И. Стракова, М. Петрова, С. Беляков^а, А. Страков

РЕАКЦИИ 3-ФОРМИЛ-4-ХЛОРКУМАРИНА С ПЕРВИЧНЫМИ АМИНАМИ

Изучено взаимодействие 3-формил-4-хлоркумарина с первичными аминами в присутствии триэтиламина. Реакция с алифатическими и ароматическими аминами приводит к N-замещенным 4-амино-3-формилкумаринам, тогда как гетариламины реагируют прежде всего с формильной группой с образованием смеси Z- и E-изомеров N-замещенных 3-аминометиленхромандионов-2,4. Замена триэтиламина на безводный ацетат натрия в реакции хлоркумарина с 2-аминопиридинами вследствие нуклеофильной системы бензопиранопиридопиримидина.

Ключевые слова: N-монозамещенные 4-амино-3-формилкумарины и 3аминометилен-2,4-хромандионы, первичные амины, 3-формил-4-хлоркумарин.

Взаимодействие 3-формил-4-хлоркумарина (1) с аминами исследовано недостаточно, только на примерах отдельных аминов [1–5]. Ранее [6] мы показали, что реакции этого альдегида с арилгидразинами могут первоначально протекать как по альдегидному карбонилу, так и по положению 4 с образованием соответственно 1- или 2-замещенных 4-оксо-[1]бензопирано[4,3-*c*]пиразолов.

В настоящей работе мы изучали взаимодействие кумарина 1 с разными первичными аминами. При этом мы обнаружили, что в случае реакции с ароматическими и алифатическими аминами, а также с 4-аминоантипирином образуются N-монозамещенные 4-амино-3-формилкумарины 2, тогда как взаимодействие с рядом аминогетероциклов, в первую очередь с 2-аминопиридинами, протекает по формильному карбонильному атому с одновременным гидролизом связи C–Cl в положении 4 и приводит к замещенным 3-аминометилен-2,4-хромандионам 3. Лишь в реакции с 3-амино-2-хлорпиридином мы получили оба изомера 2m и 3f.

Состав продуктов реакций подтвержден данными элементного анализа (табл. 1), а их строение – данными спектров ЯМР ¹Н (табл. 2) и РСА (табл. 3, рис.1–3). В 4-амино-3-формилкумаринах **2** протон группы N–H, образующий внутримолекулярную водородную связь с формильным карбонилом, поглощает в интервале 13.27–11.80 м. д., а протон альдегидной группы – в диапазоне 10.19–9.96 м. д. В ИК спектрах кумариновый сложноэфирный карбонил соединений **2** характеризуется полосой поглощения при 1725–1710 см⁻¹, а участвующий в образовании водородной связи альдегидный – при 1645–1630 см⁻¹. Структура 4-нафт-2-иламинопроизводного **2h** подтверждена данными рентгеноструктурного

2 а R = 4-MeOC₆H₄, b R = 4-MeCOC₆H₄, c R = 3-HO-4-HO₂CC₆H₃, d R = 2,5-(EtO₂C)₂C₆H₃, е R = 2-PhSO₂NH-тиазол-4-ил, f R = 4-PhN=NC₆H₄, g R=4-Ме-кумарин-7-ил, h R = нафт-4-ил, i R=Py-2-CH₂, j R = 2-(2-оксоимидазолидин-1-ил)этил, k R = 1-(Ad-1)этил, l R = 2,3-Me₂-5-оксо-1-Ph-пиразол-4-ил, m R= 2-Cl-Py-3; 3 а R = Py-2, b R = 5-Cl-Py-2, c R = 3,5-Cl₂-Py-2, d R = 3-HO₂C-Py-2, e R = 5-CF₃-2-Py-2, f R = 2-Cl-Py-3, g R = пиримидин-2-ил, h R = 3,5-(EtO₂C)₂-4-Me-тиен-2-ил; 5 а R = R¹ = H, b R = Cl, R¹ = Et

исследования. По данным спектров ЯМР ¹Н, большинство 3-аминометилен-2,4-хромандионов **3а,b,d-g** существуют в растворе в виде смеси двух ротамеров *E*-**3** и *Z*-**3**, на что указывают дублетные сигналы двух *транс*-фиксированных фрагментов =CH–NH– соответствующих форм *E*-**3** и *Z*-**3** с КССВ ³*J* = 13–14 Гц. Лишь в спектрах ЯМР ¹Н соединений **3с** и **3h** регистрируется один набор сигналов *транс*-фиксированного фрагмента =CH–NH– с ³*J* = 13.5 Гц, указывая на существование данных соединений в виде одного из ротамеров.

