar); 177.1 (COOH). Найдено,** *m/z***: 320.1656 [M+H]⁺. C₁₈H₂₆NO₂S. Вычислено,** *m/z***: 320.1679.**

(2-{[(2-Сульфанилэтил)сульфанил]метил}-1*H*-индол-3-ил)уксусная кислота (6е). Выход 52 мг (30%), оранжевое масло. R_f 0.11 (гексан–ЕtOAc, 1:1). Спектр ЯМР ¹H (500 МГц, CDCl₃), δ , м. д. (*J*, Гц): 1.72 (1H, c, SH); 2.93 (2H, т, ³*J* = 7.5, HSC<u>H</u>₂CH₂); 3.02 (2H, т, ³*J* = 6.3, SC<u>H</u>₂CH₂); 3.82 (2H, c, SCH₂Ar); 5.72 (2H, c, ArC<u>H</u>₅COOH); 5.77 (1H, c, COOH); 5.80 (1H, c, NH); 7.18 (1H, т, ³*J* = 7.3, H Ar); 7.35 (1H, д, ³*J* = 6.0, H Ar); 7.65 (1H, д, ³*J* = 7.5, H Ar); 7.77 (1H, т, ³*J* = 7.5, H Ar). Спектр ЯМР ¹³С (125 МГц, CDCl₃), δ , м. д.: 25.3 (HSCH₂CH₂); 30.7 (SCH₂CH₂); 31.4 (SCH₂Ar); 39.1 (ArCH₂COOH); 108.4, 123.5, 127.3, 136.1 (C Ar); 111.4, 118.9, 119.6, 122.1 (CH Ar); 176.3 (COOH). Найдено, *m*/*z*: 280.0692 [M–H]⁻. C₁₃H₁₄NO₂S₂. Вычислено, *m*/*z*: 280.0471.

(3,4,5,6-Тетрагидро-1*H*-[1,4,6]тиадиазоцино[4,3-*a*]индол-12-ил)уксусная кислота (7а). Выход 250 мг (90%), бесцветный порошок. Спектр ЯМР ¹H (500 МГц, ДМСО-*d*₆), δ , м. д. (*J*, Гц): 2.91 (2H, д, ³*J* = 5.0, SC<u>H</u>₂CH₂); 3.05 (2H, с, NHC<u>H</u>₂CH₂); 3.62–3.72 (3H, м, SCH₂Ar, NH); 4.00 (2H, с, NC<u>H</u>₂NH); 4.71 (2H, с, ArC<u>H</u>₂COOH); 7.07 (1H, т, ³*J* = 6.0, H Ar); 7.17 (1H, т, ³*J* = 6.0, H Ar); 7.34 (1H, с, COOH); 7.54 (2H, д, ³*J* = 8.0, Н Аг). Спектр ЯМР ¹³С (125 МГц, ДМСО-*d*₆), δ, м. д.: 29.6 (S<u>C</u>H₂CH₂); 31.2 (SCH₂Ar); 55.3 (NH<u>C</u>H₂CH₂); 58.0 (N<u>C</u>H₂NH); 63.1 (Ar<u>C</u>H₂COOH); 108.5, 128.2, 128.5, 136.8 (С Аг); 110.9, 119.4, 119.7, 122.0 (CH Ar); 173.5 (СООН). Найдено, *m/z*: 299.0845 [M+Na]⁺. C₁₄H₁₆N₂NaO₂S. Вычислено, *m/z*: 299.0825.

