В. Ю. Зубарев, Р. Е. Трифонов, В. В. Поборчий, В. А. Островский ПОЛИЯДЕРНЫЕ РАЗВЕТВЛЕННЫЕ ТЕТРАЗОЛЬНЫЕ СИСТЕМЫ

3.* КИСЛОТНОСТЬ а, со-ДИТЕТРАЗОЛ-5-ИЛАЛКАНОВ

 α, ω -Дитетразол-5-илалканы с числом метиленовых групп в алкильном фрагменте от 1 до 5 проявляют свойства двухосновных гетероциклических NH-кислот со значениями р K_a , лежащими в диапазоне 3.4–6.1. Значения р K_a данных соединений находятся в линейной зависимости от значений диэлектрической проницаемости среды, химических сдвигов сигналов эндоциклического атома углерода и атома углерода α -метиленовой группы в спектрах ЯМР ¹³С.

Ключевые слова: α,ω-дитетразол-5-илалканы, 1,3-диполярное циклоприсоединение, кислотность, потенциометрия, спектроскопия ЯМР.

Известно, что многоосновные карбоновые кислоты являются эффективными лигандами для связывания ионов металлов в устойчивые комплексы [2]. Поиск соединений, обладающих подобной или большей комплексообразующей активностью, является актуальной проблемой. Весьма перспективными в данном аспекте представляются полиядерные гетероциклические системы – аналоги многоосновных карбоновых кислот, в которых карбоксильные группы заменены на тетразол-5-ильные фрагменты. NH-Teтразольный цикл обладает близкой, по сравнению с карбоксильной группой, кислотностью и способен образовывать устойчивые комплексы с ионами металлов. Сопоставление комплексообразующей способности стандартных комплексонов, содержащих в своей структуре карбоксильные фрагменты, и их тетразол-5-ильных аналогов по отношению к ионам меди, кобальта и никеля показало преимущество данных гетероциклических производных [3]. Комплексообразующая активность лигандов может быть оценена и по их кислотно-основным свойствам [2].

Ранее нами были синтезированы полиядерные 2-(тетразол-5-ил)этильные соединения и исследованы их кислотные свойства [1, 4]. Тем не менее, существенные различия в структуре и в растворимости этих соединений не позволяют корректно подойти к выявлению зависимостей типа "структура – свойство" или "свойство – свойство".

В настоящей работе с использованием реакции 1,3-диполярного циклоприсоединения алкиламмонийазидов к динитрилам дикарбоновых кислот синтезированы дитетразол-5-илалканы 1–5 с числом метиленовых звеньев в алифатическом фрагменте от 1 до 5 и исследованы их кислотные свойства. В качестве модельного соединения нами был так же рассмотрен 5,5'-дитетразол 6.

^{*} Сообщение 2 см. [1].

Величины pK_a^1 и pK_a^2 , характеризующие кислотность двухосновных алифатических карбоновых кислот, известны достаточно давно [5]. Среди двухосновных тетразолов ранее были количественно исследованы кислотно-основные свойства лишь 5,5'-дитетразола **6** [6].

Кислотная диссоциация α,ω-дитетразол-5-илалканов 1–5 происходит ступенчато с образованием соответствующих моно- и дианионов.

Как следует из данных табл. 1, значения pK_a соединений 1–5, определенные методом потенциометрического титрования, находятся в диапазоне 3.4–6.1 (для воды). Таким образом, кислотность данных соединений оказалась близка кислотности соответствующих двухосновных алифатических карбоновых кислот [5]. Однако четких корреляционных зависимостей, связывающих величины pK_a^1 и pK_a^2 тетразолов 1–6 и соответствующих дикарбоновых кислот, выявить не удалось.

Таблица 1

Соединение п		pK_a^{-1}	pK_a^2	
1	1	3.42±0.01	5.30±0.02	
2	2	4.42±0.03	5.74±0.03	
3	3	4.95±0.01	5.94±0.02	
4	4	5.17±0.02	6.09±0.03	
5	5	5.23±0.01	6.10±0.03	
6	0	1.41 [6]	4.25 [6]	

Термодинамические константы кислотной диссоциации а,@-дитетразол-5-илалканов 1–5 и 5,5'-дитетразола 6 по первой и второй ступеням

Зависимость показателей констант кислотности дитетразолов 1–6 от числа (*n*) метиленовых групп

При увеличении числа мостиковых метиленовых групп (*n*) прослеживается тенденция к увеличению значений pK_a (рисунок). Однако из рисунка можно заметить, что при n > 5 эти изменения значений pK_a становятся незначительными. Отметим, что при n = 5 значение ΔpK_a , вычисленное как разность между показателями констант кислотности по первой и второй ступени ($\Delta pK_a = pK_a^2 - pK_a^{-1}$), приближается к величине lg 4 – статистическому эффекту, определяющемуся разницей в количестве центров кислотности по первой и второй ступеням, хотя и не равна ей. Данный факт может свидетельствовать о слабом взаимном электронном влиянии тетразольных циклов [7].

