С. Н. Михайличенко, А. А. Чеснюк, Л. Д. Конюшкин, С. И. Фирганг^а, В. Н. Заплишный

ПРОИЗВОДНЫЕ *сим*-ТРИАЗИНА 7*. ГИДРОЛИЗ И ЦИКЛИЗАЦИЯ МОНОНИТРИЛОВ РЯДА 1,3,5-ТРИАЗИНА

Исследованы пути щелочного и кислотного гидролиза мононитрилов *сим*-триазинового ряда в водной или водно-спиртовой среде. Показано, что в зависимости от pH среды, концентрации реагентов и температуры гидролиз приводит к образованию амидов, оксоили алкоксипроизводных 1,3,5-триазина или к неустойчивым монокарбоновым кислотам *сим*-триазинового ряда, последующее разложение которых завершается образованием замещенных производных *сим*-триазина. Реакцией мононитрилов с азидом натрия синтезирован ряд новых тетразолилтриазинов и изучено их алкилирование.

Ключевые слова: 2-карбамоил*-сим*-триазины, 2-[тетразол-5-ил]*-сим*-триазины, 6H*-сим*-триазины, 2-циано*-сим*-триазины.

Высокая биологическая активность и широкий спектр возможных областей применения производных *сим*-триазина [2–4] обусловливают повышенный к ним интерес. Ранее [5] получен ряд новых 2-циано-4,6дизамещенных производных 1,3,5-триазина 1 и исследованы некоторые их превращения. С учетом доступности исходных соединений и простоты синтеза таких мононитрилов представлялось интересным изучить пути их превращений при гидролизе цианогруппы в кислотной и щелочной средах, а также использовать эти мононитрилы в качестве полупродуктов в реакциях циклизации с азидом натрия для получения сочлененных тетразолотриазинов.

С этой целью мы исследовали реакции щелочного и кислотного гидролиза мононитрилов **1а–** ј в согласии со схемой 1.

Оказалось, что в результате кипячения исходного нитрила **1a** с раствором двукратного избытка NaOH или KOH в 50% водных спиртах $C_nH_{2n+1}OH$ (n = 1-4) вместо ожидаемых солей *сим*-триазин-4-карбоновой кислоты образовались 4-алкоксипроизводные **2a–d** (выход ~85%), все константы и спектры которых идентичны характеристикам соединений, полученных алкилированием 2-оксо[1,2-дигидро]-4,6-дизамещенных 1,3,5-триазинов и описанных нами ранее [6].

По-видимому, в условиях щелочного гидролиза в водно-спиртовой среде связь С-С≡N в положении 2 *сим*-триазинового цикла становится столь "рыхлой", что цианогруппа такого мононитрила ведет себя как псевдогалогенид и способна элиминироваться под воздействием таких активных нуклеофилов, как спирты.

^{*} Сообщение 6 см. [1].

Схема 1

1, 3, 4 а $R = R^1$ = морфолино, **b** $R = R^1$ = пиперидино, **c** R = OEt, R^1 = пиперидино; **d** R = OMe, R^1 = морфолино; **e** R = морфолино, R^1 = пиперидино; **f** R = NHEt, R^1 = пиперидино; **g** R = NHEt, R^1 = морфолино; **h** R = OMe, R^1 = пиперидино; **i** $R = R^1 = NEt_2$; **j** R = OMe, $R^1 = NEt_2$; **5** $R = R^1$ = морфолино; **6** R = морфолино; **2 a**–**d** $R = R^1$ = морфолино; **a** R^2 = Me, **b** R^2 = Et, **c** R^2 = Pr, **d** R^2 = Bu

Оказалось, что характер процессов солянокислого гидролиза нитрилов **1** зависит как от концентрации кислоты, так и от температуры реакции. Так, даже простое растворение этих нитрилов в 15% соляной кислоте при комнатной температуре приводит к образованию 2-оксопроизводных **3а–j**, идентичных по свойствам описанным ранее [6]. В то же время уже использование конц. HCl также при комнатной температуре позволило получить с выходами 63–75% 2-карбамоилзамещенные **4а–j** (табл. 1), спектральные характеристики которых приведены в табл. 2. Наконец, нагревание в течение 1–2 ч раствора нитрила **1а** в конц. HCl при 80–95 °C привело к образованию 2,4-бис(1-морфолил)-*сим*-триазина **5**, вероятно, в результате декарбоксилирования неустойчивой промежуточной кислоты. Кислотный гидролиз исходного нитрила **1d**, содержащего метоксигруппу у триазинового цикла, в аналогичных условиях приводит к *сим*-триазинону **6**.

