Г. Г. Данагулян, Д. А. Тадевосян, Ф. С. Киноян

ИНТЕРМЕДИАТЫ ПРЕВРАЩЕНИЯ ИОДИДА 1,2-ДИАЛКИЛПИРИМИДИНИЯ В ПРОЦЕССЕ ПЕРЕГРУППИРОВКИ КОСТА–САГИТУЛЛИНА

При изучении перегруппировки Коста–Сагитуллина в ряду иодидов 1,2-диалкилпиримидиния получены промежуточные продукты рециклизации. Первичная атака нуклеофила приводит к образованию продуктов присоединения гидроксильной группы – соответствующих псевдооснований, одно из которых при нагревании в этаноле или в присутствии первичных аминов перегруппировывается в производное пиридона. При нагревании в хлороформе пседооснования легко, с отщеплением молекулы воды, превращаются в ангидрооснования – производные 1-алкил-1,2-дигидро-2-метилиденпиримидина.

Ключевые слова: алкиламины, 1-алкил-1,2-дигидро-2-метилиденпиримидины, ангидрооснования, иодиды 1,2-алкилпиримидиния, пиридон, пиримидон, перегруппировка Коста–Сагитуллина, псевдооснования.

При действии КОН на иодид 1,4,6-триметил-2-(этоксикарбонил)метилпиримидиния (1a) при 0 °С образуется псевдооснование 2a, что свидетельствует о первичной атаке гидроксид-иона по положению 2 пиримидинового кольца [1]. Структура соединения 2a была подтверждена методами ЯМР ¹Н и ИК спектроскопии, а масс-спектр соответствовал продукту элиминирования воды – ангидрооснованию 3a.

Наши последующие исследования показали, что кратковременное нагревание псевдооснования 2а в хлороформе приводит с количественным выходом к ангидрооснованию 3а, а полное соответствие масс-спектра соединения 3а масс-спектру, ранее зарегистрированному при изучении соединения 2а, (различие лишь в интенсивности пиков) подтверждает наше предположение [1] об отщеплении воды при электронном ударе в процессе регистрации масс-спектра соединения 2а.

Аналогичная атака гидроксид-иона по положению 2 пиримидинового кольца отмечена и при взаимодействии 4,6-диметил-1-этил-2-(этоксикар-бонил)метилпиримидиния (1b) с КОН, при котором образуется псевдооснование 2b, также отщепляющее молекулу воды при нагревании в хлороформе.

Отметим, что элиминирование воды из псевдооснования 2b при нагревании его в хлороформе протекает очень быстро, поэтому в массспектре, а также спектре ЯМР ¹Н в CDCl₃ регистрируется лишь ангидрооснование 3b. Соединения 2b и 3b различаются по своим физикохимическим характеристикам, а также характеристическим данным ИК спектров, на основании которых установлена структура псевдооснования 2b (таблица).

1–3 a R = Me, X = OEt; **b** R = Et, X = OEt; **c** R = Me, X = NH₂; **4,6 a** R^1 = Me, **b** R^1 = Bn, **c** R^1 = CH₂CH₂OH

Нагревание в течение 1 мин в абсолютном спирте иодида 1,4,6-триметил-2-(карбамоил)метилпиримидиния (1c) с эквимолярным количеством КОН приводит к получению ангидрооснования 3c, по-видимому, также через промежуточное образование псевдооснования 2c. Ангидрооснование 3c выделено экстракцией хлороформом и по аналогии с предыдущими примерами, здесь также происходит элиминирование воды. Отметим, что экстракция хлороформом проведена во избежание побочных процессов, происходящих при применении других полярных растворителей, поскольку в неполярных растворителях интермедиаты трансформации иодида 1c не растворяются.

Псевдооснование 2a при нагревании в абсолютном этаноле, а также в присутствии первичных аминов 4a-с перегруппировывается в основном в пиридон 5, который образуется и при перегруппировке иодида 1a под действием первичных аминов в водной среде [2]. Продукт нормальной перегруппировки – 2-метиламинопроизводное 6a, а при взаимодействии с аминами 4b,с и "продукты перегруппировки с переаминированием" 6bи 6c, образуются при этом в незначительных количествах. Частично протекает также деметилирование, приводящее к пиримидинам 7.