Для оценки влияния сольватационных эффектов на кислотную диссоциацию дитетразолов 1–5 в системах вода – органический растворитель, нами была установлена зависимость значений pK_a^1 и pK_a^2 от диэлектрической проницаемости среды в системе метанол – 0.1 н. водный раствор NaNO₃, с содержанием метанола от 0 до 50 мас.% (табл. 2). Значения корреляционных параметров линейных зависимостей pK_a^1 и pK_a^2 от 1/є представлены в табл. 3.

Согласно табл. 2 и 3, значения сольватационных коэффициентов (*a*, *b*) для всех исследованных соединений **1–5** приблизительно равны. Это обстоятельство позволяет предполагать родственный характер сольватации каждого соединения данным бинарным растворителем [8].

Таблица 2

Соеди- нение	n _{CH2}	0*		10)*	20*		
		pK_a^{-1}	pK_a^2	pK_a^{1}	pK_a^2	pK_a^{1}	pK_a^2	
1	1	3.32±0.01	5.20±0.02	3.32±0.02	5.19±0.02	3.34±0.02	5.23±0.02	
2	2	4.31±0.03	5.64±0.03	4.29±0.05	5.66±0.03	4.32±0.02	5.68±0.02	
3	3	4.85±0.01	5.83±0.02	4.86±0.01	5.91±0.01	4.88±0.01	5.94±0.02	
4	4	5.07±0.02	5.99±0.03	5.08±0.02	6.03±0.02	5.10±0.02	6.03±0.02	
5	5	5.12±0.01	5.99±0.02	5.13±0.01	6.01±0.02	5.16±0.01	6.04±0.03	

Константы кислотной диссоциации
α, ω-дитетразол-5-илалканов 1-5 в средах с различной диэлектрической проницаемостьк

Соеди- нение	n _{CH2}	30*		40)*	50 *		
		pK_a^{-1}	pK_a^2	pK_a^{-1}	pK_a^2	pK_a^{-1}	pK_a^2	
1	1	3.37±0.01	5.30±0.02	3.41±0.02	5.37±0.02	3.51±0.04	5.47±0.03	
2	2	4.36±0.01	5.74±0.02	4.44±0.02	5.84±0.01	4.49±0.01	5.84 ± 0.02	
3	3	4.90±0.01	5.98±0.01	4.92±0.01	6.00±0.01	4.98±0.01	6.10±0.01	
4	4	5.12±0.01	6.05±0.01	5.15±0.02	6.11±0.03	5.24±0.02	6.24±0.01	
5	5	5.18±0.01	6.07±0.03	5.25±0.02	6.14±0.03	5.33±0.01	6.26±0.02	
	l I	1	1	1	1			

* Содержание метанола (мас.%) в системе метанол-0.1 н. водный раствор NaNO₃.

Соеди- нение	$pK_a^{1} = a (1/\varepsilon) + b$				$pK_a^2 = a (1/\varepsilon) + b$			
	а	b	r	S	а	b	r	S
1	35±6	2.84±0.09	0.95	0.02	55±6	4.46±0.09	0.98	0.03
2	39±6	3.78±0.09	0.96	0.02	44±6	5.07±0.09	0.96	0.03
3	34±2	4.54±0.04	0.98	0.01	45±5	5.28±0.08	0.97	0.02
4	30±5	4.67±0.07	0.95	0.02	43±8	5.43±0.13	0.93	0.03
5	40±5	4.59±0.07	0.97	0.02	50±6	5.33±0.10	0.97	0.03

Статистические параметры корреляционных зависимостей показателей констант кислотной диссоциации α,∞-дитетразол-5-илалканов 1–5 от обратной величины диэлектрической проницаемости среды

Ранее авторами работы [9] было показано, что для 5-замещенных тетразолов существует линейная зависимость химического сдвига сигналов эндоциклического атома углерода тетразольного цикла в спектрах ЯМР ¹³С от р K_a . Для величин р K_a^1 и р K_a^2 соединений **1–5** нами также были найдены аналогичные корреляционные зависимости (1), (2).

$$pK_a^{1} = (0.528 \pm 0.048) \times \delta(C_T^{5}) - (77.302 \pm 7.481), r = 0.99, s = 0.14, n = 5$$
 (1)

$$pK_a^2 = (0.233 \pm 0.023) \times \delta(C_T^5) - (30.274 \pm 3.633), r = 0.98, s = 0.07, n = 5$$
 (2)

