Т. Е. Хоштария, Л. Н. Курковская, К. Т. Бацикадзе, М. М. Матнадзе, М. И. Сихарулидзе, Т. О. Джаши, В. О. Ананиашвили, И. Г. Абесадзе, М. Г. Алапишвили

ВЗАИМОПРЕВРАЩЕНИЯ ИЗАТИНСОДЕРЖАЩИХ КОНДЕНСИРОВАННЫХ ТЕТРАЦИКЛИЧЕСКИХ СИСТЕМ

Описан новый путь синтеза гетероциклических систем – диоксодигидро-1Hбензо[*b*]тиофениндолов из соответствующих изомерных "аминокислот" с аминогруппами в положениях 2 и 3. Метод позволяет получать указанные тетрациклические системы не только в виде одного изомера, но и взаимопревращать их: из тетрациклических систем ангулярного строения можно получать соответствующие им изомеры линейного строения и наоборот, используя изомер линейного строения, можно получать изомер с ангулярным сочленением пиррольного кольца. Моделью для подобных превращений послужила классическая реакция Зандмейера.

Ключевые слова: изатин, индол, пиррол.

Ранее мы разработали методы синтеза тетрациклических систем – бензо[b]тиофено-1Н-индолов [1, 2]. Учитывая высокую антибактериальную активность препарата метисазона (марборана), относящегося к системе 1-метилизатина, содержащего тиосемикарбазидный фрагмент [3–6], мы ныне разработали методы синтеза тетрациклических конденсированных систем, включающих как структуру "аминокислоты", так и бензотиофена с линейным и ангулярным типом сочленения пиррольного и бензольного колец. При этом мы установили, что сравнительно легко по единой методике можно превращать ангулярные структуры в линейные и наоборот (см. схему).

Исходные "аминокислоты" 5-8 были получены по методикам, оисанным в работах [1, 2].

Физико-химические и спектральные характеристики приведены в табл. 1–3.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Контроль за ходом реакций и чистотой синтезированных соединений осуществляли методом TCX на пластинках Silufol UV-254 с закрепленным слоем силикагеля. УФ спектры снимали на спектрофотометре Specord UV-vis в этаноле, ИК спектры – на приборе UR-20 с призмами из NaCl и LIF (в вазелиновом масле). Спектры ЯМР⁻¹Н измеряли на приборе Bruker VP-200 SY (200 МГц), внутренний стандарт TMC.