Полученные амиды **4a**–**j** и соединения **5**, **6** представляют собой белые, мелкокристаллические порошки, более высокоплавкие и с худшей растворимостью в органических растворителях, чем у исходных нитрилов **1a**–**j**.

Состав и строение продуктов гидролиза подтверждены совокупностью данных элементного анализа, ИК, ЯМР ¹Н спектров и масс-спектроскопии.

Сое- дине-	Брутто-	<u>Н</u> Вы	<u>Іайдено, %</u> ычислено, %		Т. пл., °С	Мол. ион, <i>m/z</i>	Вы- ход,
ние	формула	С	Н	N		$(I_{\text{oth}}, \%)$	%
4a	C ₁₂ H ₁₈ N ₆ O ₃	<u>47.10</u> 48.97	<u>6.27</u> 6.16	<u>28.77</u> 28.56	214–215	294 (45)	73
4b	$C_{14}H_{22}N_6O$	<u>58.13</u> 57.90	<u>7.90</u> 7.64	<u>29.05</u> 28.95	106–108	290 (57)	70
4c	$C_{11}H_{17}N_5O_2$	<u>52.74</u> 52.57	<u>6.98</u> 6.82	$\frac{28.00}{27.87}$	165–166	251 (58)	68
4d	$C_9H_{13}N_5O_3$	<u>45.35</u> 45.18	<u>5.62</u> 5.47	<u>29.44</u> 29.28	207–208	239 (28)	76
4 e	$C_{13}H_{20}N_6O_2$	<u>53.62</u> 53.41	<u>7.01</u> 6.89	<u>28.89</u> 28.75	208–209	292 (72)	65
4f	$C_{11}H_{18}N_6O$	<u>52.90</u> 52.78	<u>7.38</u> 7.25	<u>33.75</u> 33.58	265–266	250 (58)	63
4g	$C_{10}H_{16}N_6O_2$	<u>47.74</u> 47.61	<u>6.55</u> 6.39	<u>33.50</u> 33.32	169–170	252 (42)	72
4h	$C_{10}H_{15}N_5O_2$	<u>50.79</u> 50.62	<u>6.50</u> 6.37	<u>29.66</u> 29.52	170–171	237 (77)	67
4 i	$C_{12}H_{22}N_6O$	<u>54.11</u> 54.62	<u>8.33</u> 8.05	<u>31.56</u> 31.21	187–188	266 (75)	75
4j	$C_9H_{15}N_5O_2$	<u>48.13</u> 47.99	<u>6.88</u> 6.71	<u>31.26</u> 31.09	157–158	225 (63)	69
5	$C_{11}H_{17}N_5O_2$	<u>52.79</u> 52.57	<u>7.06</u> 6.82	$\frac{28.00}{27.87}$	167–168	251 (96)	40
6	$C_7H_{10}N_4O_2$	<u>46.30</u> 46.15	<u>5.78</u> 5.53	<u>30.94</u> 30.76	>190 (возг.)	182 (78)	35
7a	$C_{12}H_{17}N_9O_2$	<u>45.00</u> 45.13	<u>5.52</u> 5.37	39.31 39.48	269–270	319 (92)	61
7b	$C_{12}H_{21}N_9$	<u>49.35</u> 49.46	<u>7.41</u> 7.26	$\frac{43.10}{43.27}$	189–190	291 (78)	58
7c	$C_9H_{12}N_8O_2$	$\frac{40.75}{40.90}$	<u>4.72</u> 4.58	<u>42.28</u> 42.41	>210 (возг.)	264 (44)	49
7d	$C_9H_{14}N_8O$	<u>43.00</u> 43.19	<u>5.81</u> 5.64	<u>44.55</u> 44.78	233–234	250 700)	55
8a	$C_{16}H_{23}N_9O_4$	<u>47.26</u> 47.40	<u>5.87</u> 5.72	<u>30.96</u> 31.10	199–200	405 (51)	53
8b	$C_{13}H_{19}N_9O_2$	<u>46.70</u> 46.83	<u>5.93</u> 5.74	<u>37.66</u> 37.82	215–216	333 (100)	60
8c	$C_{16}H_{25}N_9O_2$	<u>51.02</u> 51.18	<u>6.93</u> 6.71	<u>33.40</u> 33.58	105–106	375 (75)	57
8d	$C_{16}H_{27}N_9O_2$	<u>50.75</u> 50.91	<u>7.39</u> 7.21	<u>33.58</u> 33.40	93–94	377 (52)	50