Оказалось, что если при реакции кумарина 1 с 2-амино- и 2-амино- 5хлорпиридинами триэтиламин заменить на безводный ацетат натрия, то наряду с "нормальными" соединениями **За** (выход 20%) и **3b** (выход 22%) образуются продукты первичной атаки положения 4, которые благодаря наличию пиридинового атома азота (структура 6) циклизуются

Таблица 1

Соеди-	Брутто-формула	Найдено, % Вычислено, %				Т пп ⁰С*	Выход,
нение		С	Н	N	Cl	1. iii., C	%
2a	C ₁₇ H ₁₃ NO ₄	<u>69.00</u> 69.14	<u>4.51</u> 4 44	$\frac{4.62}{4.74}$		164–165	86
2b	C ₁₈ H ₁₃ NO ₄	70.12 70.35	$\frac{4.30}{4.26}$	<u>4.43</u> 4.56		214–216	97
2c	$C_{17}H_{11}NO_{6}$	62.71 62.77	<u>3.35</u> 3.41	<u>4.40</u> 4.31		248-250	56
2d	C ₂₂ H ₁₉ NO ₇	<u>64.65</u> 64.54	<u>4.62</u> 4.68	<u>3.49</u> 3.42		197–198	40
2e**	$C_{19}H_{13}N_3O_5S$	<u>53.38</u> 53.49	<u>3.01</u> 3.06	<u>9.92</u> 9.81		237–239	64
2f	$C_{22}H_{13}N_3O_3$	<u>71.71</u> 71.53	<u>3.99</u> 4.09	<u>11.30</u> 11.38		181–182	88
2g	$C_{20}H_{13}NO_5$	<u>68.95</u> 69.16	$\frac{3.70}{3.77}$	<u>3.94</u> 4.03		возг. >150	71
2h	$C_{20}H_{13}NO_3$	<u>76.01</u> 76.18	$\frac{4.05}{4.15}$	$\frac{4.40}{4.44}$		199–200	77
2i	$C_{16}H_{12}N_2O_3$	<u>68.49</u> 68.56	$\frac{4.27}{4.32}$	<u>10.05</u> 9.99		155–156	54
2ј	$C_{15}H_{15}N_{3}O_{4}$	<u>59.92</u> 59.79	$\frac{4.98}{5.02}$	<u>14.03</u> 13.95		258-260	67
2k	C ₂₂ H ₂₅ NO ₃	<u>75.11</u> 75.19	<u>7.21</u> 7.17	<u>4.11</u> 3.99		200–202	43
21	$C_{21}H_{17}N_2O_4$	<u>67.29</u> 67.19	<u>4.47</u> 4.56	<u>11.29</u> 11.19		240-242	70
2m	C ₁₅ H ₉ ClN ₂ O ₃	<u>60.05</u> 59.91	$\frac{3.06}{3.02}$	<u>9.19</u> 9.32	<u>11.60</u> 11.79	262263	30
3a	$C_{15}H_{10}N_2O_3$	<u>67.83</u> 67.66	<u>3.85</u> 3.79	$\frac{10.50}{10.52}$		237–240	75
3b	$C_{15}H_{19}ClN_2O_3$	<u>59.71</u> 59.91	<u>3.09</u> 3.02	<u>9.41</u> 9.32		210-215	60
3c	$C_{15}H_8Cl_2N_2O_3$	<u>53.70</u> 53.76	<u>2.45</u> 2.41	<u>8.35</u> 8.36	<u>21.00</u> 21.16	287–289	58
3d	$C_{16}H_{10}N_2O_5$	<u>61.81</u> 61.94	<u>3.33</u> 3.25	<u>8.88</u> 9.03		248-251	71
3e	$C_{16}H_9F_3N_2O_3$	<u>57.30</u> 57.49	<u>2.64</u> 2.72	<u>8.21</u> 8.38		212–213	45
3f	C ₁₅ H ₉ ClN ₂ O ₃	<u>59.79</u> 59.91	<u>3.03</u> 3.02	<u>9.19</u> 9.32	<u>11.55</u> 11.79	262–263	30
3g	C ₁₄ H ₉ N ₃ O ₃	<u>62.75</u> 62.92	<u>3.31</u> 3.39	<u>15.61</u> 15.72		230-232	50
3h	$C_{21}H_{19}NO_7S$	<u>58.85</u> 58.73	$\frac{4.40}{4.46}$	<u>3.15</u> 3.26		166–168	69
5a	$C_{15}H_{10}N_2O_3$	<u>67.54</u> 67.66	<u>3.71</u> 3.79	<u>10.46</u> 10.52		238–242 (разл.)	47
5b	$C_{17}H_{13}CIN_2O_3$	<u>62.19</u> 62.11	$\frac{4.04}{3.99}$	<u>8.49</u> 8.52	<u>11.00</u> 10.78	204–205 (разл.)	50