Соеди-	Химические сдвиги, δ, м. д. (КССВ, J, Гц)*											I Fu		
нение	1(H)	2(H)	3(H)	4(H)	5(H)	6(H)	7(H)	8(H)	9(H)	10H	11H	12H	13H	<i>Э</i> , і ц
3	8.69 д	-	7.78 д. д	7.98 д	-	8.02 м	7.5–8.	2 м	8.20 м	10.4 уш. с	7.71 c	12.2 уш. с	-	$J_{1,3} = 2; J_{3,4} = 9$
4	8.30 д. д	7.73 д.д	_	8.45 д	-	7.98 м	~7.5	5	8.27 м	10.4 уш. с	7.7 c	12.2 уш. с	-	$J_{1,2} = 8.8;$
5	_	_	11.2 уш. с	7.07 д	8.27 c	_	8.06 м	~	-7.5	9.41 м	_	_	_	$J_{1,4} = 0.0, J_{2,4} = 2$ $J_{4,5} = 8.3$
6	11.3 уш. с		-	8.40 д	-	8.14 м	~7.	5	8.42 м	7.71 д	-	-	-	${}^{5}J_{4,10} = 0.8$
7	11.0 уш. с	-	_	8.40 д	8.45 м	~7	.5	7.85 м	-	8.40 м	-	-	-	$J_{4,10} = 0.8$
8	-	-	10.8 уш. с	-	8.60 c	8.73 м	~7.	5	8.23 м	-	11.5 уш. с	-	-	$J_{6,9} = 0.6$
9	-	-	6.60 д	7.82 д	-	7.90 м	~7.	5	8.15 м	8.2 уш. с	9.0 уш. с	-	-	$J_{3,4} = 8.7$
10	7.15 д	-	_	7.90 д	-	8.92 м	~7.	5	8.20 м	8.0 уш. с	8.2 уш. с	-	_	${}^{5}J_{1,4} = 0.5$
11	-	-	11.2 уш. с	7.03 д	8.54 д	8.29 м	~7.:	5	8.04 м			-	_	$J_{4,5} = 8.3$
12	8.11 д	6.55 д	_	-	-	7.94 м	~7.	5	8.25 м	7.2 уш. с	7.1 уш. с	-	_	$J_{1,2} = 8.6$
13	-	-	7.79 д	8.10 д	-	7.92 м	~7.5	5	8.96 м	10.4 уш. с	8.5 уш. с	8.0 c	10.55 уш. с	$J_{3,4} = 8.8;$ $J_{6,9} = 0.6$
14	8.10 д	-	_	7.20 д	_	8.09 м	~7.5	5	8.20 м	10.1 уш. с	8.44 уш. с	7.80 д	10.22 уш. с	$J_{1,4} = 0.8$
15	8.40 д	-	_	7.60 д	-	8.10 м	~7.	5	8.25 м	7.9 уш. с	8.2 уш. с	-	_	$J_{1,4} = 0.4$
16	7.90 д	7.75 д	_	-	-	7.90 м	~7.5	5	8.24 м	9.0 уш. с	7.94 уш. с	5.99 уш. с	9.10 уш. с	$J_{1,2} = 8.7;$ $J_{6,9} = 0.6$
17	10.7 уш. с	-	_	8.15 c	-	7.70 м	~7.:	5	8.10 м	-	10.6 уш. с	-	-	$J_{6,9} = 0.7$
18	-	-	10.9 уш. с	-	8.60 c	-	8.10 м	~	-7.5	8.77 м	11.1 уш. с	-	-	$J_{7,10} = 0.7$
19	8.87 д	-	—	7.60	-	7.73 м	~7.	5	8.23 м	12.5 уш. с	12.6 уш. с	8.95 c	13.5 уш. с	$J_{1,4} = 0.7$
20	10.7 уш. с	-	-	8.86 c	8.24 м	~7	.5	7.79 м	_	_	$\Sigma H_2 O {\leftrightarrow} O H$	-	-	$J_{5,8} = 0.7$

Спектры ЯМР ¹Н соединений 3–20

* Спектры ЯМР ¹Н снимали в ДМСО-d₆ (соединения **3–8, 10–20**) и ацетоне-d₆ (соединение **9**).

