В. Н. Сорокоумов, С. Н. Морозкина, И. А. Балова

СИНТЕЗ И ЦИКЛИЗАЦИЯ 1-АРИЛАЛК-1-ЕН-3,5-ДИИНИЛАМИНОВ

Проведено исследование реакции 1-литио-1,3-диинов, генерируемых *in situ*, с нитрилами. В случае ароматических нитрилов образуются 1-арилалк-1-ен-3,5-дииниламины, которые при выделении претерпевают димеризацию и циклизацию, давая 3-(алка-1,3диинил)-4-(алк-2-инил)-2,6-диарилпиридины. Определено влияние природы заместителя в молекуле бензонитрилов на селективность реакции и выход продуктов, предложена схема превращения и установлено строение промежуточных интермедиатов.

Ключевые слова: 3-(алка-1,3-диинил)-4-(алк-2-инил)-2,6-диарилпиридины, 2-аминоэтиламид лития, 1-арилалк-1-ен-3,5-дииниламины, диацетилены, 1-литио-1,3-диины, нитрилы, прототропная изомеризация.

Ацетиленовые и диацетиленовые соединения широко используются в синтезах различных классов гетероциклов [1, 2], но известны лишь единичные сообщения о гетероциклизациях диинов, проходящих с сохранением тройных связей в заместителях образующихся гетероциклов [3–5].

Ранее нами было обнаружено, что в реакции 1-литиодека-1,3-диина (2а) с бензонитрилом вместо ожидаемого кетона образуется 1-фенил- ундец-1ен-3,5-дииниламин (3а), который при хроматографировании на силикагеле или в присутствии минеральных кислот превращается в 3-(нона- 1,3диинил)-4-(окт-2-инил)-2,6-дифенилпиридин 4a [6]. Подобное превращение диацетиленовых енаминов является первым примером циклизации с сохранением трех тройных связей в заместителях образующегося пиридинового цикла. В настоящей работе представлены результаты дальнейших исследований, направленных на установление механизма этого необычного превращения, а также определение возможностей и ограничений данного подхода к синтезу 1-арилалк-1-ен-3,5-дииниламинов и 3-(1,3-алкадиинил)-4-(2-алкинил)-2,6-диарилпиридинов.

Дизамещенные диацетилены **1а,b** были использованы в качестве исходных соединений для получения 1-литио-1,3-диинов **2а,b** *in situ* в реакции "ацетиленовой молнии" [7, 8] при действии трехкратного избытка 2-аминоэтиламида лития (LAETA) в смешанном растворителе (бензол, гексан, $T\Gamma\Phi$). Был проведен ряд экспериментов с бензонитрилом и ароматическими нитрилами, имеющими как донорные, так и акцепторные заместители. Результаты представлены на схеме 1 и в таблице.

Выделить в индивидуальном виде удалось лишь енамин **3a** (опыт 1, таблица). В отличие от опытов с соединением **2a**, в реакциях 1-литиододека-1,3-диина (**2b**) с бензонитрилом при хроматографическом разделении реакционной смеси с выходами 70–74% был получен пиридин **4b** (опыт 2,

 $1 a R^{1} = Pr, b R^{1} = Bu; 2 a R^{2} = C_{6}H_{13}, R^{2} = C_{8}H_{17};$ $3,4 a R^{3} = C_{5}H_{11}, R^{4} = Ph; b R^{3} = C_{7}H_{15}, R^{4} = Ph; c R^{3} = C_{5}H_{11}, R^{4} = 4-MeOC_{6}H_{4};$ $d R^{3} = C_{7}H_{15}, R^{4} = 4-MeC_{6}H_{4}; e R^{3} = C_{5}H_{11}, R^{4} = 3,4-(MeO)_{2}C_{6}H_{3}; f R^{3} = C_{7}H_{15}, R^{4} = 4-ClC_{6}H_{4};$

таблица). В реакции 2a с 4-метоксибензонитрилом с выходом 90% был также выделен пиридин 4c (опыт 3). Енамины 3b,c удалось выделить лишь в смеси с продуктами циклизации, модифицировав процедуру хроматографического выделения*. Во всех остальных опытах образование ендииниламинов 3d-f зафиксировано лишь по данным спектров ЯМР и масс-спектров реакционной смеси. В процессе выделения они полностью превращались в соответствующие пиридины 4d-f.

Выходы пиридинов 4d и 4e, полученных в реакциях 4-метилбензонитрила с 2b и 3,4-диметоксибензонитрила с 2a, составили 69 и 59% соответственно (опыты 4 и 5). В обоих случаях значительное количество терминальных диинов: 21 и 17%, соответственно, было выделено из реакционной смеси. Снижение выхода в случае пиридина 4e связано с низкой стабильностью продукта.

Реакция соединения **2b** с 4-хлорбензонитрилом при температуре от -8 до -10 °C привела к образованию амида 4-хлорбензойной кислоты как основного продукта (58%), а выход пиридина **4f** составил 3% (опыт 6). Наличие акцепторного заместителя в бензольном ядре, вероятно, снижает селективность реакции ацетиленида лития с нитрилом в присутствии избытка 2-аминоэтиламида лития. Образование амида 4-хлорбензойной кислоты можно объяснить как результат конкурентной реакции присоединения к нитрильной группе амида лития и гидролиза амидина при выделении. При понижении температуры реакции до -20 °C образование амида не наблюдалось, но пиридин **4e** удалось выделить лишь с выходом 13% (опыт 7). Кроме того, из реакционной смеси было выделено значительное количество продукта олигомерного характера, в спектре ЯМР которого наблюдались уширенные сигналы в областях ароматических и алифатических протонов.

* При хроматографическом разделении в качестве полярного компонента был использован диэтиловый эфир вместо хлористого метилена.

