Б. С. Лукьянов, А. Н. Утенышев^а, Е. Н. Шепеленко, В. В. Ткачев^а, М. Б. Лукьянова, А. В. Метелица, С. О. Безуглый, С. М. Алдошин^а, В. И. Минкин

ФОТО- И ТЕРМОХРОМНЫЕ СПИРАНЫ 25*. НОВЫЕ ИНДОЛИНОСПИРОПИРАНЫ, СОДЕРЖАЩИЕ КОНДЕНСИРОВАННЫЙ ФУРАНОВЫЙ ФРАГМЕНТ

Синтезированы новые индолиноспирохромены, содержащие конденсированный фурановый фрагмент – аналог метоксильного заместителя в положении 6' хроменовой части молекулы. Растворы полученных соединений проявляют фотохромные свойства. Для одного из соединений в зависимости от температуры облучения спектрально фиксируется *цис*-цисоидный или *транс*-трансоидный изомер. Проведено рентгеноструктурное исследование кристаллов спиропиранов, обладающих различной фотоактивностью в твердой фазе.

Ключевые слова: индолиноспиропираны, фуран, РСА, фотохромизм.

Влияние заместителей на фотохромные свойства спиропиранов в основном изучалось ранее на соединениях, содержащих различные π -акцепторные заместители [1–3]. Исследование влияния π -донорных заместителей ограничено отсутствием их разнообразия, однако представляет несомненный интерес, так как 6'-гидрокси-1,3,3-триметилспиро(индолино-2,2'-[2H]-бензопиран) [4], а также индолиноспиропираны, содержащие метоксигруппу в 2H-хроменовом фрагменте [5], проявляют фотохромные свойства в твердой фазе.

Оригинальной заменой π-донорной метоксигрупы в положении 6' спиропирана является конденсированный фурановый фрагмент.

Спиропираны **3b-d** (табл. 1) получены аналогично описанному ранее спиропирану **3a** [6] непродолжительным кипячением в спирте эквимолярных количеств перхлората 1,2,3,3-тетраметилиндоленилия **1**, соответствующего альдегида **2** и пиперидина.

ИК спектры соединений **3** содержат полосы поглощения, характерные для колебаний связи C=C пиранового цикла в области 1600–1650 см⁻¹ (табл. 2).

В спектрах ЯМР ¹Н (CDCl₃) спирохроменов **3** сигналы *гем*-диметильных групп индолинового фрагмента вследствие акопланарности молекулы наблюдаются раздельно, а дублетный сигнал протона в положении 3' пиранового цикла характеризуется КССВ 8.6–10.6 Гц, что соответствует *цис*-конфигурации винильного фрагмента (табл. 2).

^{*} Сообщение 24 см. [1].

2,3 a R = H, **b** R = Br, **c** $R = NO_2$, **d** R = t-Bu

Соединения **3** проявляют фотохромные свойства в растворах. Однако вследствие короткого времени жизни нециклических изомеров **4** в стационарных условиях облучения, фотоокрашивание наблюдается при температурах ниже 250 К.

Циклические изомеры **3** характеризуются длинноволновым структурированным поглощением в области 330–380 нм (табл. 3). При температурах 150–250 К в результате фотооблучения растворов соединений **3** в их спектрах поглощения наблюдается появление полос с максимумом в области 585–625 нм, характерных для поглощения нециклических трансоидных изомеров **4** (рис. 1 на примере соединения **3b**). При более низких температурах (77 К) в случае соединения **3d** первоначально наблюдается появление полосы поглощения с максимумом при 471 нм, которая при продолжительном облучении трансформируется в полосу с максимумом при 585 нм (рис. 2). Наблюдаемые спектральные изменения связаны с образованием на первом этапе *цис*-цисоидного X-изомера **3'**,

Таблица 1

Соеди-	реди- Брутто-		<u>Найдено, ^о</u> Вычислено	<u>%</u> , %	Т. пл., °С	Выход,
нение	формула	С	Н	Ν	(из этанола)	70
3 a	$C_{25}H_{25}NO_2$	<u>80.71</u>	<u>6.82</u>	<u>3.68</u>	164–165	72
21 ±		80.83	6.73	3.77	(176–178 [6])	02
3b*	$C_{25}H_{24}BrNO_2$	<u>66.50</u> 66.67	<u>5 33</u>	$\frac{2.94}{3.11}$	158	83
3c	$C_{25}H_{24}N_2O_4$	<u>72.18</u>	<u>5.62</u>	<u>6.87</u>	139–140	68
		72.14	5.77	6.73	100	
3d	$C_{29}H_{33}NO_2$	<u>81.35</u> 81.52	7.65	<u>3.39</u> 3.28	132	57

Спиропираны 3

* Найдено,%: Br 17.43; вычислено, %: Br 17.74.