Таблица 1

Таблица 2

Характеристики соединений 3-20

Соеди-	Брутто-		<u>Найде</u> Вишиси	<u>ено, %</u>		Тля ос	Выход,
нение	формула	С Н		N S		1. III., C	%
3	$C_{14}H_{10}N_2O_2S$	62.5	3.5	10.6	12.1	213-215	75
		62.22	3.70	10.37	11.85		
4	$C_{14}H_{10}N_2O_2S$	<u>62.3</u>	<u>3.6</u>	10.5	<u>11.9</u>	235-236	85
		62.22	3.70	10.37	11.85		
5	$C_{14}H_7NO_2S$	<u>66.1</u>	<u>2.8</u>	<u>5.8</u>	<u>12.9</u>	275–277	60
		66.40	2.76	5.53	12.64		
6	$C_{14}H_7NO_2S$	<u>66.7</u>	<u>2.8</u>	<u>5.7</u>	<u>12.8</u>	262-264	20
		66.40	2.76	5.53	12.64		
7	C ₁₄ H ₇ NO ₂ S	<u>66.6</u>	<u>2.9</u>	<u>5.8</u>	<u>12.9</u>	210-213	15
		66.40	2.76	5.53	12.64		
8	$C_{14}H_7NO_2S$	<u>66.1</u>	<u>2.8</u>	<u>5.8</u>	<u>12.8</u>	230–231	70
		66.40	2.76	5.53	12.64	106 100	
9	$C_{13}H_9NO_2S$	<u>64.3</u>	3.6	<u>5.7</u>	<u>13.3</u>	196–198	80
10		64.19	3.70	5.76	13.16	165 167	00
10	$C_{13}H_9NO_2S$	$\frac{64.4}{(4.10)}$	<u>3.8</u>	<u> </u>	<u>13.0</u>	165-167	80
11	C UNO S	64.19	3.70	5.76	13.10	157 150	(0
11	$C_{13}\Pi_9\Pi O_2S$	<u>64.4</u>	<u>3.8</u> 3.70	<u> </u>	<u>13.5</u> 12.16	137-139	09
12	C H NO S	64.19	3.70	5.70	13.10	180 183	73
12	C1311910025	<u>64 19</u>	$\frac{4.0}{3.70}$	<u>5.4</u>	$\frac{13.4}{13.16}$	100-105	15
13	CreHanN2O4S	57.4	3.0	8.8	10.5	213-215	69.6
10	01511101 (2040	57.32	<u>3 18</u>	<u>8 91</u>	10.19	215 215	07.0
14	$C_{15}H_{10}N_2O_4S$	57.2	4.0	8.7	10.4	220-221	70.7
	-1510- 2 - 4-	57.32	3.18	8.91	10.19		
15	$C_{15}H_{10}N_2O_4S$	57.5	3.5	8.7	10.5	199–200	90
	10 10 2 1	57.32	3.18	8.91	10.19		
16	$C_{15}H_{10}N_2O_4S$	57.7	2.5	9.0	10.5	178-180	80
		57.32	3.18	8.91	10.19		
17	C ₁₅ H ₇ NO ₄ S	60.4	<u>2.4</u>	4.9	10.9	305-306	85
		60.60	2.35	4.71	10.77		
18	C ₁₅ H ₇ NO ₄ S	<u>60.3</u>	<u>2.7</u>	4.8	10.7	325-327	75
		60.60	2.35	4.71	10.77		
19	C ₁₅ H ₇ NO ₄ S	<u>60.7</u>	<u>2.7</u>	<u>5.0</u>	<u>11.1</u>	317-320	90
		60.60	2.35	4.71	10.77		
20	C ₁₅ H ₇ NO ₄ S	<u>60.9</u>	<u>2.7</u>	<u>4.9</u>	<u>10.5</u>	350	88
		60.60	2.35	4.71	10.77	(разл.)	

2-Изонитрозоацетамидодибензотиофен (**3**). К раствору 16.5 г (0.1 моль) хлоральгидрата в 150 мл воды последовательно добавляют 25.7 г (0.8 моль) Na₂SO₄•10H₂O, 19.9 г (0.1 моль) 2-аминодибензотиофена **1**, растворенного в 3 л воды (подкисленной 20 мл конц. HCl) и 22.0 г (0.32 моль) хлоргидрата гидроксиламина, растворенного в 100 мл воды. Смесь кипятят 2 ч, выпавшие кристаллы отфильтровывают, тщательно промывают водой, сушат и перекристаллизовывают из этилацетата.

3-Изонитрозоацетамидодибензотиофен (4) получают из 3-аминодибензотиофена 2 аналогично соединению **3**. Соединение **4** перекристаллизовывают из этилацетата.