Выходы ендииниламинов 3 и пиридинов 4

№ опыта	Диин	R ⁴ -CN	Выход, %	
1	1a	Ph	3a 78 (96)*	
2	1b	Ph	3b 9	4b 74
3	1a	$4-MeOC_6H_4$	_	4c 90
4	1b	$4-MeC_6H_4$	-	4d 69**
5	1a	3,4-(MeO) ₂ C ₆ H ₃	-	4e 59**
6	1b	$4-ClC_6H_4$	-	4f 3
7	1b	$4-ClC_6H_4$	-	4f 13

* Без хроматографической очистки (чистота, по данным спектра ЯМР ¹Н, не менее 95%). ** С учетом вернувшегося из реакции углеводорода.

Серия каскадных превращений в реакциях 1-литио-1,3-диинов с бензонитрилами обусловлена проведением реакции в присутствии избытка амида лития. Присоединение ацетиленида лития к связи CN, очевидно, первоначально приводит к образованию имина. Наиболее вероятным механизмом последующего превращения являются образование в присутствии избытка LAETA анионного интермедиата (A), его изомеризация и последующий переход из **B** в **C**.

Образование анионных интермедиатов подтвердили опыты, в которых после окончания реакции 1-литио-1,3-диинов **2а,b** с бензонитрилом в реакционную смесь был добавлен избыток иодистого метила. В этом случае были выделены диацетиленовые кетоны **5a** и **5b** с выходами 19 и 36% соответственно.

Для установления конфигурации двойной связи ендииниламина **3a** в реакции с фенилизоцианатом был получен соответствующий карбамид **7** (31%), из реакционной смеси был выделен также продукт циклизации – пиридин **4a** (43%). В спектрах NOESY карбамида **7** отсутствовал кросспик между протоном при двойной связи и амидным протоном. Эффект Оверхаузера (порядка 10%) наблюдался для *орто*-протонов бензольного кольца при возбуждении амидного протона при 6.62 м. д. и *орто*-протонов второго бензольного кольца при возбуждении амидного в пользу *Z*-конфигурации исходного ендииниламина **3a**.

Ендииниламины **3а–f** под действием следов кислоты или при хроматографировании на силикагеле димеризуются и претерпевают циклизацию с образованием термодинамически устойчивого производного пиридина. При этом одна молекула енамина выступает в качестве NC₃, а вторая, в качестве C₂ компонента. Аналогичный продукт – пиридин **6** с выходом 48% был получен при конденсации ендииниламина **3а** с 1-фенилдодека-3,4-диин-1-оном (схема 3).

Пиридины **4a-f**, **6** имеют схожие спектральные характеристики. Наиболее характеристичными в спектре ЯМР ¹Н являются сигналы протонов метиленовой группы при тройных связях – триплеты с химическими сдвигами в интервале 2.3–2.4 м. д. Слабо разрешенный триплет 3.8 м. д. относится к метиленовой группе между тройной связью и пиридиновым кольцом, в спектре ЯМР ¹³С атому углерода данной метиленовой группы соответствует сигнал в области 22–24 м. д. Также характеристичным в спектре ЯМР ¹Н является синглет протона с химическим сдвигом около 8 м. д. при 5-м атоме углерода пиридинового цикла, в спектре ЯМР ¹³С этому атому углерода соответствует сигнал около 117 м. д. Кроме того, в спектре ЯМР ¹³С присутствуют сигналы 6 ацетиленовых атомов углерода в интервале 65–90 м. д. и сигналы атомов углерода поляризованной двойной связи: около 76 (CH) и 150 м. д. (CNH₂).

Синтетическое применение реакции оказалось заметно ограниченным. Взаимодействие ацетиленида лития **2b** с 4-диметиламинобензонитрилом, 4-иодбензонитрилом, нитрилом кротоновой кислоты, нитрилом фенилпропиновой кислоты, 2-пиридинкарбонитрилом сопровождалось значительным смолообразованием. Выделить и охарактеризовать продукты не удалось. В реакциях **2b** с О-тетрагидропиранильным производным ацетонциангидрина и 2,3-дигиро-1-бензотиофен-2-карбонитрилом, в которых нитрильная группа находится при *sp*³-гибридном атоме углерода, даже при нагревании до 65 °C образование продуктов не наблюдалось, исходные нитрилы и додека-1,3-диин были выделены из реакционной смеси.

Ранее мы исследовали прототропную изомеризацию дизамещенных диацетиленовых спиртов [9], но реакции образующихся ацетиленидов лития с электрофильными реагентами не изучались. Изомеризация третичного диацетиленового спирта 2-метилдека-3,5-диин-2-ола и последующая реакция полученного *in situ* 10-литио-2-метилдека-7,9-диин-2-олята лития с бензонитрилом привела к образованию ендииниламина **8**, который был выделен с выходом 15%.

Наряду с аминоспиртом 8 из реакции с выходом 5% был также выделен соответствующий пиридин 9. Диацетиленовые спирты являются менее устойчивыми по сравнению с углеводородами в условиях реакции изомеризации [9]. Кроме того, ацетиленид-алкоголят терминального диацетиленового спирта сильно ассоциирован. Разбавление реакционной смеси перед добавлением нитрила равным объемом ТГФ позволило

увеличить выход ендииниламина **8** с 15 до 29%. Дальнейшее разбавление не привело к увеличению выхода.

Использование реакции "ацетиленовой молнии" как метода генерации 1-литио-1,3-диинов из легко доступных дизамещенных изомеров и их последующее взаимодействие с бензонитрилами является новым синтетическим подходом к получению этинилзамещенных пиридинов. Несмотря на синтетические ограничения, разработанный метод позволил впервые получить ряд 3-(алка(алкокси)-1,3-диинил)-4-(алка(алкокси)-2инил)-2,6-диарилпиридинов, синтез которых осуществлен фактически в режиме "one pot" с хорошими выходами.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

ИК спектры сняты на приборах Specord IR-75 и UR-20 в диапазоне 4000–400 см⁻¹ с использованием 2% растворов в CCl₄. Спектры ЯМР ¹Н и ¹³C сняты на приборе Bruker (300 и 75 МГц соответственно) в растворах CDCl₃, CD₃CN, CD₂Cl₂, химические сдвиги приведены относительно остаточных сигналов растворителя (¹H/¹³C: 7.27/77.16; 1.94/1.32; 5.30/53.25 м. д. соответственно). Данные элементного анализа получены на приборе Hewlett-Packard 185B. Хромато-масс-спектры сняты на приборе INCOS 50 фирмы Finnigan, ионизация ЭУ (70 эВ). Колонка капиллярная кварцевая типа SE-30, внутренний диаметр 0.25 мм, длина 30 м, фаза ДВ-5, толщина слоя 0.25 мкм. Программирование температур от 100 до 300 °C (5°/мин).

