П. Н. Гапоник, С. В. Войтехович, А. С. Ляхов

СЕЛЕКТИВНЫЙ СИНТЕЗ БИЯДЕРНЫХ N-ЗАМЕЩЕННЫХ ТЕТРАЗОЛОВ И СОЛЕЙ ТЕТРАЗОЛИЯ

Осуществлено селективное алкилирование моноядерных тетразолов 2,5-диметилгександиолом-2,5 и N-незамещенных биядерных тетразолов *трет*-бутанолом в среде хлорной и серной кислот. Синтезирован ряд ранее не известных N-замещенных биядерных тетразолов и солей тетразолия. Приведены данные PCA 2,5-диметил-2,5-ди (5-фенилгетразолил-2) гексана.

Ключевые слова: биядерные соли тетразолия, биядерные тетразолы, алкилирование, кватернизация, селективность.

Повышенный интерес к химии N-замещенных тетразолов (N-T), а также к комплексным соединениям и солям тетразолия на их основе обусловлен успехами применения N-T в медицине и технике, широкими синтетическими возможностями солей тетразолия, наличием у комплексных соединений переходных металлов с N-T ряда ценных свойств (низкотемпературный ферромагнетизм, явления термо- и светоиндуцируемых спин-спиновых переходов и др.) [1—4]. При этом подавляющая часть публикаций посвящена производным моноядерных тетразолов. Би- и полиядерные производные мало изучены, что в значительной степени обусловлено проблемами их синтеза. В то же время кроме отмеченных областей они перспективны как хелатирующие агенты [5, 6] и исходные соединения для построения одно-, двух- и трехмерных металлосодержащих систем [6, 7].

Наиболее универсальный и доступный метод синтеза би- и полиядерных N-T и солей тетразолия основан на алкилировании N-незамещенных и кватернизации полиядерных N-T соответственно монофункциональными агентами либо моноядерных тетразолов полифункциональными агентами в щелочных и близких к нейтральным условиях, включая межфазные [1—3, 8—13]. Существенным недостатком этого метода, считавшегося единственным путем к 2-алкилзамещенным тетразолам и 1,3,5-тризамещенным тетразолиевым солям, является образование смесей изомерных продуктов и связанная с этим необходимость их разделения, что в случае биядерных тетразолов не всегда осуществимо (см., например, [3, 12]). Недавние наши исследования по алкилированию и кватернизации моноядерных тетразолов спиртами и олефинами в кислотных средах показали, что они перспективны в качестве подхода к селективному синтезу как 2-замещенных тетразолов [4, 14—16], так и 1,3(1,3,5)- и 1,4-замещенных солей тетразолия [17, 18].

В развитие этих исследований и с целью разработки эффективного метода синтеза биядерных N-T в настоящей работе мы изучили процессы алкилирования и кватернизации в кислотных средах моно- и биядерных тетразолов би- и монофункциональными спиртами. В качестве объектов исследования выбраны доступные производные тетразола алифатического и ароматического рядов, а также *трет*-бутиловый спирт и его бифункциональное производное 2,5-диметилгександиол-2,5, легко генерирующие в кислотных средах карбкатионы.

В среде хлорной и серной кислот 1,4-ди(5-тетразолил)бензол (1а) и 2,2'-ди(5-тетразолил)этиловый эфир (1b) селективно алкилируются *трет*бутанолом, образуя X-5,5'-бис(2-*трет*-бутилтетразолы) 2а,b с высокими выходами (табл. 1). Физико-химические характеристики синтезированных соединений