Спектральные характеристики спиропиранов 3

Соеди- нение	ИК спектр, v _{C=C} пиранового цикла, см ⁻¹	УФ спектр, λ_{max} , нм (lg ϵ)	Спектр ЯМР ¹ Н, б, м. д. (<i>J</i> , Гц)
3a	1647, 1627, 1600	304 (4.26), 352 (3.50)	1.18 (3H, c, CH ₃), 1.33 (3H, c, CH ₃), 1.88 (4H, M, H-2",3"), 2.71 (2H, M, H-1"), 2.73 (1H, c, N–CH ₃), 2.97 (2H, M, H-4"), 5.68 (1H, π , $J = 8.6$, H-8), 6.50 (1H, π , $J = 9.00$, H-7'), 6.55 (1H, π , $J = 8.6$, H-5), 6.82 (1H, T. π , $J = 8.3$, H-5'), 7.06 (1H, π , $J = 8.6$, H-4'), 7.08 (1H, π , $J = 9.75$, H-4), 7.16 (1H, T. π , $J = 8.3$, H-6'), 7.27 (1H, π , $J = 10.6$, H-4)
3b	1644, 1616, 1600	301 (4.26), 385 (3.50)	1.19 (3H, c, CH ₃), 1.33 (3H, c, CH ₃), 1.90 (4H, M, H-2",3"), 2.67 (2H, M, H-1"), 2.67 (1H, c, N–CH ₃), 2.84 (2H, M, H-4"), 5.76 (1H, π , J = 10.6, H-8), 6.52 (1H, π , J = 8.0, H-7'), 6.83 (1H, π . π , J = 8.8, H-5'), 7.06 (1H, π , J = 8.0, H-4'), 7.15 (1H, π . π , J = 8.8, H-6'), 7.22 (1H, π , J = 10.6, H-9), 7.37 (1H, c, H-4)
3c	1637, 1611, 1590	305 (4.32), 355 (3.66)	1.18 (3H, c, CH ₃), 1.25 (3H, c, CH ₃), 1.94 (4H, M, H-2",3"), 2.72 (2H, M, H-1"), 2.62 (1H, c, N–CH ₃), 2.84 (2H, M, H-4"), 5.83 (1H, π , J = 10.5, H-8), 6.50 (1H, π , J = 8.3, H-7'), 6.83 (1H, π . π , J = 8.2, H-5'), 7.14 (1H, π . π , J = 8.3, H-6'), 7.27 (1H, π , J = 10.5, H-4), 7.28 (1H, π , J = 8.8, H-4'), 7.74 (1H, c, H-4)
3d	1649, 1620, 1605	312 (4.14), 380 (3.95)	1.10 (9H, c, t -C ₄ H ₉), 1.23 (3H, c, CH ₃), 1.39 (3H, c, CH ₃), 1.88 (4H, M, H-2",3"), 2.65 (1H, c, NCH ₃), 2.70 (2H, M, H-1"), 2.81 (2H, M, H-4"), 5.77 (1H, π , J = 10.2, H-8), 6.44 (1H, π , J = 7.6, H-7'), 6.82 (1H, π , J = 7.4, H-5'), 7.10 (1H, π , J = 7.6, H-4'), 7.13 (1H, π , J = 7.6, H-6'), 7.21 (1H, c, H-4), 7.34 (1H, π , J = 10.2, H-9)

997

Таблица З

Соеди-	Погло-		Флуоресценция		Фосфоресценция	
нение Форм	Форма	щение, λ _{max} , нм	λ _{max} ^{ex} , HM	$\lambda_{max}^{ \ flu}, \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	λ_{\max}^{ex} , HM	λ _{max} ^{ph} , HM
3a	3	S ₂ -301				
		S ₁ -332 346 пл	_	-	346	540 585
	4	S ₂ -468	S ₂ -470			
		S ₁ -546 587 627	S ₁ -610	648 695	_	_
3b	3	S ₂ -298				
		S ₁ -380 пл	_	_	382	512 553 598
	4	S ₂ -483	S ₂ -468			
		S ₁ -592 625	S ₁ -620	656 710	-	-
3c	3	S ₂ -302				
		S ₁ -338 348 пл	S ₁ -348	374 394 пл	343	548 577
	4	S ₂ -458 482	473			
		S ₁ -550 пл 585 625 пл	550 585 626	659 718	-	_
3d	3 , 290 K	S ₂ -312 S ₁ -379	S ₂ -328 S ₁ -379	547		
	3 , 77 K	S ₂ -312 S ₁ -379	S ₂ -328 S ₁ -379	520 550 пл	_	_
	3' , 77 K	471	468	543 572	_	_
	4 , 178 K	S ₂ -470 S ₁ -585 625 пл	S ₂ -468 S ₁ -582 625	653 698 пл	-	_