Подготовка растворителей. Бензол, гексан, ТГФ: продажные препараты кипятят с обратным холодильником над натрием в присутствии бензофенона до появления темносиней окраски, после чего перегоняют и в дальнейшем хранят над натрием.

ЭДА – продажный препарат выдерживают над NaOH. Несколько раз перегоняют над щелочью и затем перегоняют над натрием.

Последовательные взаимодействия 1-литио-1,3-диинов с бензонитрилами (общая методика). В раствор 1.2 мл (0.015 моль) этилендиамина в 3.6 мл абсолютного ТГФ в атмосфере аргона небольшими порциями вносят 0.105 г (0.015 моль) лития. После завершения экзотермической реакции образования 2-аминоэтиламида лития к суспензии добавляют 3.6 мл сухого бензола и 3.6 мл гексана, охлаждают до 16-18 °C и приливают (5 ммоль) дизамещенного диацетилена. (В случае диацетиленового спирта был использован 4-кратный избыток LAETA и 4.8 мл (60 ммоль) ЭДА было добавлено к смеси растворителей). Окраска реакционной смеси изменяется от желтовато-серой до темнокоричневой, что свидетельствует об образовании ацетиленида. Через 15 мин после прибавления диина реакционную смесь разбавляют 10 мл сухого Т ГФ, охлаждают до -15 °C и прибавляют по каплям раствор 5 ммоль бензонитрила в 10-15 мл безводного ТГΦ, после прибавления бензонитрила реакционную смесь перемешивают при комнатной температуре 4-14 ч. Контроль за ходом реакции осуществляют методом ТСХ. После завершения реакции реакционную смесь выливают на лед, органический слой отделяют. Водный слой экстрагируют диэтиловым эфиром (3 × 25 мл). Объединенный органический слой промывают раствором NH₄Cl до нейтральной реакции водной фазы, сушат MgSO₄. После удаления растворителей продукты выделяют методом колоночной хроматографии или препаративной тонкослойной хроматографией (ПТСХ) на силикагеле (40-60 мкм). Элюенты смеси гексана с диэтиловым эфиром.

(*Z*)-1-Фенилундец-1-ен-3,5-дииниламин (3a) получают из 0.67 г (5 ммоль) дека-4,6диина (1a) [10] и 0.515 г (5 ммоль) бензонитрила. Выделяют методом ПТСХ (элюирующая система гексан–Et₂O, 4 : 1), получают 0.92 г (78%) **3a**. Маслообразная жидкость. *R_f* 0.52 (гексан–Et₂O, 4 : 1). ИК спектр, v, см⁻¹: 3490, 3380, 3150, 3030, 2955, 2850, 2230, 1600, 1490, 1440. Спектр ЯМР ¹H (CD₃CN), δ, м. д. (*J*, Гц): 0.93 (3H, т, *J* = 7, CH₃); 1.37–1.59 (6H, м, (CH₂)₃); 2.37 (2H, т, *J* = 7, ≡CCH₂); 4.58 (1H, с, =CH); 5.12 (2H, с, NH₂); 7.32–7.42 (2H, м, H–C_{Ph}); 7.51–7.59 (3H, м, H–C_{Ph}). Спектр ЯМР ¹³С (CD₃CN), δ, м. д.: 13.7; 19.5 (<u>C</u>H₂C≡); 22.3; 28.4; 31.2; 66.2 (C_{sp}); 74.4 (=CH); 74.9, 79.7, 85.7 (C_{sp}); 129.0, 129.7, 132.6, 136.9 (C_{Ph}); 158.2 (С–NH₂). Масс-спектр, *m/z* (*I*_{отн}, %): 238 [M+1]⁺ (50), 237 [M]⁺ (100), 208 (18), 194 (22) 180 (30), 167 (27), 105 (24).

(*Z*)-1-Фенилтридец-1-ен-3,5-динииламин (3b). ИК спектр, v, см⁻¹: 3500, 3400, 3100, 3080, 3040, 2970, 2950, 2870, 2250, 2130, 1620, 1500, 1455. Спектр ЯМР ¹H (CDCl₃), δ, м. д. (*J*, Гц): 0.89 (3H, т, *J* = 7, CH₃); 1.22–1.64 (10H, м, (CH₂)₅); 2.37 (2H, т, *J* = 7, ≡CCH₂); 4.57 (2H, с, NH₂); 4.68 (1H, с, =CH); 7.39 (1H, т, *J* = 7, C_{Ph}-H); 7.49 (2H, д, *J* = 7, C_{Ph}-H); 7.68 (2H, т, *J* = 7, C_{Ph}-H). Спектр ЯМР ¹³С (CDCl₃), δ, м. д. (*J*, Гц): 14.5; 20.2 (≡CCH₂); 23.0; 23.1; 28.9; 29.2; 32.1; 66.2, 74.3 (C_{sp}); 77.7 (=CH); 80.3, 85.9 (C_{sp}); 125.8, 129.0, 129.5, 137.2 (C_{Ph}); 157.2 (C–NH₂). Масс-спектр, *m*/*z* (*I*_{отн}, %): 265 [M]⁺ (100), 180 (92), 152 (89), 143 (15), 104 (94), 77 (12).

