Л. А. Каюкова, К. М. Бекетов, А. Л. Ахелова, К. Д. Пралиев

СИНТЕЗ 2-[2-(5-ФЕНИЛ-1,2,4-ОКСАДИАЗОЛ-3-ИЛ)ЭТИЛ]БЕНЗИМИДАЗОЛА И ЕГО РЕНТГЕНОСТРУКТУРНЫЙ АНАЛИЗ

Циклизацией О-бензоил-2-(бензимидазол-1-ил)пропиоамидоксима при разных темпе-ратурных условиях получен 2-[2-(5-фенил-1,2,4-оксадиазол-3-ил)этил]бензимидазол, структура которого определена методом РСА.

Ключевые слова: О-бензоил-2-(бензимидазол-1-ил)пропиоамидоксим, 2-[2-(5-фенил-1,2,4-оксадиазол-3-ил)этил]бензимидазол, дегидратация, РСА.

Ранее [1, 2] мы показали, что О-ароил-2-пиперидино(морфолино)пропиоамидоксимы при нагревании в растворе ДМФА при 60 °С в течение 1–2.5 ч (метод А) циклизуются в соответствующие оксадиазолы, тогда как при нагревании в твердой фазе (метод Б) для осуществления этой реакции достаточно 30 с.

Поскольку полученный нами [3, 4] гидрохлорид О-бензоил-2-(бензимидазол-1-ил)пропиоамидоксима (1) проявил противотуберкулезную и нейрофармакологическую активность, мы осуществили дегидратацию его основания с целью дальнейшего изучения биологического действия образующегося при этом 2-[2-(5-фенил-1,2,4-оксадиазол-3-ил)этил]бензимидазола (2). Оказалось, что для циклодегидратации основания 1 по методу А требуется значительно больше времени (4 сут), выход 42%, тогда как при простом расплавлении кристаллов 1 (метод Б) уже через 7 мин соединение 2 было получено с выходом 58%. Строение полученного соединения 2 подтверждено спектрами ЯМР ¹Н, элементным анализом, а также методом РСА, который окончательно доказывает структуру полученного 2-[2-(5-фенил-1,2,4-оксадиазол-3-ил)этил]бенз- имидазола (2) (рис. 1, 2).

1057

Рис. 1. Молекулярное строение, нумерация атомов соединения 2

Значения валентных связей оксадиазола 2 (рис. 1) близки к стандартным. Как и следовало ожидать, бензимидазольный заместитель в молекуле 2 плоский, его шестичленный цикл плоский в пределах 0.001, а пятичленный – в пределах 0.002 Å. Угол между среднеквадратичными плоскостями этих циклов составляет 0.8(3)°. Оксадиазольный и фенильные циклы (плоские в пределах 0.004 и 0.002 Å соответственно) лежат в одной плоскости. Диэдральный угол между ними составляет 1.4(4)°.

Рис. 2. Кристаллическая структура соединения 2

Эмпирическая формула	$C_{17}H_{14}N_4O$
Параметры ячейки	
<i>a</i> , Å	8.2131(4)
<i>b</i> , Å	11.1885(5)
<i>c</i> , Å	16.0551(7)
α, град.	90
β, град.	90
ү, град.	90
Простр. группа	Pna(2)1
<i>V</i> , Å ³	1475.34(12)
Ζ	4
$\rho_{\text{выч}}, r/c m^3$	1.307
μ, мм ⁻¹	0.085
F(000)	608
Число отснятых отражений	16 640
Число отражений для расчета	1563
GOOF	1.033
Финальный R-фактор [<i>I</i> >2 σ (<i>I</i>)]	$R_1 = 0.0306, wR_2 = 0.0803$
Остаточная электронная плотность, эл. ${\rm \AA}^{-3}$	0.123 и -0.111

Кристаллографические параметры и экспериментальные данные для соединения 2

В кристаллах молекулы **2** наблюдаются, в основном, ван-дерваальсовые взаимодействия (рис. 2). Кроме этого, наблюдаются слабые связи С–Н...N с геометрическими характеристиками С(7)-Н...N(16) [-0.5+x, 2.5-y, z], С...N – 3.419(3), Н...N – 2.50(3), С–Н – 1.00(3) Å; посредством этих связей молекулы **2** сшиваются в стопки, параллельные оси *a* (рис. 2).

