М. Мадесклер, П. Кудер, В. Гоме, В. П. Зайцев^а, Ю. В. Зайцева^а

РЕНТГЕНОСТРУКТУРНЫЙ АНАЛИЗ (1*R*,2*R*,4*S*,5*S*,8*S*)-4-(4-НИТРОФЕНИЛ)-2,8-БИС(4-ХЛОРФЕНИЛ)-1-АЗА-3,7-ДИОКСАБИЦИКЛО[3,3,0]ОКТАНА

С помощью РСА установлена конфигурация асимметрических атомов в молекуле (1*R*,2*R*,4*S*,5*S*,8*S*)-4-(4-нитрофенил)-2,8-бис(4-хлорфенил)-1-аза-3,7-диоксабицикло-[3,3,0]октана.

Ключевые слова: (1*R*,2*R*,4*S*,5*S*,8*S*)-4-(4-нитрофенил)-2,8-бис(4-хлорфенил)-1-аза-3,7диоксабицикло[3,3,0]октан, РСА.

В последние годы значительно возрос интерес к химии оксазолидинов [1-3]. В качестве исходного для синтеза соединений, содержащих оксазолидиновое кольцо, может быть использован (1S,2S)-2-амино-1-(4-нитрофенил)-1,3-пропандиол (1), побочный продукт производства антибиотика левомицетина [4]. Ранее нами, исходя из соединения 1, реакцией с соответствующими альдегидами был осуществлен синтез (1R,4S,5S)-4-(4-нитрофенил)-1-аза-3,7-диоксабицикло[3,3,0]октана (2) и четвертичных аммониевых солей на его основе [5, 6], ряда (1R,2R,4S,5S,8S)-2,8-диарил-4-(4-нитрофенил)-1-аза-3,7-диоксабицикло[3,3,0]октанов 3 [7], (1S,3S,4S,7R,11R)-3-(4-нитрофенил)-11-аза-2,6-диоксатрицикло[5,3,1,0^{4,11}]-ундекана (4) [8].

a X = H, **b** X = 4-Me, **c** X = 4-MeO, **d** X = 4-Cl

На основании расчетов по методу AM1 и данных ЯМР ¹Н, в том числе, полученных в присутствии сдвигающего реагента, было показано, что в этих соединениях жесткая бициклическая система обусловливает R-конфигурацию атома азота [6–8]. На основании расчетов и данных ЯМР ¹Н был также сделан вывод о конфигурации двух, возникающих в результате реакции циклизации, асимметрических атомов углерода в соединениях **3** и **4** [7, 8]. В настоящей работе для того, чтобы установить пространственное строение соединений **3** был осуществлен РСА монокристалла соединения **3d**, перекристаллизованного из 2-пропанола. В результате получены следующие конфигурации асимметрических атомов: N–R, C(2)–R, C(4)–S, C(5)–S, C(8)–S, что соответствует результатам расчетов, проведенных методом AM1, и данным спектров ЯМР ¹H [7]. Так как все соединения **3** получены по аналогичной методике и имеют одинаковые характерные спектры ЯМР ¹H, можно сделать вывод, что их строение является аналогичным.

Анализ кристаллографических данных показал, что длины связей и наблюдаемые углы (табл. 1–3) соответствуют данным CSD [9]. Бензольные кольца являются плоскими. Среднеквадратичные откло- нения от оптимальной плоскости и углы между плоскостями представлены в табл. 4. В твердом состоянии нитрогруппа квазикопланарна с ароматическим кольцом, торсионные углы O(441)–N(44)–C(44)–C(43) и O(442)–N(44)–C(44)–C(45) равны, соответственно, 9.7(3) и 11.8 (3)°. Однако длина связи N(44)–C(44), равная 1.479(3) Å, свидетельствует об отсутствии существенного взаимодействия (*п*-делокализации) между нитрогруппой и ароматическим кольцом. Молекулярная упаковка стабилизирована за счет системы ван-дер-ваальсовых связей (взаимодействий).

Геометрия молекулы соединения 3d в кристалле

Таблица 1 931

Длина связей (<i>l</i>) соединения 3d		
l, Å	Связь	l, Å
1.454(2)	C(6)—O(7)	1.424(3)
1.481(3)	O(7)–C(8)	1.442(3)
1.491(2)	N(44)-C(44)	1.479(3)
1.415(3)	N(44)—O(442)	1.211(3)
1.435(3)	N(44)-O(441)	1.218(3)
1.538(3)	C(24)-C(124)	1.737(3)
1.533(3)	C(84)-Cl(84)	1.734(2)
	Длина связей (<i>l</i> , Å 1.454(2) 1.481(3) 1.491(2) 1.415(3) 1.435(3) 1.538(3) 1.538(3)	Длина связей (I) соединения 3d l, Å Связь 1.454(2) C(6)—O(7) 1.481(3) O(7)—C(8) 1.491(2) N(44)—C(44) 1.415(3) N(44)—O(442) 1.435(3) N(44)—O(441) 1.538(3) C(24)—C(124) 1.533(3) C(84)—Cl(84)