(Z)-1-(4-Метоксифенил)ундец-1-ен-3,5-дииниламин (3с). Спектр ЯМР ¹Н (CDCl₃), δ, м. д. (*J*, Гц): 0.93 (3H, т, *J* = 7, CH₃); 1.25–1.42 (6H, м, (CH₂)₃); 2.31 (2H, т, *J* = 7, ≡CCH₂); 3.83 (3H, с, OCH₃); 4.53 (2H, с, NH₂); 4.60 (1H, с, =CH); 6.89 (2H, д, *J* = 9, C_{Ph}–H); 7.44 (2H, д, *J* = 9, C_{Ph}–H). Спектр ЯМР ¹³С (CDCl₃), δ, м. д.: 14.4; 20.2 (≡C<u>C</u>H₂); 22.6; 28.3; 31.5; 55.8 (CH₃O); 63.6, 66.3 (C_{sp}); 75.9 (≡CH); 79.9, 85.8 (C_{sp}); 114.4, 127.2, 128.9 (C_{Ph}); 157.0 (C–NH₂); 161.1 (C_{Ph}).

3-(Нона-1,3-диинил)-4-(окт-2-инил)-2,6-дифенилпиридин (4а) получают из 0.24 г (1 ммоль) соединения 3a при интенсивном перемешивании в 10 мл Et₂O при добавлении 1 капли концентрированной соляной кислоты. Через 15 мин органический слой отделяют, промывают водой, водные слои экстрагируют 1 × 5 мл эфира. Объединенные органические слои сушат MgSO₄. После удаления растворителя и очистки методом ПТСХ (элюент: гексан-Еt₂O, 4 : 1) получают 0.23 г (98%). Маслообразная жидкость. *R*_f 0.89 (гексан-Еt₂O, 4 : 1). ИК спектр, v, см⁻¹: 3110, 3080, 3050, 2970, 2940, 2870, 2245, 1590, 1500, 1455, 1430. Спектр ЯМР ¹Н (CDCl₃), б, м. д. (*J*, Гц): 0.94 (3H, т, *J* = 7, CH₃); 0.96 (3H, т, *J* = 7, CH₃); 1.38–1.63 (12H, M, 2(CH₂)₃); 2.34 (2H, T, *J* = 6, =CCH₂); 2.38 (2H, T, *J* = 7, =CC=CCH₂); 3.89 $(2H, c, CH_2C=); 7.41-7.56 (6H, M, H-C_{Ph}); 8.06 (2H, d, J=6, H-C_{Ph}), 8.16 (2H, d, J=6, H-C_{Ph});$ 8.08 (1H, с, H–С_{Ру}). Спектр ЯМР ¹³С (CDCl₃), δ, м. д.: 14.3; 14.4; 19.3, 20.4 (2 ≡С<u>С</u>H₂); 22.6 (<u>C</u>H₂C≡); 22.7; 28.6; 29.1; 29.2; 31.5; 31.8; 65.5, 70.7, 74.3, 77.4, 85.3, 88.3 (C_{sp}); 114.7 (C_{Pv}); 117.7 (C_{Pv}-H); 127.4, 128.3, 129.2, 129.4, 129.8, 129.9, 138.8, 140.0 (C_{Ph}); 152.5; 155.6; 160.9 (С_{Ру}). Спектр ¹³С {¹H} (75 МГц, CDCl₃), б, м. д. (*J*, Гц): 117.7 (д, *J* = 169, С_{Ру-Н}). Массспектр, *m/z* (*I*_{отн}, %): 458 [M+1]⁺ (100), 457 [M]⁺ (20), 414 (15), 400 (20), 358 (40), 344 (43), 330 (56), 136 (53), 103 (77), 77 (55). Найдено, %: С 88.74; Н 7.95; N 2.52. С₃₄Н₃₅N. Вычислено, %: С 89.23; Н 7.71; N 3.06.

4-(Дец-2-инил)-3-(ундека-1,3-диинил)-2,6-дифенилпиридин (4b) получают из 0.81 г (5 ммоль) додека-5,7-диина **(1b)** [10] и 0.515 г (5 ммоль) бензонитрила. Выделяют методом ПТСХ (элюирующая система гексан–CH₂Cl₂, 1 : 1) 0.94 г (74%). Маслообразная жидкость. *R_f* 0.89 (гексан–CH₂Cl₂, 1 : 1). Также выделяют 0.12 г (9%) фракции, содержащей **3b**, *R_f* 0.86 (гексан–CH₂Cl₂, 1 : 1). ИК спектр, v, см⁻¹: 3080, 3030, 2960, 2850, 2240, 1570, 1580, 1470. Спектр ЯМР ¹Н (CDCl₃), δ , м. д. (*J*, Гц): 0.89 (3H, т, *J* = 7, CH₃); 0.92 (3H, т, *J* = 7, CH₃); 1.20–1.65 (20H, м, 2(CH₂)₅); 2.31 (2H, т, *J* = 6, \equiv CCH₂); 2.39 (2H, т, *J* = 7, \equiv CC= \equiv CCH₂); 3.81 (2H, с, CH₂C=); 7.40–7.55 (6H, м, H–C_{Ph}); 7.95 (2H, д, *J* = 6, H–C_{Ph}); 8.14 (2H, д, *J* = 6, H–C_{Ph}); 8.05 (1H, с, H–C_{Py}). Спектр ЯМР ¹³С (CDCl₃), δ , м. д.: 13.9; 14.2; 19.0, 19.8 (2 \equiv C<u>C</u>H₂); 22.8 (<u>C</u>H₂C=); 22.9; 24.9; 25.0; 28.3; 28.4; 29.0; 29.3; 29.5; 32.0; 32.1; 65.3, 70.6, 84.4, 85.2, 85.4, 88.7 (С_{*sp*}); 114.7 (С_{*Py*}): Пт.6 (<u>С</u>_{*Py*}–H); 127.4, 128.3, 129.2, 129.4, 129.8, 129.9, 138.8, 140.0 (С_{Ph}); 152.5, 155.6, 160.9 (С_{*Py*}). Спектр ¹³С {¹H}</sup> (CDCl₃), δ , м. д. (*J*, Гц): 117.3 (*д*, *J* = 169, С_{*Py*–H}). Масс-спектр. *m/z* (*I*_{отн}, %): 513 [M]⁺ (31), 456 (12), 442 (22), 428 (41), 414 (53), 358 (47), 344 (66), 330 (100), 318 (37), 280 (16), 264 (18), 252 (18), 239 (16), 105 (22), 91 (38). Найдено, %: С 88.84; H 8.32; N 2.89. C₃₈H₄₃N. Вычислено, %: С 88.84; H 8.44; N 2.73.