Для тетразолов 1–5 также были выявлены отличные корреляционные зависимости (3), (4), связывающие показатели констант кислотной диссоциации по первой и второй ступеням со значениями химического сдвига сигналов атомов углерода α-метиленовых групп.

$$pK_a^{1} = (0.515 \pm 0.018) \times \delta(C_{\alpha-CH2}) - (6.410 \pm 0.378), r = 0.99, s = 0.05, n = 5$$
 (3)

$$pK_a^2 = (0.227 \pm 0.015) \times \delta(C_{\alpha-CH2}) + (0.975 \pm 0.318), r = 0.99, s = 0.04, n = 5$$
 (4)

Установленные корреляционные соотношения могут быть использованы, с высокой степенью достоверности, для прогнозирования на основании данных спектроскопии ЯМР кислотно-основных свойств соединений, принадлежащих ряду α, ω -дитетразол-5-илалканов.

Полученные в данной работе значения pK_a^1 и pK_a^2 позволяют подбирать такие значения pH среды, при которых преимущественно существуют только недиссоциированные молекулы, моноанионы или дианионы,

что имеет решающее значение в процессах комплексообразования (тетразолат-анионы образуют более прочные комплексы хелатного типа с ионами металлов), и также могут быть полезны при оценке реакционной способности соединений данного типа.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Спектры ЯМР ¹Н и ¹³С записаны на спектрометре Bruker DPX-300 (300 и 75 МГц соответственно) в ДМСО, внутренний стандарт – сигнал растворителя. ИК спектры зарегистрированы на приборе Shimadzu FTIR 8400 в таблетках КВг. Элементный анализ выполнен на С,Н,N-анализаторе Hewlett–Packard 185В. Температуры плавления определены на приборе марки ПТП со скоростью нагрева 1 °С/мин в интервале плавления. Потенциометрическое титрование выполнено на потенциометре рН 121 (электроды: стеклянный ЭВЛ-1МЗ, хлорсеребряный ЭСЛ-63-07Т4.1). Все потенциометрические измерения проведены при температуре 25 °С. Значения р K_a рассчитывались согласно [8].

а,Ф-Дитетразол-5-илалканы (общая методика на примере дитетразол-5-илметана 1). Смесь 12.0 г (182 ммоль) малононитрила, 26.0 г (400 ммоль) азида натрия и 32.6 г (400 ммоль) гидрохлорида диметиламина в 70 мл ДМФА выдерживают 12 ч при 107–112 °С, затем реакционную массу фильтруют, растворитель упаривают в вакууме. Остаток растворяют в 50 мл дистиллированной воды и подкисляют разбавленной соляной кислотой до рН 1. Выпавший осадок отфильтровывают, промывают водой и сушат. Получают 23.5 г (85%) соединения 1 с т. пл. 210 °С. После очистки переосаждением с активированным углем и перекристаллизации из 2-пропанола получают бесцветные кристаллы с т. пл. 214 °С (из 2-пропанола). ИК спектр, v, см⁻¹: 3200–2800 (NH), 1567, 1452, 1432, 1405, 1273, 1242, 1197, 1105, 1076. Спектр ЯМР ¹H, δ , м. д.: 4.75 (2H, с, С<u>H</u>₂CN₄H); 15.55 (2H, уш. с, CN₄<u>H</u>). Спектр ЯМР ¹³С, δ , м. д.: 152.5 (тетразол); 19.1 (<u>C</u>H₂CN₄H). Найдено, %: C 23.80; H 3.32; N 73.14. C₃H₄N₈. Вычислено, %: C 23.69; H 2.65; N 73.66.

1,2-Дитетразол-5-илэтан (2). Выход 16.4 г (82%), т. пл. 244 °С (из 2-пропанола). ИК спектр, v, см⁻¹: 3200–2800 (NH), 1586, 1455, 1414, 1261, 1118, 1114, 1102, 1062, 1002. Спектр ЯМР ¹H, δ , м. д.: 3.39 (4H, с, С<u>H</u>₂CN₄H); 16.06 (2H, уш. с, CN₄<u>H</u>). Спектр ЯМР ¹³С, δ , м. д.: 154.9 (тетразол); 20.9 (<u>C</u>H₂CN₄H). Найдено, %: С 29.11; H 3.45; N 67.22. C₄H₆N₈. Вычислено, %: С 28.92; H 3.64; N 67.44.