Длина связей (*l*) соединения 3d

Таблица 2

Валентные углы (ω) соединения 3d			
Угол	ω, град.	Угол	ω, град.
C(2)–O(3)–C(4)	104.11(17)	O(3)–C(4)–C(5)	104.02(15)
C(6)-O(7)-C(8)	103.52(14)	O(3)–C(4)–C(41)	110.66(18)
C(2)–N(1)–C(5)	106.03(15)	C(5)-C(4)-C(41)	116.53(17)
C(2)–N(1)–C(8)	112.81(16)	N(1)-C(5)-C(4)	102.93(15)
C(5)–N(1)–C(8)	105.24(16)	N(1)-C(5)-C(6)	104.12(15)
O(441)–N(44)–O(442)	124.1(2)	C(4)-C(5)-C(6)	114.69(16)
O(441)–N(44)–C(44)	117.6(2)	O(7)–C(6)–C(5)	104.35(18)
O(442)-N(44)-C(44)	118.2(2)	O(7)–C(8)–N(1)	105.68(15)
O(3)-C(2)-N(1)	103.99(15)	O(7)–C(8)–C(81)	111.49(18)
O(3)–C(2)–C(21)	110.33(19)	N(1)-C(8)-C(81)	112.88(15)
N(1)-C(2)-C(21)	112.71(17)		
	I.		1

Таблица З

Двугранные углы (**φ**) соединения 3d

Угол	ф, град.	Угол	ф, град.
C(2)-O(3)-C(4)-C(5)	-40.59(19)	C(2)-N(1)-C(8)-O(7)	87.42(19)
C(4)-O(3)-C(2)-N(1)	43.67(19)	C(2)-N(1)-C(5)-C(6)	-115.60(18)
C(4)-O(3)-C(2)-C(21)	164.78(17)	C(2)-N(1)-C(5)-C(4)	4.40(19)
C(2)-O(3)-C(4)-C(41)	-166.46(17)	C(5)-N(1)-C(2)-C(21)	-148.70(17)
C(8)-O(7)-C(6)-C(5)	-38.1(2)	O(441)-N(44)-C(44)-C(45)	-169.8(2)
C(6)-O(7)-C(8)-N(1)	41.8(2)	O(442)-N(44)-C(44)-C(43)	-168.7(2)
C(6)-O(7)-C(8)-C(81)	-81.19(19)	O(441)-N(44)-C(44)-C(43)	9.7(3)
C(8)-N(1)-C(2)-C(21)	96.6(2)	O(442)-N(44)-C(44)-C(45)	11.8(3)
C(8)–N(1)–C(5)–C(4)	124.15(16)	O(3)-C(4)-C(5)-N(1)	21.41(19)
C(5)-N(1)-C(2)-O(3)	-29.19(19)	O(3)-C(4)-C(5)-C(6)	133.82(17)
C(8)-N(1)-C(5)-C(6)	4.2(2)	C(41)-C(4)-C(5)-N(1)	143.46(17)
C(2)-N(1)-C(8)-C(81)	-150.46(16)	C(41)-C(4)-C(5)-C(6)	-104.1(2)
C(5)-N(1)-C(8)-O(7)	-27.7(2)	N(1)-C(5)-C(6)-O(7)	20.9(2)
C(5)-N(1)-C(8)-C(81)	94.40(18)	C(4)-C(5)-C(6)-O(7)	-90.81(19)
C(8)-N(1)-C(2)-O(3)	-143.86(16)		

Таблица 4

Характеристики ароматических колец в соединении 3d

	Плоскости МНК	Межп	лоскостные углы, град.
А	C(21), C(22), C(23), C(24), C(25), C(26) (0.0018)	A/B	75.32(8)
В	C(41), C(42), C(43), C(44), C(45), C(46) (0.0027)	A/C	70.59(8)
С	C(81), C(82), C(83), C(84), C(85), C(86) (0.0094)	B/C	86.10(6)

Параметры PCA соединения 3d

Таблица 5

Кристаллограф	ические данные
Эмпирическая формула	$C_{23}H_{18}Cl_2N_2O_4$
Молекулярная масса	457.29
Сингония	Орторомбическая
Пространственная группа <i>a</i> , Å <i>b</i> , Å <i>c</i> , Å	$P2_{1}2_{1}2_{1} (N \ 19)$ 5.561(3) 18.945(3), 20.988(3)
Объем элементарной ячейки, Å ³	2211.1(13)
Ζ	4
$d_{\text{выч}}, r/cm^{-3}$	1.374
F(000)	944
μ(МоКα), мм ⁻¹	0.326
Параметры кристалла, мм	$0.26 \times 0.38 \times 0.51$
Условия эн	ксперимента
Температура, К	293(2)
Излучение, длина волны, Å	ΜοΚα, 0.71073
θ _{max} , град.	35.0
Метод сканирования	ω–2θ
Число стандартных отражений	2 каждые 120 мин
Диапазон индексов Миллера	<i>−</i> 8≤ <i>h</i> ≤8; <i>−</i> 30≤ <i>k</i> ≤30; <i>−</i> 33≤ <i>l</i> ≤33
Наблюдаемое число отражений [$I \ge 2 \sigma(I)$]	5149
Параметры	і уточнения
Параметр Флака	-0.06(7)
Коэффициент экстинкции	0.011(2)
Окончательное число параметров	282
$R_1 \left[I \ge 2 \ \sigma(I) \right]$	0.0595
$wR_2(\mathbf{F}^2) [I \ge 2 \sigma(I)]$	0.1587
Критерий схолимости (GOOF). S	1.007

