М. А. Сибирякова, Г. Ф. Музыченко, Т. П. Косулина, К. С. Пушкарева

РЕАКЦИИ КОНДЕНСАЦИИ ПО МЕТИЛЕНОВОМУ ЗВЕНУ 1-(4-НИТРОФЕНИЛ)ПИРРОЛИН-2-ОНА И ПЕРХЛОРАТА 1-(4-НИТРОФЕНИЛ)ПИРРОЛИН-2-ОНИЯ

Исследовано взаимодействие 1-(4-нитрофенил)пирролин-2-она с ароматическими альдегидами в среде уксусного ангидрида, в присутствии каталитических количеств пиридина. Синтезирован перхлорат 1-(4-нитрофенил)пирролинония, который был введен в реакцию конденсации с ароматическими альдегидами, в результате получены перхлораты 1-(4-нитрофенил)-5-арилиденпирролин-2-ония.

Ключевые слова: ароматические альдегиды, 1-(4-нитрофенил)пирролин-2-он, перхлорат 1-(4-нитрофенил)пирролинония, конденсация.

Исследовано взаимодействие 1-(4-нитрофенил)пирролин-2-она (1) с ароматическими альдегидами **2а**–**d**.

Проведение реакции в этиловом спирте в присутствии этилата натрия, а также попытки применить уксусную кислоту в качестве растворителя и провести процесс с кислотным катализатором приводили к сильному осмолению реакционной смеси.

Положительный результат был получен при проведении реакции в среде уксусного ангидрида при эквимолярном соотношении реагентов в присутствии каталитических количеств пиридина, при температуре 80±5°C.

2, **3 a** R = H, **b** $R = NO_2$, **c** $R = NMe_2$, **d** R = Br

При повышении температуры наблюдается усиление осмоления реакционной смеси. Изменение молярного соотношения реагентов до 1:2, 1:3 не влияет на выход целевого продукта.

Чистота синтезированных соединений **3а-d** проверена методом TCX. Структура доказана ЯМР ¹Н и ИК спектрами и подтверждена данными элементного анализа (табл. 1–3).

Таблица 1 1015

Соеди- нение	Брутто- формула	L B C	Найдено, % ычислено, 9 Н	% N	Т. пл., °С	R_{f}^{*}	Выход, %
3 a	$C_{17}H_{12}N_2O_3$	<u>68.74</u> 69.86	<u>3.98</u> 4.11	<u>11.04</u> 9.59	110	0.63	43
3b	$C_{17}H_{11}N_3O_5$	<u>60.92</u> 60.53	<u>3.76</u> 3.26	<u>11.99</u> 12.46	117	0.78	45
3c	$C_{19}H_{17}N_3O_3$	<u>69.13</u> 68.06	<u>4.69</u> 5.08	<u>13.24</u> 12.54	166	0.83	45
3d	$C_{17}H_{11}BrN_2O_3$	<u>55.17</u> 54.98	<u>2.43</u> 2.96	<u>6.89</u> 7.55	187	0.86	40

Характеристики соединений За-d

* В системе толуол-этанол, 10 : 3.

В ИК спектрах продуктов конденсации пирролинона 1 с ароматическими альдегидами имеются полосы валентных колебаний двойной связи углерод–углерод (1605–1590 см⁻¹), которые налагаются на полосы валентных колебаний бензольного кольца. Обнаружена полоса валентных колебаний карбонильной группы в области 1660–1650 см⁻¹. Валентные колебания нитрогруппы находятся в областях 1530–1510 (v_{as}), 1345 см⁻¹ (v_s).

В спектрах ЯМР ¹Н пирролинонов **3а–d** отсутствуют сигналы протонов в области 4.50 м. д., сигналы протонов H-3,4 сместились в слабое поле по сравнению с исходным пирролиноном (H-3 6.25, H-4 7.46 м. д.), что свидетельствует об образовании продуктов конденсации по положению 5 гетероцикла.

Дублеты протонов H-3 находятся в области 7.57–7.63 м. д. с J = 6.8 Гц. Протоны H-4 имеют дублет-дублетное расщепление как на протонах H-3 (J = 6.8 Гц), так и на протонах H_α с константой дальнего спин-спинового взаимодействия 2.4–2.5 Гц и находятся в области 8.21–8.45 м. д.