1,3-Дитетразол-5-илпропан (3). Выход 6.1 г (73%), т. пл. 198 °С (из 2-пропанола). ИК спектр, v, см⁻¹: 3200–2800 (NH), 1579, 1454, 1430, 1418, 1407, 1280, 1256, 1208, 1110, 1082, 1056. Спектр ЯМР ¹H, δ, м. д. (*J*, Гц): 2.16 (2H, к, *J* = 7.5, С<u>H</u>₂CH₂CN₄H); 2.98 (4H, т, *J* = 7.5, С<u>H</u>₂CN₄H); 15.9 (2H, уш. с, CN₄<u>H</u>). Спектр ЯМР ¹³С, δ, м. д.: 155.5 (тетразол); 24.8 (<u>C</u>H₂CH₂CN₄H); 22.2 (<u>C</u>H₂CN₄H). Найдено, %: С 32.74; Н 4.09; N 62.27. С₅H₈N₈. Вычислено, %: С 33.33; H 4.48; N 62.19.

1,4-Дитетразол-5-илбутан (4). Выход 15.3 г (87%), т. пл. 204 °С (из 2-пропанола). ИК спектр, v, см⁻¹: 3200–2800 (NH), 1578, 1457, 1448, 1424, 1321, 1305, 1260, 1204, 1127, 1109, 1085, 1053. Спектр ЯМР ¹Н, δ, м. д. (*J*, Гц): 1.74 (4H, к, *J* = 7.5, С<u>H</u>₂CH₂CN₄H); 2.92 (4H, т, *J* = 7.5, С<u>H</u>₂CN₄H); 15.9 (2H, уш. с, CN₄<u>H</u>). Спектр ЯМР ¹³С, δ, м. д.: 155.8 (тетразол); 26.4 (<u>C</u>H₂CH₂CN₄H); 22.4 (<u>C</u>H₂CN₄H). Найдено, %: С 36.96; H 4.93; N 57.51. С₆H₁₀N₈. Вычислено, %: С 37.11; H 5.19; N 57.70.

1,5-Дитетразол-5-илпентан (5). Выход 10.4 г (68%), т. пл. 142 °С (из 2-пропанола). ИК спектр, v, см⁻¹: 3200–2800 (NH), 1576, 1464, 1452, 1426, 1407, 1352, 1318, 1298, 1254, 1231, 1185, 1110, 1083, 1059. Спектр ЯМР ¹H, δ , м. д. (*J*, Гц): 1.33 (2H, κ , *J* = 7.5, CH₂CH₂CH₂CN₄H); 1.73 (4H, κ , *J* = 7.5, CH₂CH₂CN₄H); 2.87 (4H, τ , *J* = 7.5, CH₂CN₄H); 15.8 (2H, уш. с, CN₄H). Спектр ЯМР ¹³С, δ , м. д.: 155.9 (тетразол); 27.7 (CH₂CH₂CH₂CN₄H); 26.6 (CH₂CH₂CN₄H); 22.6 (CH₂CN₄H). Найдено, %: C 40.52; H 6.43; N 54.38. C₇H₁₂N₈. Вычислено, %: C 40.38; H 5.81; N 53.81.

Работа выполнена с использованием оборудования регионального ЦКП "Материаловедение и диагностика в передовых технологиях" при поддержке Российского фонда фундаментальных исследований (грант 05-03-32366).

СПИСОК ЛИТЕРАТУРЫ

- 1. В. Ю. Зубарев, Е. В. Безклубная, А. К. Пяртман, Р. Е. Трифонов, В. А. Островский, XTC, 1496 (2003).
- 2. Я. Инцеди, Применение комплексов в аналитической химии, Мир, Москва, 1979.
- В. Ю. Зубарев, В. А. Островский, *XГС*, 867 (2000).
 В. Ю. Зубарев, Г. В. Гурская, В. Е. Заволник В А
- В. Ю. Зубарев, Г. В. Гурская, В. Е. Заводник, В. А. Островский, ХГС, 1494 (1997).
- 5. E. P. Serjeant, B. Dempsey, *Ionization Constants of Organic Acids in Aqueous Solution*, Pergamon Press, 1979.
- 6. В. А. Островский, Г. И. Колдобский, Н. П. Широкова, В. С. Поплавский, ХГС, 1563 (1981).
- 7. J. Catalan, J. L. M. Abboud, J. Elguero, Adv. Heterocycl. Chem., 41, 187 (1987).
- 8. А. Альберт, Е. Сержент, Константы ионизации кислот и оснований, Химия, Москва, 1964.
- 9. J. H. Nelson, N. E. Takach, R. A. Henry, D. W. Moore, W. M. Tolles, G. A. Gray, Magn. Res. Chem., 24, 984 (1986).

Санкт-Петербургский государственный технологический институт (технический университет), Санкт-Петербург 198013, Россия e-mail: va ostrovskii@mail.ru

Поступило в редакцию 20.12.2005