При взаимодействии соли **1a** в абсолютном этаноле с трис-(гидроксиметил)аминометаном (**8**) было получено ангидрооснование **9** с выходом 32%, который при проведении реакции в 96% этаноле понижается до 12% за счет пропорционального увеличения выхода пиридона **5** (с 26 до 48%). По-видимому, в процессе реакции первоначально образуется ангидрооснование **3a**, взаимодействие которого с амином, имеющим объемные заместители, протекает не по пиримидиновому кольцу, а по этоксикарбонильной группе. При наличии в реакционной среде воды, что объясняется гигроскопичностью амина **8**, образуется также псевдооснование **2a**, которое либо рециклизуется в соединения **5** и **6a**, либо переходит в ангидрооснование **3a**.

Соеди- нение	Брутто- формула	<u>Найдено, %</u> Вычислено, %			Т. пл.,	<i>R_f</i> (2-пропанол–	ИК спектр, характеристические полосы, v, см ⁻¹			Выход,
		С	Н	Ν	°C	аммиак)	C=O*	С=С и С=N	другие	%
2b	$C_{12}H_{20}N_2O_3$	<u>60.22</u> 59.98	<u>8.74</u> 8.39	<u>11.97</u> 11.66	162–164, ярко-желтые кристаллы	0.64 (1:1)	1640	1530, 1550, 1600	3350–3460 (OH)	89
3 a	$C_{11}H_{16}N_2O_2$	<u>63.19</u> 63.44	<u>8.12</u> 7.74	<u>13.59</u> 13.45	Темно-желтая жидкость	0.63 (1:1)	1680 (1730)	1540, 1590, 1600, 3060, 3140, 3235	3450–3560 (H ₂ O)	98
3b	$C_{12}H_{18}N_2O_2$	<u>64.58</u> 64.84	<u>8.32</u> 8.16	<u>12.89</u> 12.60	Темно-желтая жидкость	0.66 (1:1)	1675 (1735)	1540, 1600, 1610, 3070, 3140, 3240	3370–3530 (H ₂ O)	99
3c	$C_9H_{13}N_3O$	<u>60.24</u> 60.32	<u>7.44</u> 7.31	<u>23.63</u> 23.45	200–201, ярко-желтые кристаллы	0.62 (1:1)	1625 (1650)	1540, 1580, 1600	3300, 3450 (NH ₂)	73
9	$C_{13}H_{21}N_3O_4$	<u>55.26</u> 55.11	<u>7.36</u> 7.47	<u>14.69</u> 14.83	230–231, ярко-желтые кристаллы	0.41 (2:1)	1620	1530, 1560, 1590	3200–3350 (OH)	32, 12**
10	$C_{19}H_{25}N_3O_4$	<u>63.62</u> 63.49	<u>7.16</u> 7.01	<u>11.56</u> 11.69	Коричневая жидкость	0.51 (2:3)***	1625	1510, 1580, 1595	3300–3420 (NH, OH)	25
12	$C_7H_{10}N_2O$	<u>60.69</u> 60.85	<u>7.38</u> 7.29	<u>20.22</u> 20.27	60–61 (63 [9]), белые кристаллы (быстро краснеют на воздухе)	0.53 (2:1)	_	_	_	82

Физико-химические характеристики соединений 2b, 3а-с, 9, 10 и 12

* В скобках приведены данные для соединений 1а-с соответственно.
** При проведении реакции в 96% этаноле.
*** Элюент толуол-ацетон.

Важно отметить, что под действием бензиламина ангидрооснование 9 рециклизуется, образуя соответствующий продукт перегруппировки с переаминированием 10, что еще раз подтверждает стерический характер причин невозможности рециклизации под действием амина 8.

Нам не удалось выделить продукт перегруппировки пиридона 11 при действии водно-спиртового раствора КОН на ангидрооснование 9. В результате такого взаимодействия был выделен пиримидон 12, образование которого, по-видимому, можно представить через атаку иона гидроксида по положению 2 соответствующего ангидрооснования, в результате чего образуется карбанион 9', последующее превращение которого через интермедиат 9'' приводит к разрыву связи $C_{(2)}-C_{(2')}$ и образованию пиримидона 12.