2,6-Бис(4-метоксифенил)-3-(нона-1,3-диннил)-4-(окт-2-инил)пиридин (4с) получают из 0.67 г (5 ммоль) соединения **1а** и 0.67 г (5 ммоль) 4-метоксибензонитрила. Выделяют методом колоночной хроматографии (градиентное элюирование: гексан–гексан:Et₂O, 7:1). Выход 1.29 г (90%). Т. пл. 61–63 °C (из гексана), R_f 0.77 (гексан–Et₂O, 3 : 1). Также выделяют 0.09 г фракции, содержащей, по данным спектров ЯМР, соединения **4c** и **3c** в соотношении 5 : 2. ИК спектр, v, см⁻¹: 3070, 3000, 2955, 2870, 2230, 1730, 1600, 1400, 1370, 1340, 1290, 1230, 1100, 1020, 810. Спектр ЯМР ¹H (CDCl₃), δ , м. д. (*J*, Гц): 0.95 (3H, т, *J* = 7, CH₃); 0.97 (3H, т, *J* = 7, CH₃); 1.30–1.63 (12H, м, 2(CH₂)₃); 2.31 (2H, т, *J* = 7, ≡CCH₂); 2.39 (2H, т, *J* = 7, ≡CC=CCH₂); 3.86 (2H, с, CH₂C≡); 3.89 (3H, с, C_{Ph}–OCH₃); 3.91 (3H, с, C_{Ph}–OCH₃); 7.00 (2H, д, *J* = 9, C_{Ph}–H); 7.03 (2H, д, *J* = 9, C_{Ph}–H); 7.96 (1H, с, H–C_{Py}); 8.07 (2H, д,

J = 9, C_{Ph} -H); 8.12 (2H, д, J = 9, C_{Ph} -H). Спектр ЯМР ¹³С (CDCl₃), δ , м. д.: 14.3; 14.4; 19.3, 20.2 (2 =C<u>C</u>H₂); 22.6; 22.7 (<u>C</u>H₂C=); 25.0; 28.8; 29.1; 31.6; 31.8; 55.7 (2CH₃O); 65.6, 71.3, 75.9, 77.9, 85.1, 88.0 (C_{sp}); 113.3 (C_{Py}); 113.7, 114.5 (C_{Ph}); 116.4 (C_{Py-H}); 131.3, 131.7, 131.9, 132.8 (C_{Ph}); 152.2 (C_{Py}); 155.3, 160.3 (C_{Ph}); 160.7, 161.2 (C_{Py}). Масс-спектр, m/z (I_{OTH} , %): 518 [M+1]⁺ (88), 517 [M]⁺ (38), 488 (10), 474 (24), 460 (38), 446 (64), 432 (18), 304 (52), 105 (100), 91 (14), 77 (44). Найдено, %: С 83.17; Н 8.05; N 2.72. $C_{36}H_{39}NO_2$. Вычислено, %: С 83.52; H 7.59; N 2.71.

4-(Дец-2-инил)-2,6-бис(4-толил)-3-(ундека-1,3-диинил)пиридин (4d) получают из 0.81 г (5 ммоль) соединения 1b и 0.587 г (5 ммоль) 4-метилбензонитрила. Методом ПТСХ (элюирующая система гексан–Et₂O, 4 : 1) выделяют 0.79 г пиридина 4d (69%) и 0.17 г 1,3-додекадиина (21%). Маслообразная жидкость. R_f 0.74 (гексан–Et₂O, 4 : 1). ИК спектр, v, см⁻¹: 3090, 3070, 3045, 2965, 2930, 2855, 2235, 2210, 1560, 1520, 1445, 1420. Спектр ЯМР ¹H (CD₂Cl₂), δ , м. д. (*J*, Гц): 0.89 (3H, т, *J* = 7, CH₃); 0.89 (3H, т, *J* = 7, CH₃); 1.20–1.67 (10H, м, (CH₂)₅); 2.34 (2H, т, *J* = 7, \equiv CCH₂); 2.39 (2H, т, *J* = 7, \equiv CC=CCH₂); 2.42 (3H, с, C_{Ph}-CH₃); 2.45 (3H, с, C_{Ph}-CH₃); 3.82 (2H, с, CH₂C≡); 7.31 (4H, м, C_{Ph}-H); 7.88 (2H, д, *J* = 9, C_{Ph}-H); 8.03 (2H, д, *J* = 9, C_{Ph}-H); 8.01 (1H, с, H–C_{Py}). Спектр ЯМР ¹³C (CD₂Cl₂), δ , м. д.: 14.3; 14.4; 19.1, 19.9 (2 \equiv C<u>C</u>H₂); 21.2 (<u>C</u>H₂C≡); 21.3; 22.9; 23.0; 24.8; 28.5; 29.0; 29.1, 29.2; 29.3, 29.5 (2CH₃); 32.0; 32.1; 65.0, 70.8, 75.6, 83.2, 84.0, 85.1 (C_{sp}); 110.5 (C_{Py}); 116.3 (C_{Py-H}); 127.3, 128.9, 129.6, 129.8, 137.3, 139.4, 140.1 (C_{Ph}); 152.4 (C_{Ar}); 155.6 (C_{Ar}); 156.9, 158.2 (C_{Py}). Масс-спектр. *m/z* (I_{OTR} , %) 541 [M]⁺ (11), 111 (15), 85 (33), 69 (100), 57 (77), 55 (40).