Характеристики соединений 4-8

В ИК спектрах соединений **4** присутствуют сильные, узкие полосы поглощения при 1660–1695 см⁻¹, характерные для $v_{C=O}$, и уширенные полосы при 3240–3430 см⁻¹, характерные для v_{NH} . ИК спектры соединений **5а,b** не содержат полос поглощения, характерных для C=O амидной или карбоксильной групп, в то время как спектр соединения **6а** содержит 733

полосы поглощения валентных колебаний карбонильной и групп NH (табл. 2). В спектрах ЯМР ¹Н обнаружены сигналы протонов всех заместителей, окружающих *сим*-триазиновый цикл, количество которых, по данным интегральных кривых, соответствует ожидаемому (табл. 2). Единственной особенностью спектров ЯМР ¹Н соединений **4а–е,h** является проявление сигнала протонов амидной группы в виде двух синглетов при 7.43–7.62 и 7.80–7.94 м. д. Это позволяет предположить закрепление конформации карбамоильной группы за счет образования водородной связи одного из аминных протонов с гетероциклическим атомом азота.

В масс-спектрах всех соединений обнаружены молекулярные ионы с интенсивностью 45–96%, что также подтверждает их строение.

Известно, что цианоарены и -гетарены при взаимодействии с азидом натрия образуют соответствующие производные тетразола, обладающие заметной биологической активностью [7]. В частности, в работе японских авторов [8], кипячением в течение 10 ч циано-*сим*-триазина **1i** в метаноле с азидом натрия с низким (~30%) выходом был получен тетразолил-*сим*-триазин **7b** (схема 2). Заменив метанол на сухой ДМФА и добавив в реакционную массу эквимолярные количества хлорида аммония, нам удалось получить серию тетразолил-*сим*-триазинов **7a–d** с лучшими (49–61%) выходами.

Известно, что 2-замещенные тетразолы могут алкилироваться по положению 1 [9]. Мы осуществили аналогичную реакцию кипячением тетразолил-2-*сим*-триазинов **7а,b** с алкилбромидами и иодидами в EtOH в присутствии EtONa и получили с выходами 50–60% 4,6-дизамещенные 2-(α-алкилтетразол-5-ил)-*сим*-триазины **8а-с** (схема 2).

Схема 2

7a, 8a, c $R = R^1$ = морфолино; 8 a $R^2 = CH_2COOEt$; b $R^2 = Me$; c $R^2 = Bu$; 7b, 8d $R = R^1 = NEt_2$; 8d $R^2 = CH_2COOEt$; 7 c R = OMe, $R^1 = морфолино$; d R = OMe, $R^1 = NEt_2$

Синтезированные тетразолилтриазины 7, 8 представляют собой белые мелкокристаллические вещества, хорошо растворимые в полярных органических растворителях и не растворимые в воде и неполярных органических растворителях. При этом, N-алкилтетразолил-*сим*-триазины