897

Для исходных солей 1а, b в ИК спектре характеристическими являются валентные колебания карбонильной группы в области 1730-1735 см⁻¹ (таблица). Ранее было показано, что за счет образования внутримолекулярной водородной связи в случае псевдооснования 2а полоса поглощения карбонильной группы смещается на 90 см⁻¹ и фиксируется в области 1640 см⁻¹ [1], и, как следовало ожидать, аналогичное смещение наблюдается для псевдооснования За. По сравнению с исходными солями 1а, b для соединений 3а, b регистрируется смещение полосы поглощения группы С=О на 50 см⁻¹, что вызвано сопряжением двойных связей. По сравнению с иодидом 1с смещение полосы поглощения группы С=О у ангидрооснования **3c** составляет 25 см⁻¹ (соответственно 1650 и 1625 см⁻¹). В этой области наблюдается и полоса поглощения карбонильной группы амидного фрагмента ангидрооснования 9 (1620 см⁻¹). В спектрах ЯМР ¹Н ангидрооснований За-с и 9 характеристическими являются сигналы протонов метиновой группы в области 4.16-4.49, а в спектрах ЯМР ¹³С ангидрооснований **3с** и **9** – в области 83.00–84.39 м. д. В спектрах ЯМР ¹Н ангидрооснований За-с и 9 наблюдается сильное смещение сигналов протонов Н-5 пиримидинового кольца (5.62-5.76), по сравнению с сигналами тех же протонов в исходных иодидах 1а-с (7.98-8.17) и их некватернизованных аналогах (6.93-7.0 м. д.) [3], что объясняется реароматизацией пиримидинового ядра. Данные ЯМР ¹Н и ¹³С для пиримидона 12 практически совпадают с литературными данными [4]. В спектре ЯМР ¹Н ангидрооснования 9, зарегистрированном с использованием двумерной спектроскопии по методике NOESY, присутствуют кросс-пики между протонами ряда групп (отмечено на схеме), что согласуется с приписываемой соединению 9 структурой.

Таким образом, перегруппировка Коста–Сагитуллина в ряду иодидов некоторых производных 1,2-диалкилпиримидиния под действием гидроксид-иона идет через первичную атаку по положению 2 пиримидинового кольца, а образующиеся псевдооснования **2а**–**с** в хлороформе легко отщеплепляют молекулу воды и переходят в соответствующую ангидроформу **3а–с**. Основным продуктом трансформации псевдооснования **2а** при нагревании в этаноле, а также в присутствии аминов является пиридон **5**.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Спектры ЯМР ¹Н и ¹³С получены на спектрометре фирмы Varian Mercury-300 (300 и 75 МГц соответственно) в CDCl₃ (соединения **3а–с**) и ДМСО-d₆ (соединения **9**, **10**, **12**), внутренний стандарт ТМС. Масс-спектры зарегистрированы на спектрометре МК-1321 с прямым вводом образца в ионный источник при энергии ионизации 70 эВ. ИК спектры получены на спектрометре UR-20 в таблетках КВг, хлороформе или в вазелиновом масле. ТСХ проводили на пластинках Silufol UV-254, проявляли парами иода и реактивом Эрлиха. Препаративное деление осуществляли колоночной хроматографией на силикагеле (L $\frac{5}{40}$). Соединения **5** [R_f 0.52 (толуол–ацетон, 1:2)], **6а** [R_f 0.62 (толуол–ацетон, 4:1)], **6b** [R_f 0.75 (толуол–ацетон, 10:1)], **6с** [R_f 0.52 (толуол–ацетон, 2:1)], **7** [R_f 0.67 (толуол–ацетон, 1:1)] идентичны заведомым образцам по хроматографической подвижности, т. пл. и спектрам ЯМР [2, 5–8].