Характеристики синтезированных соединений

^{*} Раствоитель для кристаллизации: ДМФА-H₂O (соединения 2a,f,3b-d), ДМФА – ЕtOH (соединения 2b,e,h,j,l, 3e,g, 5a,b), этанол (соединения 2c,d,i,k,m, 3h), ДМФА (соединения 2g,3a), ДМФА-EtOH-H₂O (соединение 3f).

^{**} Найдено, %: S 14.70; вычислено, %: S 14.97.

Данные ИК и ЯМР ¹Н спектров синтезированных соединений

Соеди-	ИК спектр, v, см $^{-1}$		CHEVETE SIMP 1 H S M T (I Fm)*		
нение	СО	NH	Спектр ЯМР н, о, м. д, (<i>J</i> , 1 ц).		
1	2	3	4		
2a	1718, 1635	3080	3.79 (3H, с, CH ₃); 6.78–7.45 (8H, м, Ar); 10.14 (1H, с, CHO); 13.1 (1H, уш. с, NH)		
2b	1726, 1682, 1626	3090	2.56 (3H, с, CH ₃); 6.86–7.94 (8H, м, Ar); 10.14 (1H, с, CHO); 13.1 (1H, уш. с, NH)		
2c	1708, 1683, 1622	3150–3050 (NH, OH)	7.05–7.78 (9Н, м, Ar, OH, COOH); 10.01 (1Н, с, CHO); 12.86 (1Н, уш. с, NH)		
2d	1724, 1714, 1700	3100	3.78 (3H, c, CH ₃); 3.81 (3H, c, CH ₃); 6.97–8.14 (7H, м, Ar); 10.06 (1H, c, CHO); 13.01 (1H, уш. c, NH)		
2e	1722, 1630	3140, 3090	6.68–7.81 (11H, м, Ar, NH); 10.02 (1H, с, CHO); 12.53 (1H, уш. с, NH)		
2f	1725, 1630	3080	7.01–7.96 (13H, м, Ar); 10.04 (1H, с, CHO); 12.69 (1H, уш. с, NH)		
2g	1737–1727, 1626	3090	2.34 (3H, c, CH ₃); 6.58 (1H, c, =CH–); 7.01–7.96 (7H, м, Ar); 10.04 (1H, c, CHO); 12.46 (1H, уш. c, NH)		
2h	1710, 1638	3070	6.69–7.91 (11Н, м, Аг); 10.19 (1Н, с, СНО); 13.27 (1Н, уш. с, NН)		
2i	1725, 1635	3090	5.29 (2H, д, <i>J</i> = 5, CH ₂); 7.29–8.63 (8H, м, Ar); 9.96 (1H, с, CHO); 12.56 (1H, уш. с, NH)		
2ј	1710, 1694, 1630	3330, 3150	3.26 (6H, м, 3CH ₂); 4.04 (2H, м, CH ₂); 6.46 (1H, уш. с, NH); 7.27–8.31 (4H, м, Ar); 9.86 (1H, с, CHO); 11.87 (1H, уш. с, NH)		
2k	1725, 1631	3080	1.67–2.16 (19Н, м, Ad, CH, CH ₃); 10.11 (1Н, с, CHO); 11.81 (1Н, уш. с, NH)		
21	1726, 1664, 1636	3100	2.22 (3H, c, CH ₃); 3.17 (3H, c, CH ₃); 6.98–7.87 (9H, м, Ar); 10.17 (1H, c, CHO); 12.56 (1H, уш. c, NH)		
2m	1720, 1640	3100	6.91–8.42 (7Н, м, Аг); 10.17 (1Н, с, СНО); 13.11 (1Н, уш. с, NН)		
3a	1692, 1635	3120-3090	7.25–8.44 (8Н, м, Аг); 9.28 и 9.51 (1Н, д. д, <i>J</i> = 14, =CH–); 11.78 и 13.10 (1Н, два уш. д, <i>J</i> = 14, NH)		