Так как реакции конденсации пирролинона 1 с ароматическими альдегидами при использовании в качестве катализатора H₂SO₄ протекали с низкими выходами, серную кислоту заменили на хлорную, которая отличается способностью образовывать стабильные соли и комплексы с органическими соединениями [1, 2].

Вероятно, при добавлении избытка хлорной кислоты к раствору пирролинона происходит атака протона по атому кислорода карбонильной группы с последующим образованием перхлората пирролинония, при этом

Г	а	б	Л	И	Ц	а	2
---	---	---	---	---	---	---	---

Соеди- нение	v, см ⁻¹									
	C=0	C=C	NC	۸r						
	C-0		v_s	v_{as}	AI					
3 a	1660	1595	1345	1530	1595, 1500					
3b	1650	1590	1345	1510	1590, 1500					
3c	1660	1605	1345	1520	1600, 1500					
3d	1655	1590	1345	1530	1590, 1500					

ИК спектры соединений За-d

выброс протона из положения 5 подавляется, поскольку положительный заряд на карбонильном атоме углерода стабилизируется сопряжением с неподеленной электронной парой атома азота и *π*-электронами двойной связи.

Такое строение перхлората **4** подтверждается отсутствием в его ИК спектрах полосы поглощения валентных колебаний карбонильной группы при 1690–1660 см⁻¹ и наличием интенсивной полосы поглощения v_{OH} в области 3500–3300 см⁻¹. Также наблюдается интенсивная уширенная полоса поглощения перхлорат-аниона в области 1150–1050 см⁻¹, налагающаяся на v_{C-O} .

Установлено, что образование перхлората 1-(4-нитрофенил)пирролин-2-ония (4) возможно в среде уксусного ангидрида или его смеси с уксусной кислотой при добавлении небольшого избытка хлорной кислоты.

Более высокая стабильность в условиях реакции по сравнению с N-арилпирролин-2-онами должна способствовать конденсации перхлоратов с ароматическими альдегидами. Действительно, при проведении реакций ароматических альдегидов **2a**-**d** с перхлоратом **4** уменьшилось осмоление реакционной смеси, и повысился выход продуктов конденсации.

Для оптимизации процесса реакцию в дальнейшем проводили без выделения промежуточного перхлората.

Установлено, что при проведении реакции в разбавленной уксусной кислоте необходимо нагревание до 70–80 °C, как следствие, наблюдаются осмоление реакционной массы и низкие выходы продуктов. При замене растворителя на уксусный ангидрид или ледяную уксусную кислоту в присутствии уксусного ангидрида реакция протекает при температуре 40–50 °C и 10% молярном избытке альдегида в течение 10 мин. В данных условиях осмоления смеси не наблюдалось, а выходы продуктов составили 70–80%.

5 a R = H, b $R = NO_2$, c $R = NMe_2$, d R = Br

Строение синтезированных соединений доказано методами ИК и ЯМР ¹Н спектроскопии.

В ИК спектрах (табл. 4) соединений **5а–d** отсутствует полоса поглощения валентных колебаний карбонильной группы при 1690–1660 см⁻¹, но име-ются интенсивная полоса поглощения v_{OH} в области 3500–3300 см⁻¹ и уши-ренная полоса поглощения перхлорат-аниона в области 1150–1050 см⁻¹, нала-гающаяся на v_{C-O} . Также наблюдается интенсивная полоса поглощения $v_{C=C}$ при 1600 см⁻¹.

Таблица З

Спектры ЯМР ¹Н продуктов конденсации 1-(4-нитрофенил)пирролин-2-она с ароматическими альдегидами