2-Гидрокси-1,2-дигидро-4,6-диметил-1-этил-2-(этоксикарбонил)метилпиримидин (2b). Раствор 2.1 г (6 ммоль) соли 1b в 7 мл абсолютного этанола охлаждают до 0 °С и постепенно при перемешивании добавляют 0.4 г (6 ммоль) КОН (в пересчете на 85% КОН) в 5 мл абсолютного спирта. Выпавший осадок отфильтровывают, промывают 5 мл холодного абсолютного спирта и получают 1.28 г (89%) псевдооснования 2b. Масс-спектр, *m/z* (*I*_{отн}, %): 222 (67), 194 (15), 176 (69), 149 (100), 123 (68), 109 (10), 81 (18), 69 (28), 42 (36), 29 (21).

1,2-Дигидро-1,4,6-триметил-2-(этоксикарбонил)метилиденпиримидин (**3a**). Нагревают 1.13 г (5 ммоль) псевдооснования **2a** в 5 мл CHCl₃ в течение 1 мин, отгоняют растворитель, сушат в вакууме при 60–70 °С и получают 1.02 г (98%) ангидрооснования **3a**. Спектр ЯМР ¹H, δ, м. д. (*J*, Гц): 1.28 (3H, т, *J* = 7.1, <u>CH</u>₃CH₂O); 2.22 (3H, с, 4-CH₃); 2.30 (3H, с, 6-CH₃); 3.19 (3H, с, 1-CH₃); 4.16 (2H, к, *J* = 7.1, <u>OCH</u>₂CH₃); 4.46 (1H, с, H-2'); 5.76 (1H, с, H-5). Масс-спектр, *m/z* (*I*_{отн}, %): 208 (76), 179 (8), 162 (100), 136 (64), 134 (64), 108 (65), 93 (20), 80 (25), 65 (28), 55 (30), 43 (31), 28 (60).

1,2-Дигидро-4,6-диметил-1-этил-2-(этоксикарбонил)метилиденпиримидин (3b). Из 1.2 г (5 ммоль) псевдооснования 2b аналогично ангидрооснованию 3a получают 1.1 г (99%) ангидрооснования 3b. Спектр ЯМР ¹Н, δ, м. д. (*J*, Гц): 1.28 (3H, т, *J* = 7.1, <u>CH₃</u>CH₂O); 1.35 (3H, т, *J* = 7.1, <u>CH₃</u>CH₂N); 2.24 (3H, с, 4-CH₃); 2.27 (3H, с, 6-CH₃); 3.73 (2H, к, *J* = 7.1, N–CH₂); 4.16 (2H, к, *J* = 7.1, O<u>CH₂</u>); 4.54 (1H, с, H-2'); 5.71 (1H, с, H-5).

1,2-Дигидро-2-(карбамоил)метилиден-1,4,6-триметилпиримидин (3c). В 5 мл абсолютного этанола растворяют 0.33 г (5 ммоль) КОН (в пересчете на 85% КОН), полученный раствор добавляют к раствору 1.5 г (4.9 ммоль) соли **1c** в 20 мл абсолютного этанола и нагревают 1 мин до полного растворения соли. Растворитель отгоняют в вакууме, остаток многократно промывают хлороформом (8 × 10 мл) и после удаления растворителя получают 0.64 г (73%) ангидрооснования **3c**. Спектр ЯМР ¹H, δ , м. д.: 2.18 (3H, c, 4-CH₃); 2.20 (3H, c, 6-CH₃); 3.14 (3H, c, 1-CH₃); 4.49 (1H, c, H-2'); 5.23 (1H, уш. c, NH); 5.62 (1H, c, H-5); 8.87 (1H, уш. c, NH). Спектр ЯМР ¹³С, δ , м. д.: 21.11 (4-CH₃); 24.76 (6-CH₃); 34.62 (1-CH₃); 84.39 (2-CH); 103.14 (C₍₅₎); 154.22 (C₍₄)); 154.74 (C₍₆₎); 166.08 (C₍₂₎); 171.39 (C=O). Массспектр, *m/z* ($I_{\text{отн}}$, %): 179 (89), 162 (100), 149 (45), 135 (43), 108 (49), 94 (33), 67 (26), 55 (46), 42 (60), 28 (61).

