А. Е. Щекотихин, Ю. Н. Лузиков, О. С. Анисимова^а, В. Н. Буянов^о, М. Н. Преображенская

ГЕТЕРОЦИКЛИЧЕСКИЕ АНАЛОГИ 5,12-НАФТАЦЕНХИНОНА

2.* СИНТЕЗ 4,11-ДИГИДРОКСИНАФТО[2,3-*f*]ИНДАЗОЛ-5,10-ДИОНА И ЕГО N-МЕТИЛЬНЫХ ПРОИЗВОДНЫХ

При метилировании 4,11-диметоксинафто[2,3-*f*]индазол-5,10-диона метилиодидом в присутствии оснований образуется смесь его 1- и 2-метильных производных. Деметилирование метоксигрупп исходного соединения и продуктов его алкилирования приводит к образованию 4,11-дигидроксинафто[2,3-*f*]индазол-5,10-диона (пиразолохинизарина) и его 1- и 2-метильных производных.

Ключевые слова: 4,11-дигидроксинафто[2,3-*f*]индазол-5,10-дион, пиразолохинизарин, деметилирование, метилирование, стоксов сдвиг, флуоресценция.

Синтез гетероциклических производных хинизарина – аналогов 5,12нафтаценхинона, производные которого (антрациклиновые антибиотики) обладают противоопухолевой активностью [2], является перспективным для дальнейшего поиска новых химиотерапевтических средств. Поэтому ранее нами был синтезирован 4,11-дигидроксинафто[2,3-*f*]индол-5,10-дион (пирролохинизарин) [3], аминоалкилпроизводные которого обла-дают высокой антипролиферативной активностью [4], а также разрабо-таны методы синтеза 4,11-дигидроксиантра[2,3-*d*]имидазол-5,10-диона 4,11-дигидроксиантра[2,3-*d*][1,2,3]триазол-5,10-(имидазолохинизарина), диона (триазолохинизарина) и 5,12-дигидроксинафто[2,3-g]хиноксалин-6,11-диона (пиразинохинизарина) [1]. Кроме того, ранее нами был разработан метод синтеза 4,11-диметоксинафто[2,3-f]индазол-5,10-диона [5], являющегося О-диметильным производным пиразолохинизарина, поэтому целью настоящей работы является поиск удобных методов его деметилирования для получения 4,11-дигидроксинафто[2,3-f]индазол-5,10-диона (пиразолохинизарина), а также синтез его N-алкильных производных.

Реакция N-акилирования в ряду нафто[2,3-*f*]индазол-5,10-диона является наиболее перспективной для введения фармакофорных групп, поэтому, прежде всего, мы изучили алкилирование 4,11-диметоксинафто[2,3-*f*]индазол-5,10-диона (1) в присутствии оснований. Мы установили, что алкилирование нафтоиндазола 1 метилиодидом в присутствии NaH в ДМФА

при комнатной температуре приводит к образованию смеси 4,11-димет-

^{*} Сообщение 1 см. [1].

окси-1-метил-1Н-нафто[2,3-*f*]индазол-5,10-диона (2) и 4,11-диметокси-2метил-2Н-нафто[2,3-*f*]индазол-5,10-диона (3) с выходами 57 и 37% соответственно. Применение в качестве основания *трет*-бутилатов калия или лития практически не влияет на соотношение образующихся продуктов, но снижает их выход. Таким образом, соотношение 1-метил- и 2-метильных продуктов алкилирования 4,11-диметоксинафто[2,3-*f*]индазол-5,10диона (1) близко к соотношению продуктов алкилирования незамещенного индазола в присутствии оснований [6].

В спектрах ЯМР ¹Н индазолов **2** и **3** отсутствуют сигналы протонов группы NH и появляются сигналы метильных групп при 4.27 и 4.34 м. д., соответственно, причем сигналы N-метильной группы и протона H-3 в спектре N₍₂₎-метильного производного **3** наблюдаются в виде слабо уширенных синглетов. Уширение сигнала метильной группы исчезает при облучении вторым радиочастотным полем на частоте сигнала протона H-3, что свидетельствует о наличии между ними взаимодействия с малой КССВ $J \le 0.3$ Гц. Это согласуется с данными спектра ЯМР ¹Н для 2-метильного производного **2** не зарегистрировано.