2,6-Бис(3,4-диметоксифенил)-3-(нона-1,3-диинил)-4-(окт-2-инил)пиридин (4е) получают из 0.67 г (5 ммоль) соединения **1а** и 0.815 г (5 ммоль) 3,4-диметоксибензонитрила. Методом колоночной хроматографии (градиентное элюирование: гексан–гексан:Et₂O, 3:1) выделяют 0.704 г (59%) соединения **4е**, также 0.11 г (17%) 1,3-декадиина. Желтоватое кристаллическое вещество, т. пл. 61–63 °C (из хлороформа). R_f 0.69 (гексан–Et₂O, 3:1). ИК спектр, v, см⁻¹: 3025, 2980, 2955, 2890, 2875, 2855, 2250, 1610, 1515, 1470, 1425. Спектр ЯМР ¹H (CDCl₃), δ , м. д. (*J*, Гц): 0.91 (6H, т. *J* = 7, 2CH₃); 1.25–1.68 (12H, м, 2(CH₂)₃); 2.30–2.39 (4H, м, 2 =CCH₂); 3.83 (2H, с, CH₂C=); 3.91–4.21 (12H, 4OCH₃); 6.90–7.06 (2H, м, C_{Ph}–H); 7.64–7.84 (4H, м, H–C_{Ph}); 7.94 (1H, с, C_{Py}–H). Спектр ЯМР ¹³C (CDCl₃), δ , м. д.: 14.3; 14.4; 19.3, 20.1 (2 =C<u>C</u>H₂); 22.5; 22.7 (<u>C</u>H₂C=); 25.0; 28.3; 29.2; 31.4; 31.6; 5 6.26 (2 CH₃O)₂, 56.30, 56.34 (2CH₃O); 65.5, 71.3, 75.8, 85.2, 85.65, 88.3 (C_{sp}); 110.6, 111.0, 111.4 (C_{Ph}–H); 113.1 (C_{Py}); 113.3 (C_{Ph}–H); 116.6 (C_{Py}–H); 120.3, 120.8 (C_{Ph}–H); 132.1, 132.7, 148.5, 149.6, 150.2, 150.8 (C_{Ph}); 152.2, 155.2, 160.0 (C_{Py}). Масс-спектр. *m/z* (*I*_{ortн}, %): 577 [M]⁺ (100), 520 (31), 506 (49), 490 (46), 476 (36), 464 (49), 434 (57). Найдено, %: C 78.68; H 7.66; N 2.26. C₃₈H₄₃NO₄. Вычислено, %: C 79.00; H 7.50; N 2.42.

4-(Дец-2-инил)-3-(ундека-1,3-диинил)-2,6-бис(4-хлорфенил)пиридин (4f) получают из 0.81 г (5 ммоль) соединения **1b** и 0.685 г (5 ммоль) 4-хлорбензонитрила. Выделяют методом колоночной хроматографии (градиентное элюирование: гексан–гексан:Et₂O, 3:1). Выход 0.189 г (13%). Маслообразная жидкость. R_f 0.75 (гексан–Et₂O, 3:1). ИК спектр, v, см⁻¹: 3010, 2950, 2920, 2850, 2220, 1550, 1490, 1425, 1400. Спектр ЯМР ¹H (CD₂Cl₂), δ , м. д. (*J*, Гц): 0.90 (6H, м, 2CH₃); 1.27–1.38 (16H, м, 2(CH₂)₄); 1.58–1.62 (4H, м, (CH₂)₂); 2.30–2.42 (4H, м, 2 = CCH₂); 3.86 (2H, с, CH₂C=); 7.41–7.52 (4H, м, C_{Ph}–H); 7.96–8.14 (5H, м, C_{Ar}–H). Спектр ЯМР ¹³С (CD₂Cl₂), δ , м. д.: 14.3; 14.5; 19.3, 20.2 (2 = C<u>C</u>H₂); 23.0 (<u>C</u>H₂C=); 25.1; 28.5; 29.2; 29.31; 29.35; 29.38; 29.4; 30.1; 32.1; 32.2; 65.2, 70.2, 75.4, 85.5, 86.2, 88.9 (C_{sp}); 115.0 (C_{Py}); 117.7 (C_{Py–H}); 128.6, 128.8, 129.3, 131.2, 135.5, 136.0, 137.4, 138.2 (C_{Ph}); 152.8, 154.6, 159.7 (C_{Py}). Масс-спектр, *m/z* (*I*_{отн}, %): 583 [M+2]⁺ (63), 581 [M]⁺ (94), 546 (31), 524 (19), 510 (38), 486 (44), 484 (63), 482 (63), 470 (31), 462 (31), 440 (56), 426 (100), 412 (75), 398 (99), 388 (53), 378 (75), 364 (61).

2,2-Диметил-1-фенилундека-3,5-диин-1-он (5а) получают из 0.67 г (5 ммоль) соединения **1a** и 0.515 г (5 ммоль) бензонитрила при добавлении 2 мл MeI (25 ммоль,) в 8 мл диэтилового эфира по окончании реакции с бензонитрилом (отсутствие углеводорода по данным TCX). Выделяют методом ПТСХ (гексан–Et₂O, 4:1) 0.25 г (19%). Маслообразная жидкость. R_f 0.62 (гексан–Et₂O, 9:2). Спектр ЯМР ¹H (CDCl₃), δ , м. д. (*J*, Гц): 0.91 (3H, т, *J* = 7, CH₃); 1.22–1.58 (6H, м, (CH₂)₃); 1.59 (6H, с, 2CH₃); 2.27 (2H, т, *J* = 7, \equiv CCH₂); 7.46 (2H, т, *J* = 7, CP₆–H); 7.56 (1H, д, *J* = 7, CP₆–H); 8.24 (2H, д, *J* = 7, CP₆–H). Спектр ЯМР ¹³С (CDCl₃), δ , м. д.: 14.3; 19.7 (\equiv CCH₂); 22.9; 27.9; 28.3; 31.4; 42.3 (2CH₃); 65.1, 70.5, 79.5, 81.6 (C_{sp}); 128.6, 130.2, 133.1, 135.2 (C_{ph}); 198.4 (C=O).