Рециклизация псевдооснования 2а при нагревании в этаноле. Смесь 1.13 г (5 ммоль) соединения 2а нагревают 10 ч в 10 мл абсолютного этанола. Отгоняют растворитель, остаток промывают хлороформом и из хлороформной вытяжки препаративным делением на колонке (толуол–ацетон, 2:1) получают 0.6 г (61%) пиридона 5, 0.07 г (7%) соединения 6а и 0.05 г (5%) 4,6-диметил-2-(этоксикарбонил)метил-пиримидина (7).

Рециклизация псевдооснования 2а при взаимодействии с аминами 4а–с в этаноле (общая методика). Смесь 1.13 г (5 ммоль) соединения 2а и 5 ммоль амина 4а–с кипятят 12– 16 ч в 10 мл абсолютного этанола. После отгонки растворителя (в случае метиламина и избытка последнего) остаток растворяют в воде и экстрагируют толуолом (5 × 10 мл). Из толуольного раствора делением на колонке (толуол–ацетон, 4:1) получают: а) в случае метиламина 4a – 0.48 г (49%) пиридона 5, 0.8 г (8%) соединения 6a и 0.04 г (4%) соединения 7; б) в случае бензиламина 4b – 0.54 г (55%) пиридона 5, 0.05 г (5%) соединения 6a, 0.07 г (7%) соединения 7 и 0.13 г (9%) соединения 6b; в) в случае этаноламина 4c – 0.58 г (60%) пиридона 5, 0.07 г (7%) соединения 7 и 0.06 г (5%) пиридина 6b.

Взаимодействие соли 1а с трис(гидроксиметил)аминометаном (8) в абсолютном этаноле. Смесь 4 г (12 ммоль) соли 1а и 4.35 г (24 ммоль) амина 8 кипятят 30 ч в 15 мл абсолютного этанола, отфильтровывают образовавшийся осадок, перекристаллизовывают из абсолютного спирта и получают 0.78 г (32%) 1,2-дигидро-1,4,6-триметил-2-[(трис-(гидроксиметил)метилкарбамоил]метилиденпиримидина (9). Из фильтрата отгоняют растворитель, остаток делят на колонке (толуол–ацетон, 1:1) и получают 0.6 г (26%) соединения 5, 0.15 г (6%) пиридина 6а, 0.2 г (9%) пиримидина 7. Спектр ЯМР ¹Н соединения 9, δ , м. д. (*J*, Гц): 2.18 (3H, с, 4-CH₃); 2.26 (3H, с, 6-CH₃); 3.12 (3H, с, 1-CH₃); 3.43 (6H, с, CH₂); 4.24 (1H, с, H-2'); 5.17 (3H, уш. с, OH); 5.74 (1H, с, H-5); 9.79 (NH, уш. с, CONH). Спектр ЯМР ¹³С соединения 9, δ , м. д.: 20.29 (4-CH₃); 23.63 (6-CH₃); 3.431 (1-CH₃); 61.39 (CH₂); 61.66 (NHC); 83.00 (2-CH); 102.60 (C₍₅₎); 153.47 (C₍₄)); 155.85 (C₍₆)); 165.69 (C₍₂₎); 169.22 (C=O).

Взаимодействие соли 1а с трис(гидроксиметил)аминометаном (8) в 96% этаноле. Смесь 2 г (6 ммоль) соли 1а и 1.45 г (8 ммоль) амина 8 кипятят 20 ч в 15 мл 96% этанола. Отгоняют растворитель, остаток растворяют в 15 мл абсолютного спирта и после охлаждения обрабатывают аналогично методике взаимодействия соединений 1а и 8 в абсолютном этаноле. Получают 0.2 г (12%) соединения 9, 0.56 г (48%) соединения 5, 0.05 г (4%) соединения 6а, 0.1 г (9%) соединения 7.