Спектрально-абсорбционные и спектрально-люминисцентные характеристики спиропиранов (смеси 3 в ИПП при 77 К)

* ИПП – смесь изопентан–2-пропанол, 4:1

Рис. 1. Зависимость спектра поглощения спиропирана **3b** в ИПП при 77 К от времени облучения УФ светом с λ_{max} 365 нм в стационарном режиме: 1 – 0, 2 – 60, 3 – 180, 4 – 360, 5 – 630 с облучения

образующегося непосредственно после разрыва связи С_{спиро}–О и стабилизирующегося за счет стерических проявлений объемной *трет*-бутильной группы и вязкостных барьеров при низкой температуре, последующие *цис-транс*-фотоизомеризации приводят к появлению трансоидных изомеров 4.

После прекращения УФ облучения растворов спиропиранов **3** наблюдаются релаксационные процессы, приводящие к их обесцвечиванию. Скорость этих процессов при комнатной температуре велика, что не позволяет провести их количественное описание. Исключение составляет соединение **3с**, для растворов в этаноле время жизни фотоиндуцированной формы составляет 66 с при 296 К, что дает возможность исследовать фотоиндуцированные процессы в нормальных условиях (определить константы скоростей прямой и обратной фотореакций и их квантовые выходы). Квантовые выходы определены на основе фотокинетического

Рис. 2. Зависимость спектра поглощения спиропирана 3d в ИПП при 77 К от времени облучения УФ светом с λ_{max} 365 нм в стационарном режиме: 1 – 0, 2 – 60, 3 – 120, 4 – 420, 5 –600, 6 –900 с облучения, 7 – последующее облучение нефильтрованным светом в течение 1800 с

Рис. 3. Зависимость спектра поглощения спиропирана 3с в тонкой полидисперсной пленке, полученной вакуумным термическим напылением на кварцевую пластину, от времени облучения УФ светом с λ_{max} 365 нм в стационарном режиме: 1 – 0, 2 – 60, 3 – 180, 4 – 240, 5 – 360, 6 – 630 с облучения

анализа экспериментальных зависимостей оптических плотностей от времени облучения по методике [6] и составляют 0.052 и 0.046, соответственно, для прямой и обратной фотореакций.

Суммарная константа скорости темновой реакции ($k = k_{BA} + k_{AB}$) определена из выражения $D = D_0 \exp(-kt)$, k_{BA} и k_{AB} были определены при известном значении k в рамках фотокинетического анализа экспериментальных зависимостей оптических плотностей: $k = 1.6 \cdot 10^{-2}$, $k_{BA} = 1.5 \cdot 10^{-2}$ и $k_{AB} = 2.4 \cdot 10^{-4} c^{-1}$.

Соединение **3с**, содержащее π -акцепторную нитрогруппу, проявляет фотохромные свойства не только в растворах, но и в твердых полидисперсных пленках, полученных в результате вакуумного термического напыления на стеклянные или кварцевые подложки (рис. 3).

С целью уточнения строения полученных соединений и для установления связи между их структурой и фотохромными свойствами из этанола были выращены кристаллы соединений **3а–с** и проведены их исследования методом РСА. Общий вид молекул с обозначением атомов представлен на рис. 4–6. Основные кристаллографические характеристики представлены в табл. 4, значения длин связей и углов спиропиранов **3а–с** – в табл. 5 и 6.