Соеди- нение	Брутто- формула	<u>Найдено. %</u> Вычислено, %				Т. пл., °С	Данные ЯМ	Выход, %	
		С	н	N	Cl		¹ H	¹³ C	
2a	$C_{16}H_{22}N_8$	<u>59.02</u> 58.88	<u>6.90</u> 6.79	<u>34.30</u> 34.33	, <u></u>	180 разл.	1.80 (18H, c); 8.30 (4H, c, C ₆ H ₄)	166.92 ($C_{(5,5')}$); 132.80 (C_{apoM} -C (5,5')); 130.81 (C_{apoM}); 67.85 ($CN_{(2,2')}$); 32.58 (CH ₃)	91
2b	C ₁₄ H ₂₆ N ₈ O	<u>52.25</u> 52.16	$\frac{8.20}{8.13}$	<u>34.67</u> 34.76	•	49—51	1.67 (18H, c, 6CH ₃); 3.04 (4H, т, 2CH ₂ C _(5,5')); 3.84 (4H, т, 2CH ₂ O)	$\begin{array}{c} 166.93 \ (C_{(5,5')}); \ 71.69 \\ (CH_2O); \ 67.06 \\ (\underline{CH}_2C_{(5,5')}); \ 32.64 \ (CH_3); \\ 29.69 \ (CN_{(2,2')}) \end{array}$	78
3	$C_{18}H_{28}Cl_2N_8O_8$	<u>38.78</u> 38.93	$\frac{5.15}{5.08}$	$\frac{20.27}{20.18}$	$\frac{13.01}{12.77}$	205 разл.	1.85 (18H, c, 6CH ₃); 4.46 (6H, c, 2CH ₃ N); 8.27 (4H, c, C ₆ H ₄)	<u> </u>	58
5	$C_{10}H_{10}N_8$	<u>49.70</u> 49.58	<u>4.29</u> 4.16	<u>46.39</u> 46.26		208-210	4.24 (6H, c, 2CH ₃); 8.10 (4H, c, C ₆ H ₄)	$\begin{array}{c} 157.27 \ (C_{(5,5')});\\ 130.81 \ (\underline{C}_{\text{apom}}-C_{(5,5')};\\ 132.96 \ (C_{\text{apom}});\\ 38.68 \ (CH_3) \end{array}$	67
8	$C_{22}H_{26}Cl_2N_8O_9$	<u>42.99</u> 42.80	<u>4.49</u> 4.24	$\frac{18.29}{18.15}$	<u>11.65</u> 11.49	170 разл.	1.88 (18H, с, 6CH ₃); 7.55 и 8.10 (8H, два м, 2C ₆ H ₄); 10.96 (1H, с, 5-Н и 5'-Н)	·	90
12	$C_{22}H_{25}N_8$	<u>65.80</u> 65.65	<u>6.80</u> 6.51	<u>27.99</u> 27.84	•	173—175	1.69 (12H, с, 4CH ₃); 1.87 (4H, с, 2CH ₂); 7.44–7.55 и 7.90–8.02 (6Н и 4H, дра м, 2C ₆ H ₅)		76
13	$C_{16}H_{32}Cl_2N_8O_8$	<u>36.12</u> 35.90	<u>5.97</u> 6.03	<u>20.81</u> 20.93	<u>13.36</u> 13.24	150 разл.	1.78 (12H, д, 4CH ₃); 1.82 (12H, с, 6,4 гем-CH ₃); 2.04 (4H, с, 2CH ₂); 5,35 (2H, м, 2CH); 10.50 (1H, с, 5-и 5'-H)	·	44

a successive water as the second second

1, 2 a X = $-C_6H_4$ -*p*, b X = $-CH_2CH_2OCH_2CH_2$ -

Моноядерные 5-R-тетразолы в сильных кислотах практически полностью протонированы по атому $N_{(4)}$, что и обусловливает селективность их алкилирования спиртами [14, 19]. Наблюдаемая селективность алкилирования биядерных тетразолов, по-видимому, также объясняется полным протонированием обоих тетразольных циклов с образованием дикатиона X-5,5'-бистетразолия 3. Последний далее атакуется по атомам $N_{(2)}$ и $N_{(2')}$ карбокатионами, генерируемыми из спирта, и превращается в продукт 2.