3b	1686, 1648	3210, 3180, 3110	7.33–8.08 (6H, м, Ar); 8.44 (1H, д, <i>J</i> = 2.5, Ar); 9.27 и 9.47 (1H, д. д, <i>J</i> = 14, =CH–); 11.81 и 13.10 (1H, два уш. д, <i>J</i> = 14, NH)		
3c	1722, 1628	3080	7.26–8.26 (4H, м, Ar); 7.76 (1H, д, <i>J</i> = 2.5, Ar); 8.31 (1H, д, <i>J</i> = 2.5, Ar); 9.26 (1H, д, <i>J</i> = 14, =CH–); 14.03 (1H, уш. д, <i>J</i> = 14, NH)		
3d	1718, 1695, 1640	3400, 3100	6.52–8.64 (7Н, м, Аг); 9.56 и 9.67 (1Н, д. д. <i>J</i> = 13.5, =СН–); 13.64 и 14.48 (1Н, два уш. д. <i>J</i> = 13.5, NH)		
3e	1730, 1632	3230, 3080	7.25–8.22 (6H, м, Ar); 8.83 (1H, уш. с, Ar); 9.38 и 9.56 (1H, д. д, <i>J</i> = 13.5, =CH–); 11.92 и 13.11 (1H, два уш. д, <i>J</i> = 13.5, NH)		
3f	1712, 1634	3080	7.18–8.41 (7Н, м, Аг); 9.02 и 9.06 (1Н, два д, <i>J</i> = 14, =СН–); 12.14 и 13.89 (1Н, два уш. д, <i>J</i> = 14, NH)		

Окончание таблицы 2

1	2	3	4
3g	1722, 1696, 1640	3080	7.36–8.81 (7Н, м, Аг); 9.27 и 9.45 (1Н, два д, J = 13, =СН–); 11.53 и 12.93 (1Н, два уш. д, J = 13, NH)
			[7.27–8.61 (7Н, м, Аг); 9.48 и 9.61 (1Н, два д, J = 13.5, =CH-); 11.71 и 13.11 (1Н, два уш. д, J = 13.5, NH)]**
3h	1728–1710,	3080	1.32 (3H, T, $J = 7$, CH ₃); 1.36 (3H, T, $J = 7$, CH ₃);
	1686, 1638		4.28 (2H, кв, <i>J</i> = 7, CH ₂); 4.51 (2H, кв, <i>J</i> = 7, CH ₂); 7.27–8.11 (4H, м, Ar); 8.63 (1H, д, <i>J</i> = 14, =CH–); 14.58 (1H, уш. д, <i>J</i> = 14, NH)
5a	1694	3220	6.69 (1H, д, <i>J</i> = 8, CH); 6.96 (1H, д. т, <i>J</i> = 7, <i>J</i> = 2, Ar); 7.12 (1H, д, <i>J</i> = 8, OH); 7.14–7.85 (5H, м, Ar); 8.24 (1H, д. д, <i>J</i> = 7, <i>J</i> = 2, Ar); 8.35 (1H, д. д, <i>J</i> = 8, <i>J</i> = 2, Ar)
5b	1692		0.97 (3H, т, <i>J</i> = 7, CH ₃); 3.42 (2H, кв, <i>J</i> = 7, CH ₂); 6.71 (1H, с, CH); 7.29–7.67 (4H, м, Ar); 7.81 (1H, д. д, <i>J</i> = 9, <i>J</i> = 2.5, Ar); 8.18 (1H, д. д, <i>J</i> = 8, <i>J</i> = 2,5, Ar); 8.51 (1H, д, <i>J</i> = 2.5, Ar)

* Спектры снимали в CDCl₃ (соединения 2a,b,h,k-m, 3c,h,5b) и ДМСО-d₆

(соединения 2с-g,i,j, 3a,b,d-g,5a).