Анализ деталей строения позволяет сделать вывод, что в молекулах **3а–с** бензопирановый и индолиновый фрагменты, как и в исследованных ранее индолиновых спиропиранах и бензоксазиноновых производных спиропиранов [2, 3, 8], расположены примерно ортогонально друг другу и индивидуально не планарны. В соединении **3a** индолиновый фрагмент имеет перегиб по линии $N_{(1')}...C_{(3')}$ на угол $\phi = 25.0$, в соединении **3b** – на 29.6, а в **3c** – на 25.7°, атомы $N_{(1')}$ и $C_{(3')}$ расположены в плоскости бензольного

Рис. 4. Структура спиропирана За, по данным РСА

Рис. 5. Структура спиропирана 3b, по данным РСА

Рис. 6. Структура спиропирана 3с, по данным РСА

Соединение	3a	3b	3c
Брутто-формула	C ₂₅ H ₂₃ NO ₂	C ₂₅ H ₂₄ BrNO ₂	$C_{26}H_{26}N_2O_4$
Μ	369.44	450.36	430.49
Пространственная группа	C 2/c	<i>P</i> -1	<i>P</i> -1
<i>a</i> , Å	23.274(5)	17.935(4)	6.970(1)
<i>b</i> , Å	6.881(1)	8.025(2)	11.063(2)
<i>c</i> , Å	25.066(5)	7.835(2)	14.153(3)
α°	90	73.61(3)	75.89(3)
β°	102.00(3)	86.50(3)	89.41(3)
γ^{o}	90	78.02(3)	79.90(3)
V, Å ³	3927(1)	1058.2(4)	1041.4(3)
Ζ	8	2	2
<i>D</i> , г/см ³	1.250	1.413	1.373
μ, мм ⁻¹	0.620	1.963	0.930
θ	3.61-80.08	1.16-23.05	1.48-27.07
Полное количество отражений	3159	2965	3902
Количество отражений <i>I</i> > 2σ(<i>I</i>)	1926	1907	2155
Число уточняемых параметров	254	262	299
R	0.063	0.056	0.069
wR_2	0.115	0.10	0.141
Излучение	CuKα	ΜοΚα	ΜοΚα
GOF	1.094	1.067	0.997

Основные кристаллографические данные и характеристики эксперимента для соединений За–с

кольца С_(4')С_(5')С_(6')С_(7')С_(8')С_(9') с точностью 0.02, 0.016 и 0.013 Å в кристаллах За, в и с соответственно (далее в этой последовательности будут приведены и обсуждены все геометрические детали строения молекул). Анализируя строение бензоспиранового фрагмента, предварительно отметим, что атомы O₍₆₎C₍₉₎C₍₁₀₎C₍₁₃₎C₍₅₎C₍₄₎C₍₁₂₎C₍₁₁₎O₍₃₎C₍₁₎C₍₂₎ лежат водной плоскости с точностью 0.016, 0.04 и 0.016Å в кристаллах соединений За, в и с. Перегибы по линиям, проходящим через атомы O₍₆₎C₍₉₎ и O₍₆₎C₍₈₎, равны 7.5 и 11.5, 11.0 и 33.0, 8.1 и 13.3° соответственно. Обращает на себя внимание перегиб на 33.0° по линии O₍₆₎C₍₈₎ в 3b, формально равный 147°, иными словами взаимная ориентация двух фрагментов относительно линии О(6)С(8) в исследованных молекулах За и 3c, в которых бензоспирановый фрагмент отогнут в сторону N-метильных заместителей, отличается от таковой в 3b, где реализуется изгиб в сторону геминальных атомов углерода. В целом геометрическое строение Сспиро узла и бензопиранового фрагмента в соединениях За-с аналогично 1002

строению индолиновых и бензоксазиновых спиропиранов, изученных ранее. Выход атома N₍₁₎ из плоскости координирующих атомов C₍₂₂₎C₍₈₎C₍₁₂₎ составляет -0.30, 0.27 и -0.30 Å, сумма валентных углов при N_(1') равна 347.3, 349.3 и 347.3° соответственно. Заметный характер sp³ гибридизации орбиталей атома N_(1') приводит кроме перегиба по линии C_(3')...N_(1') индолинового цикла к торсионному повороту вокруг связи С(8)-N(1) атома C₍₂₂₎ (угол C₍₉₎C₍₈₎N₍₁₎C₍₂₂₎ равен 18.8, -20.6 и 17.4°) и одновременному повороту вокруг этой связи метиленовой (атом С(12)) группы (угол С₍₉₎С₍₈₎N₍₁₎С₍₁₂₎ равен 159.7, -165.0 и 159.1°). В отличие от бензоксазиновых аналогов [2, 7], отсутствие амидного сопряжения способствует взаимодействию неподеленной электронной пары атома N_(1') с σ^* -орбиталью связи С₍₂₂₎–О₍₆₎ и, кроме того, геометрическое расположение связи С(22)-О(6) относительно координационной плоскости С(9)-С(8)-С(22) атома N₍₁₎ становится более благоприятным для орбитальных *n*-σ*взаимодействий. Для спиропиранов данного типа характерно, что в условиях доминирования при спироцентре молекулы орбитальных $n-\sigma^*$ -взаимодействий неподеленной электронной пары атома N с σ^* -орбиталью связи C_(2'2)-O₍₆₎ будет заметно укорочение связи N с атомом C_{спиро} и