12-(Карбоксиметил)-3,4,5,6-тетрагидро-1*H*-[1,4,6]тиадиазоцино[4,3-а]индол-4-илуксусная кислота (7b). Выход 210 мг (67%), желтое масло. R_f 0.5 (гексан-ЕtOAc-пиридин, 1:1:0.1). Спектр ЯМР ¹Н (500 МГц, ДМСО- d_6 + EtOAc + Py), δ , м. д. (J, Γ ц): 3.17 (2H, д, 3J = 5.0, SCH₂CH); 3.67 (2H, π , ³J = 6.5, SCH₂Ar); 4.03 (2H, c, COOH); 4.05 (2H, T, ${}^{3}J = 3.8$, NCH₂NH); 4.36 (1H, T, ${}^{3}J = 5.0$, CH₂CH(NH)COOH); 4.85 (2H, c, ArCH₂COOH); 5.49 (1H, c, NH); 7.07 (1H, T, ${}^{3}J = 7.5$, H Ar); 7.17 (1H, T, ${}^{3}J = 7.5$, H Ar); 7.53 (1H, π , ${}^{3}J = 8.0$, H Ar); 7.59 (1H, π , ${}^{3}J = 8.0$, H Ar). Спектр ЯМР 13 С (125 МГц, ДМСО- d_6 + EtOAc + Py), δ, м. д.: 31.2 (SCH₂CH); 32.9 (SCH₂Ar); 56.7 (ArCH₂COOH); 60.2 (CH₂CH(NH)COOH); 64.0 (NCH₂NH); 108.7, 124.7, 128.0, 136.8 (C Ar); 110.9, 119.4, 119.7, 122.0 (CH Ar); 172.3, 173.4 (СООН). Найдено, *m/z*: 321.0914 [M+H]⁺. С₁₅Н₁₇N₂O₄S. Вычислено, *m/z*: 321.0904.

3,4,6,7,12,12а-Гексагидро-1*H***-[1,4]тиазино[4',3':1,6]пиридо[3,4-***b***]индол-1-он (8). Продукт экстрагируют от смол EtOH и упаривают. Выход 50 мг (20%), оранжевое масло. Спектр ЯМР ¹Н (500 МГц, ДМСО-d_6 + EtOH), \delta, м. д. (***J***, Гц): 2.61–2.69 (2H, м, CH₂); 3.51–3.60 (3H, м, CH, CH₂); 4.01–4.12 (2H, м, CH₂); 4.21–4.28 (2H, м, CH₂); 6.95 (1H, т, ³***J* **= 7.5, H Ar); 7.02 (1H, т, ³***J* **= 7.3, H Ar); 7.28 (1H, д, ³***J* **= 7.5, H Ar); 7.38 (1H, д, ³***J* **= 8.0, H Ar); 10.82 (1H, с, NH). Спектр ЯМР ¹³С (125 МГц, ДМСО-d_6 + EtOH), \delta, м. д.: 33.7 (CH₂CH₂S); 41.6 (ArCH₂CH); 44.9 (ArCH₂N); 60.0 (NCH₂CH₂); 61.8 (CH); 105.2, 127.1, 132.5, 136.4 (C Ar); 111.3, 117.8, 118.8, 120.9 (CH Ar); 174.7 (CHCO)S). Найдено,** *m/z***: 259.0798 [M+H]⁺. C₁₄H₁₅N₂OS. Вычислено,** *m/z***: 259.0900.**

3,4,5,6,7,8,9,14-Октагидро-1*H*-[1]тиа[4,6]диазациклоундецино[10,9-b]индол-4,8-дикарбоксильная кислота (9). Продукт экстрагируют от смол EtOH и упаривают. Выход 10 мг (25%), оранжевое масло. Спектр ЯМР ¹Н (500 МГц, D₂O + ДМСО-*d*₆), δ, м. д. (*J*, Гц): 1.90 (2H, с, NH); 2.14–2.21 (3H, м, CH₂CH(NH)COOH, SCH₂CH); 3.12 (2H. д. ${}^{3}J$ = 6.5. ArCH₂CH(NH)COOH): 3.89 (3H. с. SCH₂Ar, CH₂C<u>H</u>(NH)COOH); 4.19 (2H, д. ${}^{3}J = 6.5$, HNCH₂NH); 6.99 (1H, м, H Ar); 7.12 (1H, м, H Ar); 7.37 (1H, м, H Ar); 7.40–7.44 (1H, м, H Ar); 7.93 (1H, с, NH); 8.00 (1H, c, COOH); 8.09 (1H, c, COOH). Спектр ЯМР ¹³С (125 МГц, D₂O + ДМСО-*d*₆), δ, м. д.: 33.3 (SCH₂CH); 33.8 (SCH₂Ar); 45.3 (Ar<u>C</u>H₂CH(NH)COOH); 49.7; 60.9 (CH₂<u>C</u>H(NH)COOH). 64.3 (HN<u>C</u>H₂NH); 107.8; 131.5; 132.7; 133.1 (C Ar); 111.7; 121.2; 125.8; 130.9 (CH Ar); 162.5; 163.5 (СООН). Найдено, *m/z*: 349.0902 [M]⁺. С₁₆Н₁₉N₃O₄S. Вычислено, *m/z*: 349.1096.