критерии сходимости (GOOF), 5	1.007
$w = 1/[\sigma^{2}(Fo^{2}) + (0.1101 P)^{2} + 0.0435 P],$	где $P = (Fo^2 + 2 Fc^2) / 3$
$(\Delta \rho)_{min}, (\Delta \rho)_{max}, e \cdot Å^{-3}$	-0.36, 0.27

Синтез (1R,2R,4S,5S,8S)-4-(4-нитрофенил)-2,8-бис(4-хлорфенил)-1-аза-3,7-диоксабицикло[3,3,0]октана (**3d**), С₂₃H₁₈Cl₂N₂O₄, описан ранее [7].

Монокристалл, пригодный для РСА, получен перекристаллизацией из 2-пропанола. Интенсивности измерены на дифрактометре Enraf-Nonius CAD-4. Параметры кристаллической решетки получены уточнением МНК по двадцати пяти отражениям для 16<20<30°. Параметры РСА приведены в табл. 5. Уточненные параметры элементарной ячейки и экспериментальные данные получены с использованием программного обеспечения САD-4 [10]. Два асимметричных набора были измерены до $\theta_{max} = 35^\circ$, в результате получен массив из 9656 отражений. Затем данные были скорректированы с учетом поправки Лоренца и поляризационных эффектов с помощью программы ХСАД-4 [11]. Абсорбционный коэффициент равен 0.326 мм⁻¹. После сокращения массива экспериментальных данных и внесения поправок общее число отражений составило 5149 с $I \ge 2\sigma(I)$. Структура решена прямыми методами с использованием программ SHELXS-97 и SHELXL-97 [12, 13] в результате чего окончательные положения неводородных атомов были уточнены в анизотропном приближении. Положения атомов водорода приведены к идеальным и уточнены с использованием модели наездника. Окончательные факторы расходимости $R_10.0595$ и R_2 0.1587 получены для 5149 отражений с $I \ge 2\sigma(I)$. Абсолютная структура соответствует параметрам Флака [14]. Рисунок получен с помощью программы ORTEP-III [15].

Результаты РСА депонированы в Кембриджском банке структурных данных (CSD), где им присвоен шифр ССDС 252340.

СПИСОК ЛИТЕРАТУРЫ

- 1. О. Ф. Булатова, О. Б. Чалова, Д. Л. Рахманкулов, *ЖОрХ*, **37**, 1834 (2001).
- 2. Н. А. Кейко, Е. А. Фунтикова, Л. Г. Степанова, Ю. А. Чувашев, Л. И. Ларина, ЖОрХ, 39, 1546 (2003).
- 3. В. А. Тартаковский, А. С. Ермаков, Д. Б. Виноградов, ЖОрХ, 38, 1394 (2002).
- 4. В. П. Зайцев, С. Х. Шарипова, И. И. Журавлева, Хим.-фарм. журн., 32, № 3, 44 (1988).
- 5. В. П. Зайцев, П. П. Пурыгин, С. Х. Шарипова, *XГС*, 1394 (1990).
- 6. Ж. Кукле, М. Мадесклер, Ф. Леаль, В. П. Зайцев, С. Х. Шарипова, *XГС*, 1424 (1999).
- 7. М. Мадесклер, П. Кудер, В. Гоме, В. П. Зайцев, Ю. В. Зайцева, *XГС*, 757 (2006).
- 8. Ж. Кукле, М. Мадесклер, Ф. Леаль, В. П. Зайцев, С. Х. Шарипова, ХГС, 975 (2001).
- 9. F. H. Allen, O. Kennard, Chem. Des. Autom. News, 8, No. 1, 31 (1993).
- 10. Enraf-Nonius. CAD-4 Software. Version 5.0. Enraf-Nonius Delft, The Netherlands, 1969.
- 11. K. Harms, Program for Extracting Intensity Data from Enraf-Nonius CAD-4 File, Univ. of Marburg, Germany, 1996.
- 12. G. M. Sheldrick, SHELXS-97. Program for the Solution of Crystal Structures, Univ. of Göttingen, Göttingen, Germany, 1997.
- 13. G. M. Sheldrick, SHELXL-97. Program for the Refinement of Crystal Structures, Univ. of Göttingen, Göttingen, Germany, 1997.
- 14. H. D. Flack, Acta Crystallogr., A39, 876 (1983).
- 15. L. J. Farrugia, J. Appl. Crystallogr., 30, 565 (1997)

Universite d'Auvergne, Faculte de Farmacie 28, Place Henri Dunant, Clermont-Ferrand, France

e-mail: michel.madesclaire@u-clermont1.fr

^аСамарский государственный университет, Самара 443011, Россия e-mail:vzaitsev@ssu.samara.ru

Поступило в редакцию 13.01.2005