Длины связей (d) соединения 2

Таблица 2

Связь	d, Å	Связь	<i>d</i> , Å	Связь	<i>d</i> , Å
N(1)–C(2)	1.356(3)	C(7)–C(9)	1.378(3)	O(15)–N(16)	1.422(2)
N(1)–C(9)	1.385(2)	C(8)–C(9)	1.394 (3)	C(17)–C(18)	1.383(3)
N(1)–C(10)	1.452(3)	C(10)–C(11)	1.517(3)	C(17)–C(22)	1.395(3)
C(2)–N(3)	1.310(3)	C(11)–C(12)	1.495(3)	C(18)–C(19)	1.390(3)
N(3)–C(8)	1.390(2)	C(12)–N(16)	1.296(3)	C(19)–C(20)	1.370(4)
C(4)–C(5)	1.368(3)	C(12)–N(13)	1.375(3)	C(20)–C(21)	1.372(4)
C(4)–C(8)	1.396(3)	N(13)–C(14)	1.297(2)	C(21)–C(22)	1.390(3)
C(5)–C(6)	1.393(4)	C(14)–O(15)	1.337(2)		
C(6)–C(7)	1.386(3)	C(14)–C(17)	1.464(3)		

Таблица З

Валентные углы (ω) соединения 2

Угол	ω, град.	Угол	ω, град.
C(2)-N(1)-C(9)	106.24 (17)	N(16)-C(12)-N(13)	114.79 (18)
C(2)–N(1)–C(10)	126.24 (19)	N(16)-C(12)-C(11)	122.56 (19)
C(9)–N(1)–C(10)	127.44 (18)	N(13)-C(12)-C(11)	122.63 (19)
N(3)–C(2)–N(1)	114.37 (18)	C(14)–N(13)–C(12)	102.44 (15)
C(2)–N(3)–C(8)	103.86 (16)	N(13)-C(14)-O(15)	113.70 (16)
C(5)-C(4)-C(8)	117.6 (2)	N(13)-C(14)-C(17)	127.89 (17)
C(4)-C(5)-C(6)	121.4 (2)	O(15)-C(14)-C(17)	118.41 (17)
C(7)–C(6)–C(5)	122.0 (2)	C(14)-O(15)-N(16)	105.70 (15)
C(9)–C(7)–C(6)	116.1 (2)	C(12)–N(16)–O(15)	103.35 (16)
N(3)-C(8)-C(9)	110.52 (17)	C(18)–C(17)–C(22)	120.4 (2)
N(3)-C(8)-C(4)	129.29 (19)	C(18)-C(17)-C(14)	118.78 (18)
C(9)–C(8)–C(4)	120.18 (17)	C(22)-C(17)-C(14)	120.80 (19)
C(7)–C(9)–N(1)	132.33 (19)	C(17)-C(18)-C(19)	119.7 (2)
C(7)–C(9)–C(8)	122.65 (19)	C(20)–C(19)–C(18)	120.0 (3)
N(1)-C(9)-C(8)	105.01 (16)	C(19)-C(20)-C(21)	120.4 (2)
N(1)-C(10)-C(11)	111.96 (17)	C(20)-C(21)-C(22)	120.8 (3)
C(12)-C(11)-C(10)	110.98 (18)	C(21)-C(22)-C(17)	118.6 (3)

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Спектры ЯМР ¹Н записаны на приборе Mercury-300 (300 МГц) в ДМСО-d₆, внутренний стандарт ГМДС (6 0.05 м. д.) Контроль за ходом реакции осуществлялся с помощью ТСХ на пластинках Silicagel (Fluka), элюент этанол–бензол, 3:1.

