С. М. Медведева, Е. В. Лещева, Х. С. Шихалиев, А. С. Соловьев

НОВЫЕ ГЕТЕРОЦИКЛИЧЕСКИЕ СИСТЕМЫ НА ОСНОВЕ 8-R-4,5-ДИГИДРО-4,4-ДИМЕТИЛ[1,2]ДИТИОЛО-[3,4-*c*]ХИНОЛИН-1-ТИОНОВ

На основе взаимодействия 8-R-4,5-дигидро-4,4-диметил[1,2]дитиоло[3,4-*c*]хинолин-1тионов с оксалилхлоридом и последующих реакций 1,3-диполярного циклоприсоединения и диенового синтеза с участием диметилового эфира ацетилендикарбоновой кислоты разработаны подходы к синтезу новых поликонденсированных гетероциклических систем: [1,2]дитиоло[3,4-*c*]пирроло[3,2,1-*ij*]хинолин-4,5-диона, 6-(1,3-дитиол-2-илиден)-1,2-диоксо-5-тиоксо-7Н-пирроло[3,2,1-*ij*]хинолина и 4,5-диоксоспиро(пирроло)[3,2,1-*ij*]тиопирано-[2,3-*c*]хинолин-11,2'-[1,3]дитиола.

Ключевые слова: диметиловый эфир ацетилендикарбоновой кислоты, 4,5-диоксоспиро(пирроло)[3,2,1-*ij*]тиопирано[2,3-*c*]хинолин-11,2'-[1,3]дитиол, 6-(1,3-дитиол-2-илиден)-1,2-диоксо-5-тиоксо-7Н-пирроло[3,2,1-*ij*]хинолин, [1,2]дитиоло[3,4-*c*]пирроло[3,2,1-*ij*]хинолин-4,5-дион, [1,2]дитиоло[3,4-*c*]хинолин-1-тион, оксалилхлорид.

Среди замещенных 4,4-диметил[1,2]дитиоло[3,4-*c*]хинолин-1-тионов обнаружено много веществ с широким спектром биологического действия, кроме того эти соединения проявляют антиоксидантную активность, а также являются регуляторами радикальной полимеризации [1, 2]. С целью получения новых поликонденсированных гетероциклических систем нами продолжены работы по дальнейшей модификации этих соединений.

Ранее [3] сообщалось, что ацилирование 8-R-4,4-диметил-4,5-дигидро-[1,2]дитиоло[3,4-c]хинолин-1-тионов **1а**–**с** оксалилхлоридом, как и в случае простых ацилхлоридов [4], протекает исключительно по атому азота дигидрохинолинового цикла и сопровождается самопроизвольной циклизацией по типу реакции Штолле [5]. Наилучшим растворителем в этом случае является абсолютный толуол, в котором процесс завершается за 1.5–2 ч. Реакция не требует использования кислот Льюиса, применяемых обычно в качестве катализаторов. Возможно, это связано с тем, что лимитирующей стадией двухстадийной реакции Штолле в случае 8-R-4,4диметил-4,5-дигидро[1,2]дитиоло[3,4-c]хинолин-1-тионов **1а**–**f** является первая реакция ацилирования с образованием соответствующих промежуточных хлороксалиламидов **2а–f**.

В результате с хорошими выходами (60–80%) синтезированы производные новой конденсированной гетероциклической системы – $2-R^{1}-3-R^{2}-7,7$ -диметил-10-тиоксо-4,5,7,10-тетрагидро[1,2]дитиоло[3,4-*c*]пирроло-[3,2,1-*ij*]хинолин-4,5-дионы **За**–**f**.

1–3 a–d, $\mathbf{g} R^2 = H$, $\mathbf{a} R^1 = H$, $\mathbf{b} R^1 = Me$, $\mathbf{c} R^1 = OMe$, $\mathbf{d} R^1 = OEt$, $\mathbf{e} R^1 = H$, $R^2 = Me$, $\mathbf{f} R^1 = R^2 = Me$; $\mathbf{g} R^1 = PhCOO$

Их строение подтверждено совокупностью данных ИК, ЯМР ¹Н и массспектров. В ИК спектрах соединений **3а–f** (табл. 1) частоты валентных колебаний тиокетонной группы наблюдаются в области 1230–1240 см⁻¹, а двух карбонильных групп изатинового фрагмента – при 1740–1750 и 1760–1770 см⁻¹.