Таблица З

Соеди-	И	ІК спектр, с	cm^{-1}				
нение	CO NH		NHO=C	$\mathcal{F} \Phi$ clickip, λ_{max} , HM (ig \mathcal{E})			
3	1690	3385	-	235 (4.41), 265 (4.10), 285 (4.15), 333 (4.05), 350 (4.00)			
4	4 1710 3400 –		-	245 (4.21), 255 (4.22), 276 (4.30), 310 (4.05), 330 (4.00)			
5	1700	3390	3250	_			
6	1710	3400	3260	_			
7	1710 3410 3300		3300	-			
8	1690	3390	3335	_			
9	1690	3385	_	240 (4.45), 275 (4.15), 290 (4.25), 340 (4.00), 345 (3.90)			
10	1700	3410	-	241 (4.30), 257 (4.05), 266 (4.00), 288 (3.86), 315 (3.97)			
11	1680	3390	-	238 (4.05), 260 (4.35), 277 (4.40), 297 (3.99), 315 (4.77)			
12	1700	3400	-	230 (3.90), 255 (4.15), 276 (4.00), 295 (3.86), 315 (4.10)			
13	1690	3400	-	242 (4.15), 270 (4.27), 289 (4.40), 299 (4.19), 333 (4.56)			
14	1690	3420	-	234 (4.07), 233 (4.35), 278 (4.44), 300 (3.92), 325 (4.18)			
15	1710	3400	-	244 (4.17), 265 (4.45), 280 (4.55), 300 (4.00), 315 (4.27)			
16	1710	3400	-	225 (4.20), 237 (4.33), 265 (4.39), 287 (4.10), 315 (3.86)			
17	1690	3395	3240	_			
18	1695	3400	3330	_			
19	1680	3390	3250	_			
20	1700	3400	3345	_			

УФ и ИК спектры соединений 3-20

* Снять УФ спектры соединений 5-8 и 17-20 не удалось из-за плохой растворимости в этаноле.

1,2-Диоксо-1,2-дигидро-1Н-бензо[b]тиофено[3,2-е]индол (5) и 2,3-диоксо-2,3-дигидро-1Н-бензо[b]тиофено[2,3-f]индол (6). К раствору 14.7 г (0.3 моль) 80% серной кислоты при постоянном перемешивании небольшими порциями добавляют 13.5 г (0.05 моль) сухого соединения **3** при температуре не выше 50 °C. Смесь нагревают еще 2 ч при 80 °C, охлаждают и выливают на 10–12-кратное количество льда. Через 3 ч осадок отфильтровывают и промывают водой. Сырой продукт суспендируют в 5-кратном количестве горячей воды и при перемешивании прибавляют 40% раствор NaOH до полного растворения. Осторожно добавляют 12% соляную кислоту до начала образования осадка. Осадок отфильтровывают и отбрасывают. Фильтрат подкисляют уксусной кислотой до pH 3 и оставляют на 1.5 ч. Выпавший осадок соединения **5** отфильтровывают, промывают водой и сушат. После отделения изомера **5** фильтрат подкисляют конц. HCl до pH 1 и оставляют на 24 ч. Выпавшие кристаллы отфильтровывают, промывают водой и ейтральной реакции и сушат. Получают 2.5 г вещества **6**.

2,3-Диоксо-2,3-дигидро-1Н-бензо[b]тиофено[3,2-f]индол (5) и 1,2-диоксо-1,2-дигидро-1Н-бензо[b]тиофено[2,3-e]индол (8) получают из соединения 4 аналогично соединениям 5 и 6.

1-Карбокси-2-аминодибензотиофен (9). Смесь 2.53 г (0.01 моль) "аминокислоты" 5, 70 мл воды и 20 мл 30% раствора NaOH кипятят 3 ч, охлаждают, добавляют 46 мл

30% H₂O₂ [7]. Перемешивают при комнатной температуре еще 14 ч и оставляют стоять на ночь, подкисляют HCl до pH 5–6, выпавший осадок отфильтровывают, промывают водой и сушат.

Соединения 10-12 получают аналогично соединению 9 методике, описанной в [7].

3-Карбокси-2-аминодибензотиофен (10) получают из соединения 6.

2-Карбокси-3-аминодибензотиофен (11) получают из соединения 7.

4-Карбокси-3-аминодибензотиофен (12) получают из соединения 14.

Соединения 13-16 получают аналогично соединению 3.

1-Карбокси-2-изонитрозоацетамидодибензотиофен (13) получают из соединения 9.