В масс-спектрах соединений 2 и 3 наблюдаются пики молекулярных ионов с M^+ 322, что соответствует молекулярной массе этих соединений. Основные направления распада молекулярных ионов соединений 2 и 3 практически одинаковы, спектры различаются только относительной интенсивностью фрагментарных ионов. Наряду с M^+ наблюдаются пики ионов 307 [M – CH₃]⁺, 293 [M – NCH₃]⁺, 279 [M – CH₃–N₂]⁺.

Электронный спектр поглощения для соединения 2 практически идентичен спектру исходного соединения 1 [5], в то время как в спектре соединения 3 наблюдается батохромное смещение длинноволнового максимума поглощения на 10 нм, а в области 377 нм наблюдается дополнительный перегиб. Эти данные согласуются с данными работ [8, 9], в которых было показано, что спектры поглощения индазола и его 1-метильного производного близки, в то время как спектр 2-метильного производного отличается.

Пиразольный цикл устойчив к действию кислот, поэтому для деметилирования полученных О-диметильных производных пиразолохинизарина мы использовали деметилирование серной кислотой, метод, часто используемый в химии антрахинона [10].

Синтезированные гидроксипрозводные **4**–**6** обладают чрезвычайно низкой растворимостью в большинстве растворителей, поэтому регистрацию спектров ЯМР ¹Н проводили при 80 °С в ДМСО, причем при охлаждении растворов до комнатной температуры исследуемые вещества практически полностью кристаллизуются в виде игольчатых кристаллов. В спектрах ЯМР ¹Н этих соединений отсутствуют синглетные сигналы метоксигрупп исходных соединений и появляются сигналы протонов групп ОН в области ~15.0 м. д.

В масс-спектрах соединений **4–6** наблюдаются интенсивные пики молекулярных ионов с M^+ 280 (**4**) и 294 (**5**, **6**), что соответствует их молекулярным массам. Следует отметить, что масс-спектры производных **5** и **6** кардинально отличаются по интенсивности пика ионов $[M - H]^+$. В спектре соединения **5**, вероятно, благодаря *орто*-расположению групп ОН и NMe, приводящему к выгодной стабилизации заряда на атоме $N_{(1)}$, интенсивность иона $[M - H]^+$ составляет 86%. В спектре соединения **6** пик иона $[M - H]^+$ отсутствует.

В ИК спектрах соединений **4–6** в области 3400 см⁻¹ наблюдаются полосы валентных колебаний групп ОН, а полосы колебаний карбо-

нильных групп антрахинонового фрагмента находятся в области 1600, что несколько меньше, чем для полос групп CO хинизарина (1625 см⁻¹ [11]).

Деметилирование метоксигрупп вызывает батохромное смещение и увеличение интенсивности длинноволновых полос поглощения в ЭСП соединений 4–6 по сравнению со спектрами исходных соединений 1–3 (рисунок). Наибольшее смещение длинноволновой полосы наблюдается при деметилировании 1-метильного производного 2 (~90 нм), а наименьшее – в случае 2-метилиндазола 3 (~60 нм). Кроме того, следует отметить значительное увеличение интенсивности длинноволновых полос поглощения при метилировании гетероциклического фрагмента, причем наибольшей интенсивностью поглощения обладает 2-метильное производное 6.

В заключение следует отметить, что все синтезированные нами производные нафто[2,3-*f*]индазол-5,10-диона обладают интенсивной флуоресценцией (таблица). Полученные данные показывают, что диметоксипроизводные нафто[2,3-*f*]индазол-5,10-диона 1–3 имеют большой стоксов сдвиг ($\Delta\lambda$ 150 нм). Близкие фотохимические свойства N-метильных производных 2, 3 и исходного индазола 1 показывают, что высокие значения стоксова сдвига не связаны с таутомерией гетероциклического фрагмента и объясняются, вероятно, изменениями геометрии хромофоров при переходе в возбужденное состояние. В противоположность этому стоксов сдвиг дигидроксипроизводных нафто[2,3-*f*]индазол-5,10-диона 4–6 значительно меньше.

Спектры электронного поглощения соединений 4-6 в этаноле

Электронные спектры поглощения и флуоресценции нафто[2,3-*f*]индазол-5,10-дионов 1–6 в этаноле

Соеди- нение	λ_{max} , HM		A2
	поглощения	флуоресценция	ΔΛ, HM
1	405	552	147
2	405	552	147
3	414	560	146
4	(435)	(550)	71
	459	530	
	488	510	
5	(443)	(570)	73
	474	547	
	507	515	
6	(435)	(555)	69
	458	527	
	489	498	

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Спектры ЯМР ¹Н записаны на спектрометре Varian VXR-400 (400 МГц), внутренний стандарт ТМС. Масс-спектры зарегистрированы на хромато-масс-спектрометре SSQ 710 фирмы Finnigan-MAT, USA, энергия ионизирующего напряжения 70 эВ, прямой ввод образца в ионный источник, нагрев образца до 350 °С, температура ионизационной камеры 150 °С. ИК спектры получены на спектрометре Perkin–Elmer 599 в таблетках КВг. Спектры поглощения записаны на спектрометре Hitachi-U2000. Спектры флуоресценции – на приборе Элюмин-2М. Контроль за ходом реакций и чистотой соединений проводился методом TCX на пластинах Silufol UV-254.