Полученные таким образом тетразолы 2 могут быть селективно кватернизованы в мягких условиях (при 20—50 °C), что показано нами на примере метилирования 1,4-фенилен-5,5'-бис(2-*трет*-бутилтетразола) (2а).

Попытки осуществления реакции при более высоких температурах (~100 °C) с целью увеличения ее скорости приводят к смеси неразделимых продуктов метилирования 4. Такой результат, по-видимому, обусловлен термически индуцируемым де-*трет*-бутилированием как тетразола 2а, так и соли 5 и последующим исчерпывающим неселективным метилированием гетероцикла. Де-*трет*-бутилирование солей тетразолия может осуществляться и в кислой среде [20], что успешно использовано нами для селективного синтеза биядерного тетразола 6.

Так же селективно протекает кватернизация в кислой среде бис (4-тетразолил) фенилового эфира (7а), который под действием *трет*-бутанола в хлорной кислоте в течение 12 ч образует с высоким выходом диперхлорат 4,4′-бис (3-*трет*-бутил)-1-тетразолиодифенилового эфира (8).

389

Механизм селективного образования соли 8, очевидно, подобно описанному выше механизму алкилирования, включает предварительную стадию протонирования исходного тетразола по атому N(4). Однако при трет-бутилировании 1,2-ди (1-тетразолил) этана (7b) в аналогичных условиях с низким выходом получена смесь солей, содержащих как некватернизованный тетразольный цикл, так и кватернизованные по атомам N(3) или N(4) циклы. Мольное соотношение указанных солей, определенное по интенсивности синглетных сигналов протонов у атомов С(5,5') в спектре ЯМР ¹Н (при 9.34, 10.34 и 11.45 м. д.), составляет 1 : 4.5 : 2.5. Продолжительное выдерживание реакционной смеси (8 сут) приводит к солям 9 с высоким выходом (96%). При этом соотношение продуктов алкилирования по положениям 3 и 4 составляет уже 1 : 3 (сигналы протонов 5- и 5'-Н находятся в спектре при 10.31 и 11.41 м. д.). Неселективность алкилирования в случае тетразола 7b связана, по-видимому, с протеканием кислой среде процессов изомеризации, наблюдавшихся ранее для в моноядерных алкилтетразолов [18, 21].

Алкилированием 5-фенил- (10) и 2-изопропилтетразола (11) 2,5-диметилгександиолом-2,5 в среде HClO₄ селективно получены 2,5-диметил-2,5ди(5-фенил-2-тетразолил)гексан (12) и диперхлорат 2,5-ди(3-изопропил-1тетразолио)-2,5-диметилгексана (13) соответственно. Попытки использовать в указанных условиях в качестве алкилирующего агента 2,4-пентандиол оказались безуспешными (возврат исходного тетразола 10 составляет 96%), что, по-видимому, связано с неустойчивостью промежуточного карбкатиона, генерируемого из этого спирта.

ちょうちょうないちになるよう ちょうちょうちょう ちょうちょうちょう ちょうちょう

Спектральные характеристики и данные элементного анализа синтезированных соединений согласуются с предложенным для них строением. Так, сигналы протонов фенильных групп тетразола 12 наблюдаются в спектре ЯМР ¹Н в виде двух обособленных мультиплетов, что характерно для 5-фенил-2-R-тетразолов [14, 16]. Соединения 8 и 13 отнесены к 1,3-солям на основании величин химических сдвигов их протонов у атома углерода цикла, которые существенно различаются для 1,3- и 1,4-солей и близки к аналогичным характеристикам родственных солей тетразолия [18, 22]. Тетразолы 2a,b, а также 6 имеют в спектре ЯМР ¹³С характерные для 2,5- и 1,5-дизамещенных тетразолов сигналы атома углерода тетразольного цикла.