2,2-Диметил-1-фенилтридека-3,5-диин-1-он (5b) получают из 0.81 г (5 ммоль) соединения **1b** и 0.515 г (5 моль) бензонитрила при добавлении 2 мл MeI (25 ммоль) в 8 мл диэтилового эфира по окончании реакции с бензонитрилом (отсутствие углеводорода по данным TCX). Выделяют методом ПТСХ (гексан–Et₂O, 4:1) 0.53 г (36%). Маслообразная жидкость. R_f 0.67 (гексан–Et₂O, 4:1). ИК спектр, v, см⁻¹: 3100, 3070, 3010, 2855, 2240, 1680 ил, 1600, 1470, 1450. Спектр ЯМР ¹H (CDCl₃), δ , м. д. (*J*, Гц): 0.89 (3H, т, *J* = 7, CH₃); 1.21–1.58 (10H, м, (CH₂)₅); 1.56 (6H, с, 2CH₃); 2.28 (2H, т, *J* = 7, \equiv CCH₂); 7.52 (2H, т, *J* = 7, C_{Ph} —H); 7.62 (1H, д, *J* = 7, C_{Ph} —H); 8.14 (2H, д, *J* = 7, C_{Ph} —H). Спектр ЯМР ¹³С (CDCl₃), δ , м. д.: 14.2; 19.5 (\equiv CCH₂); 22.9; 27.9; 28.5; 29.1; 30.0; 32.0; 42.2 (2CH₃); 65.3, 70.6, 79.4, 81.6 (C_{sp}); 128.6, 129.9, 133.1, 135.3 (C_{Ph}); 197.5 (C=O). Масс-спектр, *m/z* ($I_{отн}$, %): 294 [M]⁺ (100), 279 (6), 251 (6), 237 (9), 223 (7), 105 (70). Найдено (для 2,4-динитрофенилгидразона, т. пл. 71–73 °C), %: С 68.52; H 6.30; N 11.45. $C_{27}H_{30}A_4O_4$. Вычислено, %: C 68.34; H 6.37; N 11.81.

3-(Нона-1,3-диинил)-4-(нон-2-инил)-2,6-(дифенил)пиридин (6). Смесь 42 мг (0.18 ммоль) 1-фенилдодека-3,5-диинил-1-она [8] и 40 мг (0.17 ммоль) ендииниламина **3a** в 1 мл бензола перемешивают при нагревании (78 °C) в течение 72 ч с 10 мг кислого прокаленного Al₂O₃ и 10 мг силикагеля. После удаления бензола продукт выделялют методом ПТСХ (гексан–Et₂O, 4:1). Получают 34 мг (48%). Маслообразная жидкость. R_f 0.88 (гексан–Et₂O, 4:1). ИК спектр, v, см⁻¹: 3050, 2970, 2900, 2870, 2200, 1590, 1490. Спектр ЯМР ¹H (CDCl₃), δ , м. д. (*J*, Гц): 0.95 (6H, м, CH₃); 1.28–1.61 (14H, м, (CH₂)₇); 2.28–2.48 (4H, м, 2 =CCH₂); 3.89 (2H, с, CH₂C=); 7.41–7.60 (5H, м, C_{Ph}–H); 8.03–8.12 (3H, м, C_{Ph}–H); 8.13–8.25 (2H, м, C_{Ar}–H). Спектр ЯМР ¹³С (CDCl₃), δ , м. д.: 14.3; 14.4; 19.3, 20.2 (2 =C<u>C</u>H₂); 22.5 [<u>C</u>H₂C=]; 22.6; 22.7; 25.1; 28.3; 29.1; 31.5; 31.6; 65.5, 70.7, 75.7, 85.30, 85.6, 88.3 (C_{sp}); 114.8; (C_{Py}); 117.7 (C_{Py}–H); 127.6, 128.3, 129.1, 129.3, 129.8, 129.9, 139.2, 140.0 (C_{Ph}); 152.4, 155.8, 160.9 (C_{Py}). Массспектр, *m/z* (I_{OTH} , %): 472 [M+1]⁺ (18), 471 (100), 429 (11), 401 (14), 373 (10), 359 (33), 345 (45), 105 (21), 91 (48).

N-Фенил-N'-[(Z)-1-фенилундец-1-ен-3,5-диннил]карбамид (7) получают при взаимодействии 0.237 г (1 ммоль) соединения **За** и 0.357 г (3 ммоль) фенилизоцианата при нагревании до 40 °С в течение 36 ч в ацетонитриле. Выделяют 110 мг (31%) карбамида 7 и 98 мг (43%) пиридина **4а**. ИК спектр, v, см⁻¹: 3430, 3325, 3055, 2955, 2925, 2850, 2210, 1650, 1570, 1460. Спектр ЯМР ¹Н (CDCl₃), δ , м. д. (*J*, Гц): 0.92 (3H, т, *J* = 7, CH₃); 1.24–1.63 (6H, м, (CH₂)₃); 2.36 (2H, т, *J* = 7, ≡CCH₂); 5.26 (1H, с, =CH); 6.62 (1H, с, NH); 7.02–7.12 (2H, м, C_{Ph}–H); 7.18–7.28 (3H, м, C_{Ph}–H); 7.37–7.44 (3H, м, C_{Ph}–H; NH); 7.47–7.54 (2H, м, H –C_{Ph}). Спектр ЯМР ¹³С (CDCl₃), δ , м. д.: 14.3; 20.1 (<u>C</u>H₂C≡); 22.6; 28.3; 32.4; 71.2; 77.6; 82.9; 88.1 (C_{sp}); 95.1 (=CH); 120.8; 124.5; 127.1; 127.9; 129.4; 130.4 (C_{Ph}–H); 135.9, 138.0 (C_{Ph}); 149.7 (C–NH); 152.4 (C=O). Масс-спектр, *m/z* (*I*_{отн}, %): 356 [M]⁺ (100), 237 (75), 208 (37), 194 (37), 180 (50), 119 (87), 104 (68), 103 (68), 93 (100), 77 (100).