** Спектр снимали в CDCl₃.

с образованием соответственно, 7-гидрокси- (**5a**) и 7-этокси-6H,7H-[1]бензопирано[4,3-*d*]пиридо[1,2-*a*]пиримидин-6-онов (**5b**). Их строение подтверждено ИК и ЯМР ¹Н спектрами и рентгеноструктурными данными.

На рис. 1–3 представлены пространственные модели молекул **2h**, **5a** и **5b** с обозначениями атомов и их эллипсоидами тепловых колебаний. В табл. 3 даны основные длины связей в этих молекулах. В структуре **2h** имеется внутримолекулярная водородная связь N(14)–H…O(13) длиной 2.637(3) Å (N–H = 1.01(3), O…H = 1.75(3) Å, N–H…O = 145(2)°), что соответствует стандартному значению для внутримолекулярных H-связей типа NH…O [7]. В кристаллической структуре **5a** обнаружена межмолекулярная H-связь типа OH…N. Длина этой связи, равная 2.846(6) Å (O–H = 0.95(5), N…H = 1.96(5) Å, O–H…N = 153(5)°), несколько превышает среднестатистическое значение 2.79 Å [8] для H-связей данного типа. На рис. 4 приведена упаковка молекул **5a** в кристаллической решетке.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Спектры ЯМР ¹Н регистрировали на спектрометрах Bruker WH 90/DS (90 МГц) и Varian-Mercury BB (200 МГц); внутренний стандарт ТМС. ИК спектры снимали на приборе Specord IR-75 для суспензий веществ в вазелиновом масле (1800–1500 см⁻¹) и гексахлорбутадиене (3600–2000 см⁻¹).