Результаты рентгеноструктурного анализа подтверждают предложенное на основании спектра ЯМР¹Н строение соединения 12. Его молекула состоит из двух одинаковых фрагментов, что использовано нами при нумерации атомов. Конформация молекулы приведена на рис. 1, длины связей и валентные углы — в табл. 2. Анализ полученных данных показывает, что все циклы в молекуле плоские: средние отклонения атомов, образующих циклы, равны 0.003 Å (цикл N₍₁₎—C₍₅₎), 0.007 Å (цикл N_(1')—C_(5')), 0.004 Å (цикл C₍₆₎—C₍₁₁₎) и 0.011 Å (цикл C_(6')—C_(11')). Указанные четыре цикла почти копланарны (рис. 1). Угол между тетразольными циклами в молекуле составляет 1.9(4)°, а углы между фенильным и тетразольным циклами равны 3.9(4)° и 6.1(4)° (последнее значение соответствует фрагменту молекулы с атомами, помеченными штрихами).

Рис. 1. Конформация молекулы соединения 12

Рис. 2. Упаковка молекул в кристаллической структуре соединения 12

Длины	связей	И	валентные	углы	В	соединении	12	
-------	--------	---	-----------	------	---	------------	----	--

Связь	<i>d</i> , Å	Угол	ω, град.
C(1)N(2)	1.508(7)	$N_{(2)}-C_{(1)}-C_{(2)}$	108.0(5)
C(1)-C(2)	1.522(9)	$N_{(2)}-C_{(1)}-C_{(3)}$	107.9(5)
$C_{(1)} - C_{(3)}$	1.529(8)	$C_{(2)} - C_{(1)} - C_{(3)}$	110.4(5)
C(1)—C(4)	1.532(7)	$N_{(2)}-C_{(1)}-C_{(4)}$	107.8(4)
C(5)-N(1)	1.326(7)	$C_{(2)}-C_{(1)}-C_{(4)}$	112.9(5)
C(5)-N(4)	1.349(9)	C(3)-C(1)-C(4)	109.5(5)
$C_{(5)} - C_{(6)}$	1.458(9)	$C_{(4')} - C_{(4)} - C_{(1)}$	115.1(4)
$C_{(6)}-C_{(7)}$	1.366(9)	N(1)-C(5)-N(4)	111.6(7)
$C_{(6)} - C_{(11)}$	1.40(1)	$N_{(1)}-C_{(5)}-C_{(6)}$	124.2(6)
C(7) - C(8)	1.40(1)	$N_{(4)} - C_{(5)} - C_{(6)}$	124.2(6)
$C_{(8)} - C_{(9)}$	1.31(1)	$C_{(7)} - C_{(6)} - C_{(11)}$	116.6(8)
C(9) - C(10)	1.33(1)	$C_{(7)} - C_{(6)} - C_{(5)}$	122.8(7)
C(10) - C(11)	1.37(1)	$C_{(11)} - C_{(6)} - C_{(5)}$	120.6(6)