2-Бензиламино-4,6-диметил-3-[N-(трис(гидроксиметил)метил]карбамоилпиридин

(10). Смесь 0.9 г (3.2 ммоль) ангидрооснования 9 и 2 мл (18 ммоль) амина 4b кипятят 2 ч и препаративным делением на колонке (толуол–ацетон, 3:1) получают 0.29 г (25%) соединения 10. Спектр ЯМР ¹H, δ , м. д. (J, Гц): 2.20 (3H, с, 4-CH₃); 2.25 (3H, с, 6-CH₃); 3.68 (6H, д, J = 5.6, <u>CH₂</u>OH); 4.56 (3H, т, J = 5.6, OH); 4.59 (2H, д, J = 6.0, NH<u>CH₂</u>); 6.20 (1H, с, H-5); 6.61 (1H, т, J = 6.0, 2-NH); 7.17 (1H, уш. с, CONH), 7.14, 7.24 и 7.34 (5H, м, C₆H₅). Спектр ЯМР ¹³С, δ , м. д.: 18.63 (4-CH₃); 23.76 (6-CH₃); 43.82 (NHCH₂); 62.34 (CH₂OH); 112.32 (C₍₅₎); 114.67 (C₍₃₎); 125.66 (C_{(4'})); 127.14 (C_{(2' и 6'})); 127.14 (C_{(3' и 5'})); 140.69 (C_{(1'})); 143.88 (C₍₄₎); 154.21 (C₍₆)); 155.25 (C₍₂₎).

Взаимодействие ангидрооснования 9 с КОН в водно-спиртовом растворе. В 10 мл 50% этанола растворяют 0.425 г (1.5 ммоль) ангидрооснования 10, добавляют 0.396 г (6 ммоль) 85% КОН и кипятят 5 ч, растворитель отгоняют в вакууме, остаток промывают хлороформом (3×5 мл), собирая хлороформные вытяжки. После удаления растворителя получают 0.17 г (82%) 1,2-дигидро-1,4,6-триметил-2-оксопиримидина (12). Спектр ЯМР ¹H, δ , м. д. (*J*, Гц): 2.23 (3H, с, 4-CH₃); 2.34 (3H, с, 6-CH₃); 3.42 (3H, с, 1-CH₃); 6.09 (H, с, H-5). Спектр ЯМР ¹³С, δ , м. д.: 19.75 (4-CH₃); 24.11 (6-CH₃); 31.31 (1-CH₃); 104.19 (C₍₅₎); 155.85 (C₍₄₎); 156.70 (C₍₆₎); 172.38 (C₍₂₎). Масс-спектр, *m/z* (*I*_{отн}, %): 138 (100), 123 (75), 110 (13), 96 (13), 80 (12), 56 (18), 54 (17), 42 (17), 39 (17), 28 (43), 18 (15).

Работа выполнена при финансовой поддержке Национального фонда науки и передовых технологий Армении и Фонда гражданских исследований и развития США (NFSAT RA–US CRDF, грант N CH 090-02/12040), а также в рамках научной темы 0543 Министерства науки и образования Республики Армения.

СПИСОК ЛИТЕРАТУРЫ

- 1. Г. Г. Данагулян, Ф. С. Киноян, Д. А. Тадевосян, ХГС, 303 (2003).
- 2. Г. Г. Данагулян, Л. Г. Саакян, А. Р. Катрицкий, С. Н. Денисенко, ХГС, 1572 (1999).
- 3. Г. Г. Данагулян, Дис. докт. хим. наук, Ереван, 2000.
- 4. C. Kashima, A. Katoh, M. Shimizu, Y. Omote, Heterocycles, 22, 11 (1984).
- 5. А. Н. Кост, Р. С. Сагитуллин, Г. Г. Данагулян, *ХГС*, 1400 (1978).
- 6. R. S. Sagitullin, A. N. Kost, G. G. Danagulyan, Tetrahedron Lett., 4135 (1978).
- 7. Г. Г. Данагулян, Л. Г. Саакян, ХГС, 1434 (1999).
- 8. Г. Г. Данагулян, Л. Г. Саакян, *Хим. журн. Армении*, **53**, 147 (2000).
- 9. W. J. Hale, J. Am. Chem. Soc., 36, 104 (1914).

Институт органической химии НАН Республики Армения, Ереван 375091 e-mail:gdanag@email.com Поступило в редакцию 13.02.2006