Соеди-	Химические сдвиги, б, м. д. (Ј, Гц)*											
нение	Н-3 (д)	Н-4 (д. д)	Н _α (д)	Н-2' (д)	Н-3' (д)	Н-2"	Н-3"	H-4"				
3a	7.57 (<i>J</i> = 6.8)	8.21 (J = 6.8, J = 2.4)	8.38 (<i>J</i> = 2.4)	7.69 (<i>J</i> = 8.9)	8.26 (<i>J</i> = 8.9)		7.73 (м)					
3b	7.63 (<i>J</i> = 6.7)	8.27 (J = 6.7, J = 2.4)	8.45 (<i>J</i> = 2.4)	7.69 (<i>J</i> = 8.9)	8.26 (<i>J</i> = 8.9)	7.63 (д, <i>J</i> = 8.7)	8.24 (д, <i>J</i> = 8.7)	-				
3c	7.60 (<i>J</i> = 6.8)	8.21 (J = 6.8, J = 2.5)	8.36 (<i>J</i> = 2.5)	7.68 (<i>J</i> = 8.9)	8.26 (<i>J</i> = 8.9)	7.77	(M)	-				
3d	7.61 (<i>J</i> = 6.8)	$8.24 \\ (J = 6.8, J = 2.5)$	8.30 (<i>J</i> = 2.5)	7.69 (<i>J</i> = 8.9)	8.26 (<i>J</i> = 8.9)	7.73	(M)	-				

* Спектры ЯМР ¹Н снимали в (CD₃)₂CO (соединений **За,с**) и CDCl₃ (соединений **3b,d**).

Таблица 4

Характеристики соединений 5а–d

Соеди-	Брутто-	<u>Найдено, %</u> Вычислено, %		Т. пл.,	R_f*	ИК спектр, v, см ⁻¹				Выход,	
нение	формула	С	Н	Ν	C	2	C=C	ОН	ClO_4^-	Ar	/0
5a	$C_{17}H_{13}CIN_2O_7$	<u>52.03</u> 51.97	<u>3.39</u> 3.31	<u>7.09</u> 7.13	265**	0.23	1600	3500-3300	1130–1050	1600, 1500	83
5b	C ₁₇ H ₁₂ ClN ₃ O ₉	<u>46.71</u> 46.63	<u>2.79</u> 2.74	<u>9.63</u> 9.60	282	0.33	1600	3530-3330	1150-1035	1600, 1497	76
5c	$C_{19}H_{18}ClN_3O_7$	<u>52.31</u> 52.35	<u>4.21</u> 4.13	<u>9.42</u> 9.46	210**	0.28	1603	3500-3300	1145–1040	1603, 1500	81
5d	$C_{17}H_{12}BrClN_2O_7$	<u>43.23</u> 43.27	<u>2.57</u> 2.55	<u>5.91</u> 5.94	290	0.29	1605	3510-3300	1150-1060	1605, 1500	79

* В системе толуол–этанол, 10 : 3.
* * Соединение разлагается при указанной температуре.

Таблица 5

Спектры ЯМР ¹Н перхлоратов 1-(4-нитрофенил)-5-(4-арилиден)пирролин-2-онов

Соеди- нение	Химические сдвиги, δ, м. д. (<i>J</i> , Гц)*										
	Н-3 (д)	Н-4 (д)	$H_{\alpha}(c)$	Н-2' (д)	Н-3' (д)	Н-2" (д)	Н-3", Н-4"				
5a	8.08 (<i>J</i> = 5.0)	8.54 (<i>J</i> = 5.0)	8.70	8.08 (<i>J</i> = 7.0)	8.91 (<i>J</i> = 7.0)	8.06 (<i>J</i> = 7.1)	7.70–7.95 (м)				
5b	8.08 (<i>J</i> = 5.2)	8.53 (<i>J</i> = 5.2)	8.68	8.11 (<i>J</i> = 7.1)	8.91 (<i>J</i> = 7.1)	8.11 (<i>J</i> = 7.0)	8.79 (д, <i>J</i> = 7.0)				
5c	8.07 (<i>J</i> = 5.1)	8.55 (<i>J</i> = 5.1)	8.71	8.10 (<i>J</i> = 7.2)	8.90 (<i>J</i> = 7.2)	8.10 (<i>J</i> = 7.0)	8.69 (д, <i>J</i> = 7.0)				
5d	8.07 (<i>J</i> = 5.1)	8.50 (<i>J</i> = 5.1)	8.68	8.09 (<i>J</i> = 7.0)	8.81 (<i>J</i> = 7.0)	8.09 (<i>J</i> = 7.1)	8.53 (д, <i>J</i> = 7.1)				

* Спектры ЯМР ¹Н соединений **5а–d** сняты в трифторуксусной кислоте, внутренний стандарт *трет*-бутиловый спирт (δ 1.25 м. д.) или внешний эталон ГМДС (δ 0.05 м. д.).