Рентгеноструктурный анализ соединения 3с выполнен на дифрактометре Agilent XCalibur (Gemini, Eos). Кристаллы выращены из ДМСО-*d*₆. Полный набор рентгеноструктурных данных депонирован в Кембриджском банке структурных данных (депонент ССDС 2304060).

Файл сопроводительных материалов, содержащий спектры ЯМР ¹H, ¹³C, COSY, ¹H–¹³C HSQC, ¹H–¹³C HMBC, а также масс-спектры соединений **3a,b, 4a,b, 5а–с, 6а–е, 7a,b, 8, 9** и данные рентгеноструктурного анализа соединения **3c**, доступен на сайте журнала http://hgs.osi.lv.

Работа выполнена в рамках государственного задания FMRS-2022-0079.

Структурные исследования соединений **3a,b**, **4a,b**, **5a-c**, **6a-e**, **7a,b**, **8**, **9** проведены в Центре коллективного пользования "Агидель" при Институте нефтехимии и катализа – обособленном структурном подразделении Уфимского федерального исследовательского центра РАН.

Список литературы

- Fatemeh, G.; Sajjad, M.; Niloufar, R.; Neda, S.; Leila, S.; Khadijeh, M. J. Neurology 2022, 269, 205.
- Wang, L.; Pan, Y.; Ye, C.; Guo, L.; Luo, S.; Dai, S.; Chen, N.; Wang, E. *Neurosci. Biobehav. Rev.* 2021, 131, 489.
- 3. Johnson, H. E.; Crosby, D. G. Org. Synth. 1964, 44, 64.
- Шибаева, Т. Г.; Марковская, Е. Ф.; Мамаев, А. В. Журн. общ. биологии 2017, 78, 46.
- 5. Князькин, И. В. Успехи геронтол. 2007, 21, 74.
- Lucas, S. *Headache* 2016, 56, 436. DOI: 10.1111/ head.12769PMID 26865183
- Tabet, N.; Naji, T.; Feldman, H. Cochrane Database Systematic Review 2002, 2, CD003673.
- Azmitia, E. C. Handbook Behavioral-Neurosciences; 2020, vol. 31, p. 3.
- Dürk, T.; Panther, E.; Müller, T.; Sorichter, S.; Ferrari, D.; Pizzirani, C.; Di Virgilio, F.; Myrtek, D.; Norgauer, J.; Idzko, M. *Int. Immunol.* 2005, 17, 599.
- 10. Zhang, M-Z.; Chen, Q.; Yang, G.-F. Eur. J. Med. Chem. 2015, 89, 421.
- 11. Feng, M.; Tang, B.; Liang, S. H.; Jiang, X. Curr. Top. Med. Chem. 2016, 16, 1200.
- Ananikov, V. P.; Khemchyan, L. L.; Ivanova, Yu. V.; Bukhtivarov, V. I.; Sorokin, A. M.; Prosvirin, A. M.; Vatsadze, S. Z.; Medved'ko, A. V.; Nuriev, V. N.; Dilman, A. D.; Levin, V. V.; Koptyug, I. V.; Kovtunov, K. V.; Zhivonitko, V. V.; Likholobov, V. A.; Romanenko, A. V.; Simonov, P. A.; Nenajdenko, V. G.; Shmatova, O. I.; Muzalevskiy, V. M.; Nechaev, M. S.; Asachenko, A. F.; Morozov, O. S.; Dzhevakov, P. B.; Osipov, S. N.; Vorobyeva, D. V.; Topchiy, M. A.; Zotova, M. A.;