N(1) - N(2)	1.326(6)	$C_{(6)} - C_{(7)} - C_{(8)}$	121.2(9)
N(2) - N(3)	1.311(6)	$C_{(9)} - C_{(8)} - C_{(7)}$	119.2(9)
N(3) - N(4)	1.347(9)	$C_{(8)}$ — $C_{(9)}$ — $C_{(10)}$	123(1)
$\Gamma(4) - \Gamma(4')$	1.516(6)	$C_{(9)} - C_{(10)} - C_{(11)}$	119(1)
C(1) - N(2)	1.494(7)	$C_{(10)} - C_{(11)} - C_{(6)}$	121.0(8)
$C(1) \rightarrow C(2)$	1.539(8)	N(2) - N(1) - C(5)	102.2(5)
C(1) - C(2)	1.530(8)	N(3) - N(2) - N(1)	114.8(5)
C(1) = C(3)	1.528(7)	N(3) - N(2) - C(1)	124.5(6)
$C(1) \rightarrow C(4)$	1 338(7)	N(1) - N(2) - C(1)	120.7(5)
C(5) - C(1)	1.355(1)	N(3) - N(4) - C(5)	106.5(5)
C(3) = C(0)	1 357(0)	N(2) - C(1) - C(2)	107.7(5)
C(6) - C(7)	1.337(3)	N(2) = C(1) = C(2)	107.9(5)
$C(6) \rightarrow C(11)$	1.331(3)	$\Gamma(2) = C(1) = C(3)$	111.1(5)
C(7) - C(8)	1.41(1)	$\mathbf{N}(2) = \mathbf{C}(1) = \mathbf{C}(3)$	107.3(4)
C(8') - C(9')	1.37(1)	$\mathbf{N}(2) = \mathbf{C}(1) = \mathbf{C}(4)$	113.0(5)
$C(9^{\circ}) - C(10^{\circ})$	1.30(1)	$C_{(2)} = C_{(1)} = C_{(4)}$	109.6(5)
$U(10^{\circ}) - U(11^{\circ})$	1.39(1)	$C_{(3)} = C_{(1)} = C_{(4)}$	115 3(4)
N(1') - N(2')	1.330(0)	C(4) = C(4) = C(1)	111.9(6)
N(2') - N(3')	1.319(6)	N(1) = C(5) = N(4)	123 1 (6)
N(3') - N(4')	1.301(9)	N(T) = C(S) = C(S)	125.0(6)
		N(4) = C(5) = C(6)	110 5(0)
	Ę	C(7) = C(6) = C(11)	119.5(9)
		$C_{(7')} - C_{(6')} - C_{(5')}$	120.1(7)
		$C_{(11')} - C_{(6')} - C_{(5')}$	120.4(0)
		$C_{(6')} - C_{(7')} - C_{(8')}$	120.0(9)
		$C_{(9')} - C_{(8')} - C_{(7')}$	120.8(8)
	and the second sec	$C_{(8')} - C_{(9')} - C_{(10')}$	117.1(8)
		C(9') - C(10') - C(11')	121.9(8)
1		$C_{(10')} - C_{(11')} - C_{(6')}$	120.7(8)
		$N_{(2')} - N_{(1')} - C_{(5')}$	102.1(5)
		N(3')—N(2')—N(1')	112.0(6)
		$N_{(3')} - N_{(2')} - C_{(1')}$	126.2(5)
		N(1')N(2')C(1')	121.8(4)
		N(2')-N(3')-N(4')	107.5(6)
		$N_{(3')} - N_{(4')} - C_{(5')}$	106.5(6)