11-Амино-2-метил-11-фенилундец-10-ен-6,8-диин-2-ол (8) получают из 0.82 г (5 ммоль) 2-метилдека-3,5-диин-2-ола [11] и 0.515 г (5 ммоль) бензонитрила. Перед добавлением нитрила реакционную смесь разбавляют 15 мл ТГФ. Методом колоночной хроматографии (элюирующая система гексан-гексан:Et₂O, 1:2) выделяют 0.39 г (29%) соединения **8**. Маслообразная жидкость R_f 0.50 (гексан-Et₂O, 1 : 1). Также из реакционной смеси выделяют 0.066 г (5%) соединения **9** – продукта димеризации енамина. ИК спектр, v, см⁻¹: 3635, 3495 ш, 3495, 3390, 3060, 2980, 2920, 2875, 2210, 2180, 1950, 1870, 1790, 1770, 1610, 1580, 1410. Спектр ЯМР ¹Н (CDCl₃), δ , м. д. (*J*, Гц): 1.25 (6H, с, 2CH₃); 1.52–1.71 (4H, м, (CH₂)₂); 2.42 (2H, т, *J* = 7, =CCH₂); 2.40 (1H, с, OH); 4.61 (2H, с, NH₂); 4.65 (1H, с, =CH); 7.36– 7.39 (3H, м, С_{Ph}-H); 7.49 (2H, д, *J* = 6, С_{Ph}-H). Спектр ЯМР ¹³С (CDCl₃), δ , м. д.: 20.7 (=C<u>C</u>H₂); 23.8; 29.7 (2CH₃); 43.4; 66.6 (*C_{sp}*); 71.3 (С-OH); 74.6 (*C_{sp}*); 76.9 (=CH); 80.2, 85.5 (*C_{sp}*); 125.9, 129.1, 130.0, 137.1 (*C_{ph}*); 157.4 (С–NH₂). Масс-спектр, *m/z* (*I*_{отн}, %): 268 [M+1]⁺ (23), 267 [M]⁺ (100), 193 (100), 104 (30).

3-(8-Гидрокси-8-метилнона-1,3-диинил)-4-(7-гидрокси-7-метилокт-2-инил)-2,6-дифенилпиридин (9). Маслообразная жидкость. R_f 0.27 (гексан–Еt₂O, 1:1). ИК спектр, v, см⁻¹: 3625, 3550–3275 ш, 2970, 2940, 2880, 2245, 1750, 1680, 1585, 1450. Спектр ЯМР ¹H (CDCl₃), δ , м. д. (*J*, Гц): 1.26 (12H, с, 4CH₃); 0.96–1.72 (8H, м, 2(CH₂)₂); 2.36 (2H, т, *J* = 7, \equiv CCH₂), 2.42 (2H, т, *J* = 7, \equiv CCH₂); 2.2–2.4 (2H, уш, 2OH); 3.88 (2H, с, CH₂C \equiv); 7.38–7.53 (6H, м, C_{Ph}–H); 8.05 (2H, д. *J* = 7, C_{Ph}–H); 8.15 (2H, д. *J* = 7, C_{Ph}–H); 8.04 (1H, с, C_{Py}–H). Спектр ЯМР ¹³С (CDCl₃), δ , м. д. (*J*, Гц): 19.8 (\equiv C<u>C</u>H₂); 20.6 (\equiv C<u>C</u>H₂); 23.6; 24.3; 25.1 (<u>C</u>H₂C=); 29.7 (4CH₃); 43.3; 43.6; 71.2 (2C–OH); 65.8, 70.9, 76.1, 84.8, 85.4, 87.8 (C_{*sp*}); 114.7 (C_{*Py*}); 117.8 (C_{*Py*-H}); 127.6, 129.1, 129.3, 129.4, 129.8, 132.5, 139.1, 140.0 (C_{*Ph*}); 152.3, 155.9, 161.0 (C_{*Py*}). Масс-спектр, *m/z* ($I_{\text{отн}}$, %): 517 [M]⁺ (43), 515 [M–2]⁺ (36), 484 (41), 430 (57), 370 (60), 356 (100), 342 (67), 105 (78).

Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (проект № 02-03-32229).

СПИСОК ЛИТЕРАТУРЫ

- 1. Т. Джилкрест, Химия гетероциклических соединений, Мир, Москва, 1996.
- 2. I. A. Maretina, B. A. Trofimov, Adv. Heterocycl. Chem., 82, 1572 (2002).
- 3. T. Metler, A. Uchida, Tetrahedron, 24, 4285 (1968).
- 4. R. Faust, Ch. Weber, Tetrahedron, 53, 1465 (1997).
- 5. S. Saito, N. Uchiyama, V. Gevorgyan, Y. Yamamoto, J. Org. Chem., 65, 4338 (2000).
- 6. И. А. Балова, С. Н. Морозкина, *XTC*, 933 (2000).
- 7. И. А. Балова, Л. А. Ремизова, И. А. Фаворская, *ЖОрХ*, 22, 2459 (1986).
- И. А. Балова, С. Н. Морозкина, С. В. Воскресенский, Л. А. Ремизова, *ЖОрХ*, 36, 1466 (2000).
- 9. И. А. Балова, И. В. Захарова, Л. А. Ремизова, ЖОрХ, 29, 1439 (1993).
- 10. A. S. Hey, J. Org. Chem., 27, 3320 (1962).
- 11. W. Chodkiewiz, P. Cadiot, C. r., 239, 885 (1954).

Санкт-Петербургский государственный университет, химический факультет, Санкт-Петербург 198504, Россия e-mail: irinabalova@yandex.ru Поступило в редакцию 25.12.2005