Рис. 1. Пространственная модель молекулы **2h**

Рис. 2. Пространственная модель молекулы 5а

Рис. 3. Пространственная модель молекулы 5b

Таблица З

Длины связей (*l*) в структуре соединений 2h, 5a и 5b

2	h	5:	1	5b		
Связь	l, Å	Связь	l, Å	Связь	l, Å	
O(1)–C(2)	1.383(3)	O(1)–C(2)	1.380(6)	O(1)–C(2)	1.393(10)	
O(1)–C(9)	1.384(3)	O(1)–C(9)	1.373(6)	O(1)–C(9)	1.386(9)	
C(2)–C(3)	1.414(4)	C(2)–C(3)	1.419(7)	C(2)–C(3)	1.433(9)	
O(2)–C(11)	1.220(3)	C(2)-O(11)	1.237(6)	C(2)–O(11)	1.210(9)	
C(3)–C(4)	1.410(3)	C(3)–C(4)	1.367(7)	C(3)–C(4)	1.366(10)	
C(3)–C(12)	1.445(3)	C(3)–C(12)	1.482(7)	C(3)–C(12)	1.489(11)	
C(4)–C(10)	1.463(3)	C(4)–C(10)	1.473(7)	C(4)–C(10)	1.460(10)	
C(4)–N(14)	1.337(3)	C(4)–N(19)	1.364(6)	C(4)–N(19)	1.358(8)	
C(5)–C(6)	1.370(3)	C(5)–C(6)	1.372(8)	C(5)–C(6)	1.389(12)	
C(5)–N(10)	1.404(4)	C(5)-C(10)	1.394(7)	C(5)-C(10)	1.403(10)	
C(6)–C(7)	1.388(4)	C(6)–C(7)	1.382(8)	C(6)–C(7)	1.388(13)	
C(7)–C(8)	1.376(5)	C(7)–C(8)	1.386(8)	C(7)–C(8)	1.383(13)	
C(8)–C(9)	1.389(4)	C(8)–C(9)	1.378(7)	C(8)–C(9)	1.376(12)	
C(9)–C(10)	1.389(4)	C(9)–C(10)	1.392(7)	C(9)–C(10)	1.384(9)	
C(12)-O(13)	1.220(3)	C(12)–N(13)	1.480(7)	C(12)–N(13)	1.491(7)	
N(14)–C(15)	1.431(3)	C(12)-O(20)	1.403(6)	C(12)-O(20)	1.423(9)	
C(15)-C(16)	1.360(4)	N(13)-C(14)	1.377(7)	N(13)-C(14)	1.376(9)	
C(15)–C(24)	1.401(4)	N(13)-C(18)	1.371(6)	N(13)-C(18)	1.382(8)	
C(16)–C(17)	1.425(4)	C(14)–C(15)	1.340(8)	C(14)–C(15)	1.339(11)	
C(17)-C(18)	1.408(4)	C(15)-C(16)	1.395(8)	C(15)-C(16)	1.407(10)	
C(17)–C(22)	1.421(4)	C(16)-C(17)	1.345(8)	C(15)-Cl(23)	1.721(8)	
C(18)–C(19)	1.404(6)	C(17)–C(18)	1.431(7)	C(16)–C(17)	1.348(11)	
C(19)-C(20)	1.375(6)	C(18)–N(19)	1.347(6)	C(17)–C(18)	1.417(9)	
C(20)–C(21)	1.333(6)			C(18)–N(19)	1.322(9)	
C(21)-C(22)	1.419(4)			O(20)–C(21)	1.444(10)	
C(22)–C(23)	1.407(4)			C(21)–C(22)	1.48 (2)	
C(24)–C(23)	1.366(4)					

666

Таблица 4

Характеристика	2h	5a	5b
Брутто-формула	C ₂₀ H ₁₃ NO ₃	$C_{15}H_{10}N_2O_3$	$C_{17}H_{13}ClN_2O_3$
Молекулярная масса	315.33	266.26	328.74
Цвет кристаллов	Бесцветный	Желтый	Бесцветный
Размер, мм	0.02×0.11×0.26	0.04×0.06×0.52	0.01×0.24×0.30
Кристаллическая сингония	Моноклинная	Моноклинная	Моноклинная
Параметры кристаллической решетки: <i>a</i> , Å <i>b</i> , Å <i>c</i> , Å β, град Объем элементарной ячейки, <i>V</i> , Å ³ Пространственная группа	12.7109(6) 7.1408(4) 18.153(1) 111.869(3) 1529.1(2) <i>P</i> 2 ₁ /c	7.3933(8) 18.391(2) 9.946(1) 120.577(5) 1164.3(3) <i>P</i> 2 ₁ /c	$10.849(1) \\ 18.837(2) \\ 7.6779(5) \\ 108.118(3) \\ 1491.2(2) \\ P 2_{1/c}$
Число молекул в элементарной ячейке, Z	4	4	4
Плотность, d , г/см ³	1.370	1.519	1.464
Коэффициент поглощения, µ, мм ⁻¹	0.09	0.11	0.27
Число независимых рефлексов	4201	3167	2184
Число рефлексов с $I > 3\sigma(I)$	1230	798	1003
Число уточняемых параметров	269	190	260
Окончательный фактор расходимости, R	0.053	0.067	0.051

Кристаллографические данные для соединений 2h, 5a и 5b

Рис. 4. Упаковка молекул в кристалле соединения 5а

N-Монозамещенные 4-амино-3-формилкумарины 2а–1 и 3-аминометилен-2,4-хромандионы За–е,g,h. К кипящему раствору 2 ммоль кумарина 1 и 4 ммоль триэтиламина в 10 мл этанола приливают кипящий раствор 2 ммоль соответствующего амина (или его хлоргидрата) в 10 мл этанола, кипятят 5 мин и оставляют при комнатной температуре на 4–5 ч. Выпавший осадок отделяют и перекристаллизовывают.