Координаты (в долях ячейки, ×10⁴) и эквивалентные изотропные тепловые параметры атомов в структуре соединения 12

Атом	x/a	y/b	z/c	$(\mathring{A}^2 \times 10^3)$
	1685(6)	2078(5)	662(2)	68(2)
	1003(0)	2978(3)	80(4)	06(2)
C(2)	1002(7)	3339(7)	1020(4)	90(2) 80(2)
C(3)	401(0)	2197(5)	1020(4)	67(2)
C(4)	3010(3)	2193 (J) 4634 (5)	1860(2)	68(2)
C(5)	3302(7)	4034(3)	2454(4)	66(2)
C(6)	4224(7)	4007(3)	2434(4)	101(2)
C(7)	4017(10)	5007(0)	2075(4)	115(3)
C(8)	5802(10)	5997(9)	3241(3)	113(3)
C(9)	5405(10)	5066(9)	3371(0)	120(3)
C(10)	3447(11)	4052(9)	3339(3)	103(5)
U(11)	4009(9)	3877(7)	2655(4)	105(3)
N(1)	3022(5)	3620(4)	1029(2)	65(1)
N(2)	2264(5)	3892(4)	1105(2)	05(1)
N(3)	2119(7)	4990(4)	1004(4)	84(2)
N(4)	2820(7)	5486(4)	1502(3)	86(2)
C(1')	5695(6)	2012(5)	42(3)	66(1)
C(2')	6365(7)	1445(6)	640(3)	90(2)
C(3')	6896(6)	2690(5)	-321 (3)	81 (2)
C(4')	4351 (6)	2784(5)	190(3)	67(2)
C(5')	4137(6)	270(5)	-1158(3)	65(2)
C(6')	3309(7)	64(5)	-1761(4)	68(2)
C(7')	3202(9)	-1008(6)	-2001 (4)	104(3)
C(8')	2426(13)	-1201(7)	-2579(4)	125(3)
C(9')	1814(9)	-313(7)	-2915(4)	98(3)
C(10')	1917(8)	740(7)	-2649(4)	98(2)
C(11')	2680(8)	927(6)	-2076(4)	86(2)
N(1')	4399(5)	1314(4)	-926(2)	63(1)
N(2')	5141(5)	1086(4)	-389(2)	63(1)
N(3')	5334(7)	-18(5)	-304(4)	82(2)
N(4')	4682(7)	-538(4)	-779(3)	90(2)

Небольшая разница в длинах связей в тетразольных циклах (0.04 Å), а также интервал значений валентных углов (102—115°, табл. 2) характерны для 2,5-дизамещенных тетразолов [23—25]. При этом наименьший угол наблюдается при атомах N(1) и N(1'), а наибольший — при замещенных атомах азота. Следует отметить, что морфология монокристаллов, а именно их пластинчатость обусловили большие стандартные отклонения в найденных длинах связей и валентных углах. Упаковка молекул в структуре (рис. 2) определяется, главным образом, ван-дер-ваальсовыми взаимодействиями (никаких укороченных межмолекулярных контактов в структуре нет).

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Спектры ЯМР растворов в (CD₃)₂SO и (CD₃)₂CO (в случае соединений 2a,b) записаны на спектрометре Tesla BS-567A при рабочих частотах 100.028 (¹H) и 25.142 МГц (¹³C). Исходные 5-фенилтетразол (10) и 1,4-ди(5-тетразолил)бензол (1а) [26], 2-изопропилтетразол (11) [14], 1,2-ди(1-тетразолил)этан (7b) [27], 4,4'-ди(1-тетразолил)дифениловый эфир (8) [28], 2,2'-

ди (5-тетразолил) диэтиловый эфир (1b) [29] и 2,5-диметилгександиол-2,5 [30] получены по известным методикам, ссылки на которые указаны после их шифров.

Рентгеноструктурное исследование соединения 12. Монокристаллы соединения 12 получены кристаллизацией из этанола при 293 К. Для РСА был отобран призматический кристалл размерами 0.42 × 0.36 × 0.08 мм. Соединение кристаллизуется в ромбической сингонии, пространственная группа Рса21. Параметры элементарной ячейки: a = 8.866(2), b = 11.730(2), c = 20.938(4) Å; V = 2177.5(7) Å³; Z = 4; $d_{(peHTT)} = 1.228 \text{ г/см}^3$; $\mu = 0.78 \text{ см}^{-1}$. Трехмерный набор рентгеновских дифракционных данных собран на автоматическом четырехкружном дифрактометре Nicolet R3m, МоК α -излучение, графитовый монохроматор, $\theta/2\theta$ -сканирование, $2\theta_{max} = 55^{\circ}$. Структура расшифрована прямым методом. Положения атомов водорода рассчитаны геометрически. У точнение проведено полноматричным МНК с учетом анизотропии тепловых колебаний неводородных атомов. Атомы водорода уточнены в рамках модели «наездника». Окончательные значения факторов недостоверности: R1 = 0.0649, wR2 = 0.1603 ($I > 2\sigma(I)$); R1 = 0.1146, wR2 = 0.2192 (все данные); добротность подгонки GOOF = 1.000. Все расчеты выполнены с помощью программ SHELX-97 (PC Version) [31—33]. Координаты и эквивалентные изотропные тепловые параметры атомов приведены в табл. 3.