О-Бензоил-2-(бензимидазол-1-ил)пропиоамидоксим (1). К раствору 1.0 г (2.9 ммоль) гидрохлорида соединения 1 [5] в 10 мл дистиллированной воды добавляют 0.40 г (2.9 ммоль) К₂CO₃, выпавший осадок отфильтровывают, перекристаллизовывают из этанола. Выход 0.67 г (75%), R_f 0.40, т. пл. 118 °C. Спектр ЯМР ¹Н, δ , м. д. (*J*, Гц): 2.74 (2H, т, *J* = 7.0, α -CH₂); 4.63 (2H, т, *J* = 7.0, β -CH₂); 6.82 (2H, c, NH₂); 8.62 (1H, c, C_{(2)sp2}-H); 7.62–8.12 (9H, м, CH_{Ar}). Найдено, %: С 66.55; Н 5.39. С₁₇Н₁₆N₄O₂. Вычислено, %: С 66.22; Н 5.23.

2-[2-(5-Фенил-1,2,4-оксадиазол-3-ил)этил]бензимидазол) (2). А. Смесь 0.67 г (2.2 ммоль) соединения **1**, 0.3 г молекулярных сит и 15 мл ДМФА нагревают на водяной бане при 60–65 °С в течение 4 сут, отфильтровывают молекулярные сита, фильтрат упаривают на масляном насосе. Полученный остаток перекристаллизовывают из этанола. Выход 0.27 г (42%), *R*_L0.63, т. пл. 86 °С.

Б. Нагревают 0.4 г (1.3 ммоль) соединения 1 до температуры плавления (118 °С) и через 7 мин полученный сплав перекристаллизовывают из этанола. Выход 0.22 г (58%), R_f 0.63, т. пл. 86 °С. Спектр ЯМР ¹Н, δ , м. д. (J, Γ ц): 3.38 (2H, т, J = 7.0, α -CH₂); 4.72 (2H, т, J = 7.0, β -CH₂); 8.22 (1H, с, $C_{(2)sp2}$ -H); 7.16–8.07 (9H, м, CH_{Ar}). Найдено, %: С 70.21; Н 5.16. С₁₇H₁₄N₄O. Вычислено, %: С 70.33; Н 4.86.

Рентгеноструктурное исследование выполнено на дифрактометре KUMA/OXFORD KM4 при комнатной температуре ($\theta/2\theta$ -сканирование с применением графитового монохроматора на Мо*К* α -излучении, $\theta_{max} = 26.37$, $\lambda = 0.71073$ Å). Кристаллы соединения **2**: сингония орторомбическая. Структуру расшифровывали прямыми методами и уточнение проводили в анизотропном (для атомов водорода в изотропном) приближении тепловых 1060

колебаний атомов методом наименьших квадратов с помощью комплексов программ SHELX-97 [6]. С помощью разностных синтезов определяли положение всех атомов водорода. Окончательный фактор составил 0.0306 по 1563 отражениям с $I > 2\sigma(I)$. Параметры элементарной ячейки и характеристики эксперимента представлены в табл. 1, длины связей и валентные углы в табл. 2, 3.

Данные РСА депонированы в Кембриджском банке данных (CCDC 254116).

СПИСОК ЛИТЕРАТУРЫ

- 1. Л. А. Каюкова, К. Д. Пралиев, И. С. Жумадильдаева, Изв. АН, Сер. хим., 1945 (2002).
- 2. Л. А. Каюкова, XГС, 253 (2003) [Chem. Heterocycl. Comp., 39, 223(2003)].
- 3. Л. А. Каюкова, К. Д. Пралиев, А. Л. Котова, А. Е. Кривцова, Предпат. РК № 8391; Бюл. "Пром. собств.", Алматы, № 1, 46 (2000).
- 4. Л. А. Каюкова, К. Д. Пралиев, Г. М. Пичхадзе, Д. М. Кадырова, Е. Е. Браун, К. У. Есетова, Предпат. РК № 10512; *Бюл. "Пром. собств.*", Алматы, № 8, 104 (2001).
- 5. Л. А. Каюкова, К. Д. Пралиев, А. Л. Ахелова, *Изв. МОН РК, НАН РК. Сер. хим.*, № 5, 75 (2003).
- 6. G. M. Sheldrick, SHELXS97 and SHELXL97. Univ. of Göttingen, Göttingen, Germany, 1997.

Институт химических наук им. А. Б. Бектурова МОН Республики Казахстан, Алматы 010050, e-mail: lkayukova@mail.ru Поступило 16.11.2004