Таблица 5

Таблица б

Cpggi	l, Å			
Связь	3a	3b	3c	
C _(2') -O ₍₆₎	1.462(3)	1.482(8)	1.485(5)	
$C_{(2')} - C_{(8)}$	1.499(4)	1.486(9)	1.489(7)	
$C_{(8)} - C_{(9)}$	1.317(4)	1.330(9)	1.315(7)	
$C_{(9)} - C_{(10)}$	1.451(4)	1.464(9)	1.444(6)	
$C_{(10)} - C_{(13)}$	1.392(4)	1.410(8)	1.397(5)	
$O_{(6)} - C_{(13)}$	1.383(4)	1.354(7)	1.350(4)	
$C_{(2')} - C_{(3')}$	1.569(4)	1.553(10)	1.561(6)	
$N_{(1')} - C_{(2')}$	1.463(4)	1.452(8)	1.460(6)	
N _(1') -C _(12')	1.451(4)	1.413(10)	1.443(6)	
N _(1') -C _(8')	1.406(4)	1.419(8)	1.385(7)	

Длины связей (l) спиропиранов За-с по данным PCA

Валентные углы (ω)спиропиранов За-с по данным РСА

Vroi	о, град.			
утол	3 a	3b	3c	
C ₍₉₎ N ₍₁₎ C _(2'2)	108.1(2)	106.1(6)	108.7(3)	
$C_{(9)}N_{(1)}C_{(10)}$	120.9(3)	122.3(6)	118.9(4)	
C(10)N(1)C(2'2)	118.3(3)	120.3(6)	119.7(3)	
N ₍₁₎ C _(2'2) O _(1')	108.8(2)	104.9(5)	108.2(4)	
$N_{(1)}C_{(2'2)}C_{(3')}$	111.6(3)	112.5(5)	110.7(3)	
$N_{(1)}C_{(2'2)}C_{(3)}$	103.0(2)	103.9(5)	103.4(3)	
$C_{(3)}C_{(2'2)}C_{(3')}$	115.2(3)	116.4(5)	117.9(3)	
$C_{(3)}C_{(2'2)}O_{(1')}$	106.6(2)	108.8(5)	105.5(3)	

удлинение связи $O_{(6)}-C_{cпиро}$ по сравнению со стандартными значениями для подобных длин связей. Таким образом, длины связей $C_{(2'2)}-O_{(6)} = 1.462(3)$, 1.483(8) и 1.476(4), а $N_{(1')}-C_{(2'2)} = 1.463(4)$, 1.451(8) и 1.444 (5) Å находятся в интервале длин связей для ранее изученных индолиновых спиропиранов, проявляющих фотохромные свойства (1.438–1.497 и 1.434–1.453 Å соответственно) [8].

Следует заметить, что замена π -донора на конденсированный фурановый фрагмент не изменила картину электронных взаимодействий, характерных для индолиновых спиропирановых молекул. Так, степень сопряжения $O_{(6)}$ молекул с π -орбиталью бензольного кольца аналогична ранее исследованным спиропиранам – длина связи $O_{(6)}$ – $C_{(13)}$ составляет 1.382(4) Å [8]. Присутствие в положение 5 молекул соединений **3b,c** сильного электроноакцепторного заместителя, как и в бензоксазиновых спиропиранах, приводит к изменению электронного состояния атома кислорода спироцентра и усилению степени сопряжения $O_{(6)}$ с бензольным фрагментом. В результате в кристаллах **3b,c** длина связи $O_{(6)}$ – $C_{(13)}$ сокращена и составляет 1.354(7) и 1.352(3) Å, чему сопутствует удлинение связи $C_{спиро}$ – $O_{(6)}$ до 1.483(8) и 1.476(4) Å.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

ИК спектры зарегистрированы на призменном двулучевом спектрометре Specord IR-75 в вазелиновом масле, спектры ЯМР ¹Н – на приборе Varian Unity-300 (300 МГц) в CDCl₃, отнесение сигналов проведено относительно сигнала CDCl₃ (δ 7.26 м. д.). Электронные спектры исследуемых соединений при комнатной температуре регистрировали на спектрофотометре Specord M-40, а спектры поглощения спиропиранов до и после облучения на спектрофотометре Specord UV-vis с криостатом для низкотемпературных измерений при 77 К в смеси изопентан–2-пропанол, 5 : 2.