Таблица 2

Со- еди-	ИК спектр, v, см ⁻¹			,	
не- ние	N=N, C=N, C=C сопр.	NH	C=O	Спектр ЯМР 'Н, δ, м. д. (<i>J</i> , Гц)	
1	2	3	4	5	
4 a	1510, 1560	3255, 3410	1698	3.60–3.85 (8Н, м, 2-NCH ₂ , 2-OCH ₂); 7.47, 7.88 (2H, с. с, NH ₂)	
4b	1540, 1570	3260, 3390	1680	1.45–1.70 (12H, м, CH ₂ -пипер.); 3.65–3.85 (8H, м, 4-NCH ₂); 7.45, 7.80 (2H, с. с, NH ₂)	
4c	1500, 1565	3240, 3430	1690	1.30–1.38 (3H, т, <i>J</i> = 6.6, <u>CH</u> ₃ в Et); 1.55–1.77 (6H, м, 3-CH ₂); 3.75–3.90 (4H, м, 2-NCH ₂); 4.35–4.46 (2H, кв, <i>J</i> = 6.6, <u>CH</u> ₂ в Et); 7.55, 7.85 (2H, с. с, NH ₂)	
4d	1500, 1580	3245, 3400	1695	3.64–3.93 (8H, м, 2-NCH ₂ , 2-OCH ₂); 3.95 (3H, с, OCH ₃); 7.63, 7.94 (2H, с. с, NH ₂)	
4 e	1560, 1610	3250, 3385	1690	1.50–1.67 (6H, м, 3-CH ₂); 3.60–3.85 (12H, м, 4-NCH ₂ , 2-OCH ₂); 7.43, 7.80 (2H, с. с, NH ₂)	
4f	4f 1520, 1570		1690	1.12–1.20 (3H, т, <i>J</i> = 4.1, NHCH ₂ <u>CH₃</u>); 1.53–1.73 (6H, м, 3-CH ₂); 3.30–3.45 (2H, кв, <i>J</i> = 4.1, NH <u>CH₂</u> CH ₃); 3.70–3.85 (4H, м, 2-NCH ₂); 7.25–7.52 (3H, м, 1H-NH, 2H-NH ₂)	
4g	1510, 1580	3075, 3250, 3390	1685	1.13–1.20 (3H, т, <i>J</i> = 5.1, NHCH ₂ CH ₃); 3.30–3.46 (2H, кв, <i>J</i> = 5.1, NH <u>CH₂CH₃</u>); 3.60–3.83 (8H, м, 2-NCH ₂ , 2-OCH ₂); 7.30–7.67 (3H, м, 1H-NH, 2H-NH ₂)	
4h	4h 1580, 1610 3260, 1670 3390		1670	1.55–1.72 (6H, м, 3-CH ₂); 3.75–3.90 (4H, м, 2- NCH ₂); 3.93 (3H, с, OCH ₃); 7.62, 7.90 (2H, с. с, NH ₂)	
4i	1540, 1570	3270, 3420	1680	1.13–1.22 (12H, т, <i>J</i> = 8.0, NCH ₂ <u>CH₃</u>); 3.4 3.60 (8H, м, N <u>CH₂</u> CH ₃); 7.45–7.55 (2H, уш. NH ₂)	
4j	1520, 1575	3280, 3400	1675	1.18–1.25 (6H, т, <i>J</i> = 4.5, NCH ₂ <u>CH₃</u>); 3.60–3.75 (4H, кв, <i>J</i> = 4.5, N <u>CH₂</u> CH ₃); 4.29 (3H, с, OCH ₃); 7.10–7.50 (2H, м, NH ₂)	
5	1550, 1600	-	-	3.55–3.80 (16H, м, –NCH ₂ (8H), –OCH ₂ (8H)); 8.12 (1H, с, CH)	
6	1520, 1600	3100	1650	3.60–3.85 (8Н, м, –NCH ₂ (4Н), –OCH ₂ (4Н)); 8.10 (1Н, с, CH); 11.40–11.70 (1Н, уш. с, NH)	
7a	7а 1500, 1540, 3340– – 1570 3400 (уш. с)		_	3.65–4.00 (16Н, м, –NCH ₂ (8Н), –OCH ₂ (8Н)); 11.50–11.85 (1Н, уш. с, NH)	
7b	1530, 1560, 1600	3240– 3420 (уш. с)	_	1.15–1.25 (12Н, м, NCH ₂ <u>CH</u> ₃); 3.50–3.80 (8Н, м, ΣNCH ₂); 11.40–11.90 (1Н, уш. с, NH)	
7c	1540, 1570, 1610	3250– 3450 (уш. с)	_	3.60–3.90 (8Н, м, 4H-NCH ₂ , 4H-OCH ₂); 4.40 (3H, с, OCH ₃); 11.20–11.50 (1H, уш. с, NH)	