В спектрах ЯМР ¹Н соединений **5а-d** (табл. 5), снятых в трифторуксусной кислоте, наблюдается сложная картина в области 7.7–9.0 м. д., обусловленная наложением сигналов всех протонов соединения. Смещение сигналов в слабое поле по сравнению с исходными соединениями обусловлено наличием делокализованного положительного заряда, что является подтверждением образования солевых структур.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

ИК спектры снимали на спектрофотометре типа ИКС-29 фирмы ЛОМО в интервале частот 4200–400 см⁻¹, с дифракционными решетками 150 штрихов на миллиметр в области 4200–1200 см⁻¹ и 50 штрихов на миллиметр в области 1400–400 см⁻¹. Погрешность ± 5 см⁻¹. Спектры ЯМР ¹Н записывали на приборе FT-80A фирмы Varian (80 МГц), разрешающая способность 0.5•10⁻⁹, точность ±0.02 м. д., а также на приборе Tesla BS-487 (80 МГц), точность до 0.05 м. д. Ход реакции и индивидуальность синтезированных соединений контролировали методом TCX (Silufol UV-254, в системе толуол–этанол, 10:3).

5-Арилиден-1-(4-нитрофенил)пирролин-2-оны За-d. В трехгорлую колбу, снабженную обратным холодильником, мешалкой и термометром, загружают 0.25 г (1.2 ммоль) пирролинона 1 и 1.2 ммоль альдегида. После полного растворения реагентов в уксусном ангидриде при температуре 60 °C добавляют 2–3 капли пиридина. Реакционную смесь нагревают при интенсивном перемешивании в течение 4 ч до полного расхода пирролинона. За ходом процесса наблюдают с помощью TCX (ацетон-хлороформ-петролейный эфир, 2:1:0.5). После окончания реакции избыток растворителя отгоняют под вакуумом. Оставшуюся реакционную массу охлаждают, промывают водой и фильтруют. Фильтрат промывают диэтиловым эфиром. Выпавшие кристаллы перекристаллизовывают из спирта.

Перхлорат 1-(4-нитрофенил)пирролин-2-ония (4). Растворяют 0.1 г (0.5 ммоль) пирролинона 1 в смеси 4.5 мл ледяной уксусной кислоты и 0.17 мл уксусного ангидрида. При охлаждении на ледяной бане прибавляют по каплям 0.055 мл (0.55 ммоль) 70% хлорной кислоты. Нагревают до 20–25 °C и осаждают диэтиловым эфиром. Выпавшие кристаллы отфильтровывают, промывают эфиром. Т. пл. 207 °C. Выход 0.11 г (73%). ИК спектр, см⁻¹: v_{OH} 3500–3300, v_{ClO4} 1150–1050, налагающаяся на v_{C-O} v_{Ar} 1605, 1500. Найдено, %: С 39.43; Н 3.29; N 9.23. $C_{10}H_8CIN_2O_7$. Вычислено, %: С 39.28; Н 3.27; N 9.17.

Перхлораты 1-(4-нитрофенил)-5-(4-арилиден)пирролин-2-ония 5а-d. В смеси 4.5 мл ледяной уксусной кислоты и 0.17 мл уксусного ангидрида растворяют 0.1 г (0.5 ммоль) пирролинона 1. При охлаждении на ледяной бане прибавляют по каплям 0.055 мл (0.55 ммоль) 70% хлорной кислоты. Нагревают до температуры 50±5 °C, добавляют 0.5 ммоль альдегида, нагревают 30–35 мин, охлаждают и осаждают диэтиловым эфиром. Выпавшие кристаллы отфильтровывают, промывают эфиром.

СПИСОК ЛИТЕРАТУРЫ

- 1. Г. Н. Дорофеенко, Ю. А. Жданов, В. И. Дуленко, *Хлорная кислота и ее соединения в органическом синтезе*, Ростов-на-Дону, 1965, 140 с.
- 2. Т. П. Косулина, Дис. докт. хим. наук, Краснодар, 1999.

Кубанский государственный технологический университет, Краснодар 350072, Россия e-mail: 751049@list Поступило 24.06.2002 После доработки 19.11.2004