4,11-Диметокси-1-метил-1Н-нафто[2,3-f]индазол-5,10-дион (2) и 4,11-диметокси-2метил-2Н-нафто[2,3-f]индазол-5,10-дион (3). К раствору 0.1 г (0.33 ммоль) 4,11-диметоксинафто[2,3-f]индазол-5,10-диона (1) в 10 мл безводного ДМФА при перемешивании в токе аргона прибавляют суспензию 50 мг (60%, 1.3 ммоль) NaH в минеральном масле. Через 10 мин к реакционной массе фиолетового цвета при перемешивании прибавляют 0.05 мл (8.0 ммоль) метилйодида. Когда смесь приобретает желтый цвет (через 15–20 мин), к ней прибавляют по каплям 1 мл этанола, выливают в воду. Продукт реакции экстрагируют этилацетатом (3 × 30 мл), экстракт промывают водой (2 × 20 мл), сушат MgSO₄, упаривают в вакууме. Остаток очищают хроматографически (силикагель, бензол–этилацетат, 10 : 1 \rightarrow 1 : 2) и выделяют 60 мг (57%) игольчатых кристаллов желтого цвета нафтоиндазолдиона **2**, R_f 0.6 (бензол–этилацетат, 1 : 2), т. пл. 187–189 °C (из смеси бензол–гексан), и 39 мг (37%) желтых кристаллов нафтоиндазолдиона **3**, R_f 0.1 (бензол–этилацетат, 1 : 2), т. пл. 222–224 °C (из бензола).

4,11-Диметокси-1-метил-1Н-нафто[2,3-*f***]индазол-5,10-дион (2).** ИК спектр, ν, см⁻¹: 1660 (С=О). Спектр ЯМР ¹Н (в CDCl₃), δ, м. д.: 8.30 (1H, с, H-3); 8.24 (2H, м, H-6,9); 7.74 (2H, м, H-7,8); 4.40 (3H, с, NCH₃); 4.27 (3H, с, 11-OCH₃); 4.10 (3H, с, 4-OCH₃). Масс-спектр, *m/z* (*I*_{0TH}, %): 322 [М]⁺ (100), 307 [М⁺–СH₃] (34), 293 (53), 279 (20), 264 (18). Найдено, %: С 67.30; Н 4.53; N 8.57. С₁₈Н₁₄N₂O₄. Вычислено, %: С 67.07; Н 4.38; N 8.69.

4,11-Диметокси-2-метил-2H-нафто[2,3-*f***]индазол-5,10-дион (3).** ИК спектр, v, см⁻¹: 1660 (С=О). Спектр ЯМР ¹Н (в CDCl₃), δ, м. д.: 8.27 (1H, с, H-3); 8.23 (2H, м, H-6,9); 7.72 (2H, м, H-7,8); 4.40 (3H, с, 11-OCH₃); 4.29 (3H, с, NCH₃); 4.18 (3H, с, 4-OCH₃). Масс-спектр, *m/z* (*I*_{0TH}, %): 322 [М]⁺ (100), 307 [М⁺–СH₃] (22), 293 (57), 279 (42), 263 (15). Найдено, %: С 67.15; Н 4.60; N 8.86. С₁₈Н₁₄N₂O₄. Вычислено, %: С 67.07; Н 4.38; N 8.69.