Спектральные характеристики соединений 4-8

Окончание таблицы 2

1	2	3	4	5
7d	1520, 1595, 1600	3220– 3440 (уш. с)	-	1.20–1.30 (6H, м, NCH ₂ <u>CH₃</u>); 3.55–3.75 (4H, м, N <u>CH</u> ₂ CH ₃); 4.40 (3H, с, OCH ₃); 11.90–12.10 (1H, уш. с, NH)
8a	1515, 1560	_	1725	1.20–1.35 (3H, T, $J = 5.75$, OCH ₂ CH ₃); 3.65–3.85 (16H, M, Σ 8H-NCH ₂ + 8H-OCH ₂); 4.15–4.23 (2H, KB, $J = 5.75$, OCH ₂ CH ₃); 5.70 (2H, c, N <u>CH₂</u> COOEt)
8b	1510, 1565, 1605	-	_	3.70–3.80 (16H, м, 8H-NCH ₂ , 8H-OCH ₂); 4.36 (3H, с, NCH ₃)
8c	1505, 1570, 1610	_	_	0.90–1.03 (3H, м, N(CH ₂) ₃ <u>CH₃</u>); 1.30–1.45 (2H, м, N(CH ₂) ₂ <u>CH₂</u> CH ₃); 1.85–2.10 (2H, м, NCH ₂ <u>CH₂</u> CH ₂ CH ₃); 3.65–4.00 (16H, м, Σ8H- NCH ₂ + 8H-OCH ₂); 4.67–4.83 (2H, м, N <u>CH₂</u> CH ₂ CH ₂ CH ₃)
8d	1520, 1570, 1595	_	1720	1.15–1.26 (15H, м, ΣNCH ₂ <u>CH₃</u> , OCH ₂ <u>CH₃</u>); 3.55–3.70 (8H, м, N <u>CH₂</u> CH ₃); 4.15–4.23 (2H, кв, <i>J</i> = 6.3, <i>J</i> = 5.74, O <u>CH₂</u> CH ₃); 5.74 (2H, c, N <u>CH₂</u> COOEt)

8а-d несколько более низкоплавки и лучше растворимы, чем исходные соединения 7 (табл. 1). Состав и строение их подтверждены совокупностью данных элементного анализа, ИК, ЯМР ¹Н спектров и масс-спектроскопии.

В ИК спектрах соединений **7а–d**, помимо характеристических полос сопряженных связей C=N *сим*-триазинового и тетразольного циклов в области 1660–1500 см⁻¹, наблюдаются уширенные полосы валентных колебаний группы N–H при 3230–3450 см⁻¹ (табл. 2). Последние отсутствуют в спектрах соединений **8а–d**. В спектрах ЯМР ¹H соединений **7** сигналы протона тетразольного цикла наблюдаются в виде уширенного синглета в слабом поле в широком интервале 11.20 – 16.50 м. д., что, повидимому, объясняется его легкой миграцией к другим атомам азота тетразольного цикла.

В масс-спектрах 7, 8 обнаружены и молекулярные ионы, интенсивностью 44–100%, подтверждающие их строение.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

ИК спектры записаны для суспензий образцов в вазелиновом масле на спектрофотометре Specord IR-75. Спектры ЯМР ¹Н сняты на радиоспектрометре Bruker WM-500 (500 МГц) в ДМСО-d₆, внутренний стандарт ТМС. Масс-спектры записаны на приборе Finnigan MAT INCOS50 (энергия ионизации – 70 эВ). Элементный анализ синтезированных соединений выполнен на анализаторе Carlo Erba, модель 1106. Контроль за ходом реакции и чистотой получаемых продуктов осуществлялся методом TCX на пластинках Silufol UV-250 в системе ацетон–гексан, 1:1.

Исходные мононитрилы 1 получены по методике работы [5]. Растворители очищены по [10].

2-Карбамоил-4,6-диморфолил-*сим*-триазин (4а). К 5 мл конц. НС1 прибавляют 36 ммоль соединения 1а. Реакционную смесь выдерживают 12 ч при 20 °С, после чего подщелачивают 40% NaOH до pH 8.0–8.5. Выпавший осадок отфильтровывают, 736

промывают водой до отсутствия ионов хлора в промывных водах и высушивают до постоянной массы. Получают амид **4a**, не требующий дальнейшей очистки.