Методика *трет*-бутилирования биядерных тетразолов. Раствор тетразола 1a,b, 7a,b (0.011 моль) и 2.2 мл (0.023 моль) *трет*-бутанола в 20 мл 72% хлорной кислоты или 15 мл 96% серной кислоты (для тетразола 1b) выдерживают 2 или 12 ч (в случае тетразолов 7a,b) при 20 °C. Реакционную смесь разбавляют 20 мл воды или выливают на лед (для тетразола 1b). Выпавший осадок продукта отделяют, промывают водой, сушат в вакууме и перекристаллизовывают из этанола (тетразол 2a), смеси эфир—гексан, 1:1 (тетразол 2b), ацетонитрила (соль 8).

Диперхлорат 1,4-дифенилен 5,5'-бис (3-*трет*-бутил-1-метилтетразолия) (5). Смесь 3.26 г (0.01 моль) тетразола 2а и 7.5 мл (0.08 моль) диметилсульфата перемешивают 4 сут при 20—50 °С. Затем реакционную массу выливают в 60 мл воды, добавляют 10 мл 62% хлорной кислоты и перемешивают 1 ч. Выпавший осадок отделяют, промывают водой, сушат в вакууме. Получают 3.20 г (0.058 моль) бесцветной кристаллической соли 5, которую перекристаллизовывают из смеси этанол—ацетонитрил, 1 : 1.

1,4-Фенилен-5,5'-бис (1-метилтетразол) (6). Суспензию 3.2 г (0.058 моль) соли 5 в 50 мл 36% соляной кислоты выдерживают на кипящей водяной бане 10 ч. Затем охлаждают до комнатной температуры. Выпавший осадок отделяют, промывают водой, сушат в вакууме. Получают 1.10 г (0.039 моль) бесцветного кристаллического продукта 6, который перекристаллизовывают из воды.

Методика алкилирования 2,5-диметилгександиолом-2,5. Раствор тетразола 10 или 11 (0.060 моль) и 0.5 г (0.034 моль) 2,5-диметилгександиола в 10 ил 72% хлорной кислоты перемешивают 2 ч и 3 сут соответственно, затем разбавляют 15 мл воды. Выпавший продукт отделяют, промывают водой, сушат в вакууме и перекристаллизовывают из этанола.

Авторы выражают благодарность Белорусскому республиканскому фонду фундаментальных исследований за оказанную финансовую поддержку (проект Х98М-114), Фонду фундаментальных исследований Российской Федерации за оплату лицензий на пользование Кембриджским банком структурных данных (проект 96-07-89187).

СПИСОК ЛИТЕРАТУРЫ

- 1. R. N. Butler, *Comprehensive Heterocyclic Chemistry. II*, Ed. A. R. Katritzky, C. W. Rees, E. F. V. Scriven, Pergamon Press, Oxford, 1996, 4, 621.
- 2. Г. И. Колдобский, В. А. Островский, Успехи химии, 63, 847 (1994).
- 3. В. А. Островский, Г. И. Колдобский, Рос. хим. журн., № 2, 84 (1997).
- П. Н. Гапоник, Химические проблемы создания новых материалов и технологий, Ред. В. В. Свиридов, Минск, 1998, 185.
- 5. A. J. Downard, P. J. Steel, J. Steenwijk, Austral. J. Chem., 48, 1643 (1995).