Ponomarenko, S. A.; Borshchev, O. V.; Luponosov, Yu. N.; Rempel, A. A.; Valeeva, A. A.; Stakheev, A. Yu.; Turova, O. V.; Mashkovsky, I. S.; Sysolyatin, S. V.; Malykhin, V. V.; Bukhtivarova, G. G.; Terent'ev, A. O.; Krylov, I. B. *Russ. Chem. Rev.* **2014**, *83*, 885.

- 13. Rakitin, O. A. Chem. Heterocycl. Compd. 2020, 56, 837.
- Sharipov, M. Yu.; Krylov, I. B.; Karpov, I. D.; Vasilkova, O. V.; Oleksiienko, A. M. V.; Terent'ev, A. O. *Chem. Heterocycl. Compd.* 2021, 57, 531.
- 15. Kuzu, E.; Kuzu, B. Chem. Heterocycl. Compd. 2023, 59, 80.
- Kiamehr, M.; Khademi, F.; Jafari, B.; Langer, P. Chem. Heterocycl. Compd. 2020, 56, 392.
- Grozav, A. N.; Fedoriv, M. Z.; Chornous, V. A.; Palamar, A. A.; Bratenko, M. K.; Vovk, M. V. *Chem. Heterocycl. Compd.* 2019, 55, 435.
- 18. De Lucchi, O.; Miotti, U.; Modena, G. ChemInform 1992, 23, 03-294.
- 19. Kim, I. T.; Elsenbaumer, R. L. Tetrahedron Lett. 1998, 39, 1087.
- Kreutzkamp, N.; Oei, H. Y.; Peschel, H. Arch. Pharm. Ber. Dtsch. Pharm. Ges. 1971, 304, 649.
- 21. Nirogi, R.; Reddy, T.; Konda, J.; Reballi, V.; Gudla, P.; Kambhampati, R.; Khagga, M. *Pharma Chem.* **2012**, *4*, 1567.
- 22. Thielmann, T.; Güntert, M.; Köpsel, M.; Werkhoff, P. *Tetrahedron Lett.* **1989**, *30*, 4507.
- Akhmetova, V. R.; Akhmadiev, N. S.; Starikova, Z. A.; Tulyabaev, A. R.; Mescheryakova, E. S.; Ibragimov, A. G. *Tetrahedron* 2015, *71*, 7722.
- 24. Гордон, А.; Форд, Р. *Спутник химика*; Мир: Москва, 1976, с. 73.
- 25. Unger, T. A. Pesticide Synthesis Handbook; 1996, p. 458.
- 26. Almeida, M. C.; Resende, D. I. S. P.; da Costa, P. M.; Pinto, M. M. M.; Sousa, E. *Eur. J. Med. Chem.* 2021, 209, 112945.
- Voskressensky, L. G.; Borisova, T. N.; Babakhanova, M. L.; Chervyakova, T. M.; Titov, A. A.; Novikov, R. A.; Toze, F.; Dang, T. A.; Varlamov, A. V. *Chem. Heterocycl. Compd.* 2015, *51*, 639.
- Grant, N.; Ward, M. F.; Jaspars, M.; Harrison, W. T. A. Acta Crystallogr., Sect. E: Struct. Rep. Online 2001, E57, 0697.
- 29. Conde-Caprace, G.; Collin, J. E. Org. Mass Spectrom. 1972, 6, 415.
- Maciejewska, D.; Szpakowska, I.; Wolska, I.; Niemyjska, M.; Mascini, M.; Maj-Żurawska, M. *Bioelectrochemistry* 2006, 69, 1.
- Jagtap, R. M.; Thorat, S. H.; Gonnade, R. G.; Khan, A. A.; Pardeshi, S. K. New J. Chem. 2018, 42, 1078.