3-Формил-4-(2-хлор-3-пиридил)кумарин (2m) и 3-(2-хлор-3-пиридил)аминометилен-2,4-хромандион (3f). Кипящий раствор 2 ммоль хлоркумарина 1 в 10 мл этанола сливают с раствором 2 ммоль 3-амино-2-хлорпиридина в 10 мл этанола, кипятят 5 мин, охлаждают, осадок 3-аминометиленпроизводного 3f отфильтровывают и перекристаллизовывают из смеси ДМФА-ЕtOH-H₂O, 3:2:1. Фильтрат разбавляют 50 мл воды и выпавший осадок изомера 2m перекристаллизовывают из этанола.

7-Этокси-9-хлор-6H,7H-[1]бензопирано[4,3-d]пиридо[1,2-а]пиридин-6-он (5b). Кипящий раствор 2 ммоль кумарина 1 в 10 мл этанола сливают с кипящим раствором 2 ммоль 2-амино-5-хлорпиридина и 2 ммоль безводного MeCOONa в 10 мл этанола. Кипятят 5 мин, охлаждают, осадок хромандиона **3b** отфильтровывают и перекристаллизовывают из ДМФА-H₂O. Выход 22%. Фильтрат разбавляют 50 мл воды, осадок соединения **5b** отфильтровывают и перекристаллизовывают из этанола, постепенно добавляя ДМФА. Получают 0.33 г (50%) **5b**.

7-Гидрокси-6Н,7Н-[1]бензопирано[4,3-*d*]**пиридо[1,2-***a*]**пиридин-6-он (5а)** получают аналогично из кумарина 1 и 2-аминопиридина.

Рентгеноструктурный анализ. Монокристаллы соединений **2h**, **5a** и **5b** выращены из ДМФА–ЕtOH. Съемка дифракционной картины осуществлялась при 20 °C на автоматическом дифрактометре Nonius KappaCCD (Мо $K\alpha$ -излучение, для **2h** и **5a** $2\theta_{max} = 55^{\circ}$, для **5b** $2\theta_{max} = 50^{\circ}$). Структуры расшифрованы прямым методом и уточнены полноматричным МНК в анизотропном приближении. Расчеты выполнены с помощью программ [9, 10].

Координаты неводородных атомов и их эквивалентные изотропные тепловые параметры для соединений **2h**, **5a** и **5b** можно получить у авторов (*e-mail: serg@osi.lv*).

СПИСОК ЛИТЕРАТУРЫ

- 1. A. Alberola, L. Calvo, A. Gonzalez-Ortega, A. P. Encabo, S. Sanudo, Synthesis, 1941 (2001).
- 2. Ch. Bandyopadhyay, K. R. Sur, R. Patra, A. Sen, Tetrahedron, 56, 3583 (2000).
- В. М. Бакулев, Г. М. Гридунова, М. А. Кирпиченок, Л. А. Карандашова, Ю. Т. Стручков, И. И. Грандберг, XTC, 338 (1993).
- 4. D. Heber, Arch. Pharm., 320, 595 (1987).
- 5. S. R. Moorty, V. Sundaramurthy, N. V. Subba Rao, Indian J. Chem., 11, 854 (1973).
- 6. И. Стракова, М. Петрова, С. Беляков, А. Страков, XГС, 1827 (2003).
- 7. Fundamentals of Crystallography, C. Giacovazzo (Ed.), 2nd Ed. Oxford sci. publ., 590 (2002).
- 8. L. N. Kuleshova, P. M. Zorkii, Acta Crystallogr., B37, 1363 (1981).
- A. Altomare, M. C. Burla, M. Camalli, G. L. Cascarano, C. Giacovazzo, A. Guagliardi, A. G. G. Moliterni, R. Spagna, *J. Appl. Cryst.*, **32**, 115 (1999).
- 10. S. Mackay, C. J. Gilmore, C. Edwards, N. Stewart, K. Shankland, *maXus*, Computer Program for the Solution and Refinement of Crystal Structures, 1999, Bruker Nonius, The Netherlands, MacScience, Japan & The University of Glasgow.

Рижский технический университет, Рига LV-1658, Латвия e-mail: marina@osi.lv Поступило в редакцию 08.10.2003 После доработки 14.09.2005

^аЛатвийский институт органического синтеза, Рига LV-1006, Латвия e-mail: serg@osi.lv