3-Карбокси-2-изонитрозоацетамидодибензотиофен (14) получают из соединения 10.

2-Карбокси-3-изонитрозоацетамидодибензотиофен (15) получают из соединения 11. 4-Карбокси-3-изонитрозоацетамидодибензотиофен (16) получают из соединения 12.

10-Карбокси-2,3-диксо-2,3-дигидро-1Н-бензо[*b*]**тиофено**[**2,3-***f*]индол (17). К 140 г 80% H_2SO_4 , нагретой до 50 °C, при постоянном перемешивании маленькими порциями добавляют 15.7 г (0.05 моль) хорошо высушенного соединения **13**. По завершении добавления температуру реакционной смеси повышают до 80 °C и выдерживают 2 ч при указанной температуре, после чего смесь охлаждают, выливают на 10–12 кратное количество колотого льда и оставляют стоять на ночь. Выпавшие кристаллы отфильтровывают, суспендируют в 5-кратном количестве горячей воды при постоянном перемешивании и добавляют 40% раствор NaOH до полного растворения осадка. К полученному раствору осторожно прибавляют 12% соляную кислоту до появления мути и фильтруют. Осадок отфильтровывают и отбрасывают, тщательно промывают конц. HCI до рН 1. Выпавшие кристаллы отфильтровывают 9.01 г чистого вещества **17**.

Соединения 18-20 и 6-7 получают аналогично соединению 17.

4-Карбокси-1,2-диоксо-1,2-дигидро-1Н-бензо[*b*]тиофено[3,2-*e*]индол (18) получают из соединения 14.

4-Карбокси-1,2-диоксо-1,2-дигидро-1Н-бензо[*b*]тиофено[2,3-*e*]индол (19) получают из соединения 15.

10-Карбокси-2,3-диоксо-2,3-дигидро-1Н-бензо[b]тиофено[3,2-f]индол (20) получают из соединения 16.

1,2-Диоксо-1,2-дигидро-3Н-бензо[b]тиофено[3,2-е]индол (5) получают также декарбоксилированием в пределах температуры плавления (± 10–15 °C) соединения **17**.

2,3-Диоксо-2,3-дигидро-1Н-бензо[*b*]**тиофено**[**2,3-***f*]индол (6) получают декарбоксилированием соединения 18.

2,3-Диоксо-2,3-дигидро-1Н-бензо[*b*]тиофено[3,2-*f*]индол (7) получают декарбоксилированием соединения 19.

1,2-Диоксо-1,2-дигидро-3Н-бензо[*b*]**тиофено**[**2,3**-*e*]**индол** (**8**) получают декарбоксилированием соединения **20**.

Смешанные пробы температур плавления с заведомо синтезированными (см. выше) соединениями 5-8 не дают депрессии.

СПИСОК ЛИТЕРАТУРЫ

- 1. Т. Е. Хоштария, Т. О. Джаши, Л. Н. Курковская, ХГС, 627 (1999).
- 2. Т. Е. Хоштария, М. М. Матнадзе, Тр. Груз. техн. ун-та, 2005, 1(455), с. 65.
- 3. R. W. Sidwell, G. J. Dison, S. M. Sellers, F. M. Schabel, Appl. Microbiol., 16, 370 (1968).
- 4. D. J. Bauer, P. W. Sadler, Lancet, 1, 1110 (1960).
- Т. О. Джаши, Т. Е. Хоштария, Л. Н. Курковская, Н. Т. Мирзиашвили, М. И. Сихарулидзе, XTC, 1419 (1999).
- 6. P. W. Sadler, Ann. N. Y. Acad. Sci., 130, 71 (1965).
- 7. R. Ponci, F. Amatori, P. Lorenco, Farmaco, 22, 999 (1967).

Грузинский технический университет, Тбилиси 380075 e-mail: t_khoshtaria@yahoo.com Поступило в редакцию 04.08.2004 После доработки 31.01.2006