Амиды 4b-ј получают аналогично.

2,4-Диморфолил-*сим*-триазин (5). Смесь 36 ммоль 2-циано-4,6-диморфолил-1,3,5триазина **1а** в 5 мл конц. НСІ нагревают с обратным холодильником при 80–90 °С в течение 1 ч. После охлаждения к реакционной смеси прибавляют 40% водный раствор NaOH до pH 7.0–7.5. Выпавний осадок отфильтровывают, тщательно промывают водой и высушивают до постоянной массы.

4-Морфолил-2-оксо-1,2-дигидро-*сим*-триазин (6). Смесь 45 ммоль 2-циано-4-метокси-6-морфолил-1,3,5-триазина 1d в 6 мл конц. HCl нагревают с обратным холодильником в течение 1–1.5 ч при 80–90 °С. К реакционной смеси при перемешивании и 10–15 °С прибавляют 10% водный раствор NaOH до pH 7. Выпавший осадок отфильтровывают, многократно промывают водой и высушивают до постоянной массы.

2,4-Диморфолил-2-[тетразол(1'H)-5'-ил]-*сим*-триазин (7а). Смесь 36 ммоль соединения 1а, 36 ммоль азида натрия и 36 ммоль хлористого аммония в 10 мл ДМФА кипятят с обратным холодильником в течение 8 ч. Смесь охлаждают, выливают в 100 мл холодной воды, выпавший осадок отделяют, тщательно промывают водой и высушивают. Получают тетразолилтриазин 7а.

Соединения 7b-d синтезируют аналогично.

4,6-Диморфолил-2-[(1-этоксикарбонилметилтетразол-5'-ил]-сим-триазин (8а). К раствору 16 ммоль металлического натрия в 10 мл абсолютного этанола при перемешивании прибавляют 16 ммоль тетразолилтриазина 7а. Смесь нагревают до кипения и добавляют по каплям 16 ммоль свежеперегнанного этилового эфира 2-бромэтановой кислоты. Кипячение продолжают 10–11 ч, растворитель упаривают в вакууме досуха, а образовавшийся осадок промывают водой, высушивают и очищают перекристаллизацией из этанола.

Соединение 8d получают аналогично, но для синтеза соединений 8b,с используют соответственно метил- и бутилиодиды.

СПИСОК ЛИТЕРАТУРЫ

- 1. С. Н. Михайличенко, А. А. Чеснюк, Л. Д. Конюшкин, В. Н. Заплишный, *XTC*, 1351 (2004).
- 2. В. В. Довлатян, ХГС, 17 (1988).
- 3. В. В. Довлатян, ХГС, 435 (1996).
- 4. Г. М. Погосян, В. А. Панкратов, В. Н. Заплишный, С. Г. Мацоян, *Политриазины*, Изд-во АН АрмССР, Ереван, 1987, 615 с.
- 5. А. А. Чеснюк, С. Н. Михайличенко, В. С. Заводнов, В. Н. Заплишный, ХГС, 197 (2002).
- 6. С. Н. Михайличенко, А. А. Чеснюк, В. Е. Заводник, С. И. Фирганг, Л. Д. Конюшкин, В. Н. Заплишный, *XTC*, 326 (2002).
- 7. K. Raman, S. Parmar, S. Singh, J. Med. Chem., 35, 1137 (1980).
- 8. M. Yasutomo, K. Satoshi, H. Yoji, J. Chem. Soc., Jpn. Chem. and Ind. Chem., 396 (1990).
- 9. Г. И. Колдобский, В. А. Островский, Успехи .химии, 63, 847 (1994).
- 10. А. Вайсбергер, Э. Проскауэр, Дж. Риддик, Э. Тупс, *Органические растворители*, Изд-во иностр. лит., Москва, 1958, 518 с.

Кубанский государственный аграрный университет, Краснодар 350044, Россия e-mail: vlad_zpl@mail.ru e-mail:alex_ch2003@list.ru Поступило в редакцию 17.04.2003 После доработки 10.03.2006

^аИнститут органической химии им. Н. Д. Зелинского РАН, Москва 117913