4,11-Дигидроксинафто[2,3-f]индазол-5,10-дион (4). Растворяют при нагревании и перемешивании 0.15 г (0.5 ммоль) соединения **1** в 10 мл 80% серной кислоты и выдерживают 30 мин при 100 °С. Смесь охлаждают и выливают в 50 мл воды, отфильтровывают осадок, промывают водой, сушат и перекристаллизовывают из ДМФА, сушат, получают 0.95 г (70%) коричневых кристаллов с т. пл. >250 °С. ИК спектр, v, см⁻¹: 3400 (OH), 3200 (NH), 1605 (C=O). Спектр ЯМР ¹Н (в ДМСО-d₆, 80 °С), δ , м. д.: 14.99 (1H, уш. с, OH); 14.81 (1H, уш. с, OH); 8.54 (1H, с, H-3); 8.39 (2H, м, H-6,9); 7.92 (2H, м, H-7,8). Масс-спектр, *m*/2 695

(*I*_{отн}, %): 280 [M]⁺ (100), 251 [M⁺–N₂] (4), 195 (3), 184 (7). Найдено, %: С 64.12; Н 2.63; N 9.87. С₁₅Н₈N₂O₄. Вычислено, %: С 64.29; Н 2.88; N 10.00.

4,11-Дигидрокси-1-метил-1Н-нафто[2,3-f]индазол-5,10-дион (5) получают аналогично пиразинохинизарину **4** из соединения **2** при нагревании в серной кислоте в течение 1 ч. Выход 75%. Т. пл. >250 °C. ИК спектр, v, см⁻¹: 3400 (OH), 1605 (С=О). Спектр ЯМР ¹Н (в ДМСО-d₆, 80 °C), δ, м. д.: 15.00 (2H, уш. с, OH); 8.44 (2H, м, H-6,9); 8.29 (1H, с, H-3); 7.97 (2H, м, H-7,8); 4.36 (3H, с, CH₃). Масс-спектр, *m/z* (*I*_{отн}, %): 294 [M]⁺ (100), 293 [M⁺–H] (86), 265 (3), 239 (7).

4,11-Дигидрокси-2-метил-2Н-нафто[2,3-f]индазол-5,10-дион (6) получают аналогично пиразинохинизарину **4** из соединения **3**. Выход 79%. Т. пл. >250 °С. ИК спектр, v, см⁻¹: 3400 (OH), 1590 (С=О). Спектр ЯМР ¹Н (в ДМСО-d₆, 80 °С), δ, м. д.: 15.00 (2H, уш. с, OH); 8.71 (1H, с, H-3); 8.44 (2H, м, H-6,9); 7.94 (2H, м, H-7,8); 4.16 (3H, с, CH₃). Масс-спектр, *m/z* (*I*_{отн}, %): 294 [M]⁺ (100), 265 (3), 209 (3), 184 (5).

Авторы выражают благодарность профессору Б. М. Ужинову (МГУ им. М. В. Ломоносова) за помощь в проведении фотохимических исследований. Данная работа выполнена при финансовой поддержке РФФИ, грант № 06-03-32233.

СПИСОК ЛИТЕРАТУРЫ

- 1. А. Е. Щекотихин, И. Г. Макаров, В. Н. Буянов, М. Н. Преображенская, *XTC*, 1081 (2005).
- 2. C. Monneret, Eur. J. Med. Chem., 36, 483 (2001).
- А. Е. Щекотихин, Е. П. Баберкина, В. Н. Буянов, К. Ф. Турчин, Н. Н. Суворов, XГС, 1030 (2001).
- A. E. Shchekotikhin, V. N. Buyanov, M. N. Preobrazhenskaya, *Bioorg. Med. Chem.*, 32, 3923 (2004).
- 5. А. Е. Щекотихин, Д. А. Силаев, Е. П. Баберкина, И. Г. Макаров, В. Н. Буянов, Н. Н. Суворов, *XГС*, 623 (2002).
- 6. *Гетероциклические соединения*, под ред. Р. Эльдерфилда, Изд-во иностр. лит., Москва, 1961, т. **5**, с. 155.
- 7. J. Elguero, A. Fruchier, R. Jacquier, Bull. Soc. Chim. Fr., 2075 (1966).
- 8. I. M. Barclay, N. Campbell, G. Dodds, J. Chem. Soc., 113 (1941).
- 9. V. Rousseau, H. G. Lindwall, J. Am. Chem. Soc., 72, 3047 (1950).
- 10. М. В. Горелик, Химия антрахинонов и их производных, Химия, Москва, 1983, с. 258.
- 11. М. В. Горелик, Химия антрахинонов и их производных, Химия, Москва, 1983, с. 85.

Научно-исследовательский институт по изысканию антибиотиков им. Г. Ф. Гаузе, Москва 119021, Россия Поступило в редакцию 20.12.2004

^аЦентр по химии лекарственных средств – Всероссийский научно-исследовательский химико-фармацевтический институт, Москва 119815

⁶Российский химико-технологический университет им. Д. И. Менделеева, Москва 125190 e-mail: chekotikhin@mtu-net.ru e-mail: mnp@space.ru