РСА кристаллов соединений **За-с** проведен на автоматическом 4-кружном дифрактометре КUMA при T = 293 К. Структуры найдены прямыми методами и уточнены МНК в анизотропном приближении комплексом программ SHELX-97 [9]. Основные кристаллографические данные приведены в сводной табл. 4. Часть атомов Н локализована в синтезах Фурье разностной электронной плотности, позиции остальных атомов Н вычислены. Для структуры **3с** при уточнении позиций атомов водорода использовалась модель "всадника", поскольку в ней наблюдается разупорядочение алифатических атомов $C_{(2")}$ и $C_{(3")}$ по эквипотенциальным позициям относительно атомов $C_{(1")}$ и $C_{(4")}$ в соотношении 1:1.

Спиропираны 3. К смеси 2.74 г (0.01 моль) перхлората 1,2,3,3-тетраметилиндоленилия (1) и 0.01 моль соответствующего альдегида 2 в 20 мл 2-пропанола прибавляют при кипении 0.85 г ~1 мл (0.01 моль) пиперидина. Реакционную смесь нагревают непродолжительное время, охлаждают, выливают в 60 мл воды и экстрагируют бензолом. Органический слой промывают водой, сушат Na₂SO₄, упаривают в вакууме до объема 10–15 мл и хроматографируют на колонке с Al₂O₃ (элюент бензол). Остаток хроматографируют на нейтральном Al₂O₃ (2 ст. акт. по Брокману, элюент хлороформ) и перекристаллизовывают из этанола. Характеристики полученных соединений приведены в табл. 1.

Авторы выражают благодарность Б. Б. Сафоклову за участие в работе. Работа выполнена при финансовой поддержке РФФИ (гранты 04-03-32485 и 02-03-22002) и гранта НШ 945.2003.3.

СПИСОК ЛИТЕРАТУРЫ

- Ю. С. Алексеенко, Б. С. Лукьянов, А. Н. Утенышев, Е. Л. Муханов, М. Е. Клецкий, В. В. Ткачев, Н. Н. Кравченко, В. И. Минкин, С. М. Алдошин, *XTC*, 919 (2006).
- Б. Б. Сафоклов, Б. С. Лукьянов, А. О. Буланов, . В. Метелица, В. И. Минкин, В. В. Ткачев, С. М. Алдошин, Изв. АН, Сер. хим., 431 (2002).
- А. О. Буланов, Б. Б. Сафоклов, Б. С. Лукьянов, В. В. Ткачев, В. И. Минкин, С. М. Алдошин, Ю. С. Алексеенко, *XГС*, 350 (2003). [*Chem. Heterocycl. Comp.*, **39**, 308 (2003)].
- 4. F. L. Feris, US Pat. 3346385; РЖХим, 11Н688 П (1969).
- 5. T. Yoshida, A. Morinaka, N. Funakoshi, J. Chem. Soc., Chem. Commun., 437 (1986).
- 6. J.-L. Pozzo, A. Samat, R. Guglielmetti, V. Lokshin, V. Minkin, *Can. J. Chem.*, 74, 1649 (1996).
- M. H. Deniel, D. Lavabre, J. C. Micheau, in Organic Photochromic and Thermochromic Compounds, J. C. Crano, R. J. Guglielmetti (Eds.), Plenum Press, New York, 1999, vol. 2, p. 167.
- S. M. Aldoshin, in Organic Photochromic and Thermochromic Compounds, J. C. Carno, R. J. Gugliemetti (Ed.), Kluwer Acad./Plenum Publ., New York, 1999, vol. 2, p. 297.
- 9. G. M. Sheldrick, *SHELXL-97*. Program for Refinement of Crystal Structures, Univ. of Göttingen, Göttingen, Germany, 1997.

Научно-исследовательский институт физической и органической химии Ростовского государственного университета, Ростов-на-Дону 344090, Россия e-mail:bluk@ipoc.rsu.ru Поступило 09.09.2004

^аИнститут проблем химической физики РАН, Черноголовка 142432, Московская обл.