- 6. C. Janiak, T. G. Scharmann, K. -W. Brzezinka, P. Reich, Chem. Ber., 128, 323 (1995).
- 7. R. W. Saalfrank, K. Schobert, S. Trummer, A. Wolski, Z. Naturforsch., 50b, 642 (1995).
- 8. В. Г. Китаева, Д. Т. Береснев, Р. И. Ишметова, Г. Л. Русинов, *ЖОрХ*, 31, 620 (1995).
- 9. В. И. Боев, Е. М. Красников, А. И. Москаленко, Е. И. Пилько, Л. В. Снегур, В. Н. Бабин, Ю. С. Некрасов, *ЖОХ*, 67, 1386 (1997).
- А. В. Сачивко, В. П. Твердохлебов, И. В. Целинский, Рос. хим. журн., № 2, 119 (1997).
 394

- С. А. Громова, М. И. Бармин, И. Б. Караулова, А. Н. Гребенкин, В. В. Мельников, ЖОрХ, 34, 1094 (1998).
- 12. R. N. Butler, A. F. M. Fleming, J. Heterocycl. Chem., 34, 691 (1997).
- J. Torres, J. L. Lavandera, P. Cabildo, R. M. Claramuni, J. Elguero, J. Heterocycl. Chem., 25, 771 (1988).
- 14. А. О. Корень, П. Н. Гапоник, ХГС, № 12, 1643 (1990).
- 15. А. О. Корень, П. Н. Гапоник, ХГС, № 9, 1280 (1991).
- 16. S. V. Voitekhovich, P. N. Gaponik, A. O Koren, Mendeleev Commun., N 1, 41 (1997).
- 17. П. Н. Гапоник, С. В. Войтехович, А. С. Ляхов, И. И. Маруда, ХГС, № 9, 1222 (1999).
- P. N. Gaponik, S. V. Voitekhovich, I. I. Maruda, A. A. Kulak, O. A. Ivashkevich, *Polish J. Chem.*, 72, 2247 (1998).
- 19. A. O. Koren, P. N. Gaponik, V. A. Ostrovskii, Int. J. Chem. Kinet., 25, 1043 (1993).
- A. O. Koren, P. N. Gaponik, O. A. Ivashkevich, T. V. Kovalyova, Mendeleev Commun., N 1, 10 (1995).
- 21. П. Н. Гапоник, С. В. Войтехович, ЖОрХ, 34, 788 (1998).
- 22. П. Н. Гапоник, Ю. В. Григорьев, Т. Н. Андреева, И. И. Маруда, ХГС, № 7, 915 (1995).
- 23. K. Yamaguchi, A. Ohsawa, T. Kaihoh, T. Itoh, Acta crystallogr., C46, 1161 (1990).
- 24. Zi-yi Zhang, N. Zou, Chem. Research Chinese Univ., 10, 373 (1994).
- 25. F. H. Allen, O. Kennard, Chem. Design Automation News., 8, 31 (1993).
- 26. W. G. Finnegan, R. A. Henry, R. Lofqist, J. Amer. Chem. Soc., 80, 3908 (1958).
- 27. П. Н. Гапоник, В. П. Каравай, Ю. В. Григорьев, ХГС, № 11, 1521 (1985).
- 28. Ю. В. Григорьев, И. И. Маруда, П. Н. Гапоник, Весиі АН Беларусі, № 4, 80 (1997).
- 29. М. И. Ермакова, И. А. Шихова, Н. И. Латош, ЖОХ, 51, 174 (1981).
- 30. D. D. Coffman, E. L. Jenner, J. Amer. Chem. Soc., 80, 2872 (1958).
- 31. G. M. Sheldrick, Program for Crystal Structure Refinement, Gottingen, 1997.
- 32. G. M. Sheldrick, Acta crystallogr., A46, 467 (1990).
- 33. G. M. Sheldrick, Z. Dauter, K. S. Wilson, H. Hope, L. Sieker, Acta crystallogr., D49, 18 (1993).

Научно-исследовательский институт физико-химических проблем Белорусского государственного университета, Минск 220080 e-mail: fhp@fhp.bsu.unibel.by

Поступило в редакцию 06.11.98