Таблица 1

Соеди-	ИК спектр, v, см ⁻¹			CHORTE $\mathbf{M}\mathbf{D}^{1}\mathbf{H}$ S M \mathbf{H} (<i>L</i> $\mathbf{F}\mathbf{H}$)			
нение	ение C=S C(1)=O C(2)=O		C(2)=O	Спектр ямг Н, 6, м. д. (J, 1 ц)			
3a	1235	1740	1770	2.13 (6H, c, C(CH ₃) ₂); 6.97 (1H, д, <i>J</i> = 7.1, 3-CH); 7.13 (1H, т, <i>J</i> = 7.1, 2-CH); 9.41 (1H, д, <i>J</i> = 7.1, 1-CH)			
3b	1230	1745	1763	2.00 (6H, c, C(CH ₃) ₂); 2.39 (3H, c, 2-CH ₃); 7.19 (1H, c, 3-CH); 9.43 (1H, c, 1-CH)			
3c	1225	1748	1770	2.12 (6H, c, C(CH ₃) ₂); 3.82 (3H, c, 2-CH ₃ O); 7.05 (1H, c, 3-CH); 9.45 (1H, c, 1-CH)			
3d	1230	1740	1765	1.25 (3H, τ , $J = 7.0$, OCH ₂ <u>CH₃</u>); 2.02 (6H, c, C(CH ₃) ₂); 4.25 (2H, κ , $J = 7.0$, O <u>CH₂</u> CH ₃); 7.01 (1H, c, 3-CH); 9.40 (1H, c, 1-CH)			
3e	1228	1745	1770	2.00 (6H, c, C(CH ₃) ₂); 2.32 (3H, c, 3-CH ₃); 7.11 (1H, д, <i>J</i> = 7.2, 2-CH); 9.43 (1H, д, <i>J</i> = 7.2, 1-CH)			
3f	1230	1748	1760	2.09 (6H, c, C(CH ₃) ₂); 2.28, 2.43 (6H, 2c, 2,3-(CH ₃) ₂); 9.45 (1H, c, 1-CH)			
3g	1225	1740	1765	2.15 (6H, c, C(CH ₃) ₂); 7.55–8.30 (6H, м, аром.); 9.70 (1H, c, 1-CH)			

ИК и ЯМР ¹Н спектры соединений За-д

Соеди- нение	Брутто-		<u>Най</u> Вычи	Т. пл., °С	Выход,		
	формула	С, %	Н, %	N, %	M*		/0
3a	$C_{14}H_9NO_2S_3$	<u>52.74</u> 52.64	<u>2.92</u> 2.84	<u>4.43</u> 4.38	<u>319</u> 319.43	295-300	65
3b	$C_{15}H_{11}NO_2S_3$	<u>54.17</u> 54.03	<u>3.45</u> 3.33	$\frac{4.30}{4.20}$	<u>333</u> 333.46	254–256	74
3c	$C_{15}H_{11}NO_3S_3$	<u>51.47</u> 51.65	<u>3.09</u> 3.17	<u>4.17</u> 4.01	<u>349</u> 349.46	278–279	68
3d	$C_{16}H_{13}NO_3S_3$	<u>52.95</u> 52.87	<u>3.56</u> 3.61	<u>3.72</u> 3.85	<u>363</u> 363.49	270–272	62
3e	$C_{15}H_{11}NO_2S_3$	$\frac{54.11}{54.03}$	<u>3.27</u> 3.33	$\frac{4.29}{4.20}$	<u>333</u> 333.46	305–307	58
3f	$C_{16}H_{13}NO_2S_3$	<u>55.46</u> 55.31	<u>3.89</u> 3.77	$\frac{4.12}{4.03}$	<u>347</u> 347.49	233–235	70
3g	$C_{21}H_{13}NO_4S_3$	<u>57.31</u> 57.39	<u>3.06</u> 2.98	<u>3.23</u> 3.19	<u>439</u> 439.52	268–270	74

Характеристики и выходы соединений За-д

* Масс-спектрометрически.

В спектрах ЯМР ¹Н дитиолопирролохинолинов **3а–f** (табл. 1), по сравнению с исходными дитиолхинолинами **1а–f**, отсутствует сигнал протона N–H в области 5.5–6.2 м. д., а в ароматической области наблюдается характерный набор сигналов, уменьшенный на 1 протон. Химический сдвиг протона C(1)–H, находящегося под воздействием анизотропного эффекта соседней тиокетонной группы, смещается в область еще более слабого поля, вплоть до значений 9.50 м. д.

Выходы и характеристики синтезированных соединений **3d**-**g** приведены в табл. 2.

Наличие в структуре полученных тетрациклических соединений **3а-g** 1,2-дитиолтионового цикла позволяет осуществлять дальнейшую их модификацию, в частности с использованием реакции 1,3-диполярного циклоприсоединения.

Установлено, что соединения **3а–f**, как и исходные [1,2]дитиоло[3,4-*c*]хинолин-1-тионы **1а–f** [6], уже при комнатной температуре легко вступают в реакцию 1,3-диполярного циклоприсоединения с диметиловым эфиром ацетилендикарбоновой кислоты (ДМАД, ADM). Из-за плохой растворимости соединений **3а–f** и во избежание протекания в связи с этим побочных процессов реакцию проводили в ДМФА.

В результате с умеренными выходами (40–50%) выделены производные новой гетероциклической системы – диметил-2-(8-R¹-9-R²-4,4-диметил-1,2-диоксо-5-тиоксо-1,2,5,6-тетрагидро-4H-пирроло[3,2,1-*ij*]хинолин-6-илиден)-1,3-дитиол-4,5-дикарбоксилаты **4a**–**f**.

Проведение реакции при более высоких температурах, как и ожидалось, приводит к появлению наряду с соединениями **4a**–**f** еще одного конкурирующего продукта. Этим продуктом может быть только ожидаемый аддукт циклоприсоединения еще одной молекулы ДМАД к диеновой системе продуктов **4a**–**f**.

Установлено, что соединения **4а–f** взаимодействуют с молекулой ДМАД 612

по типу реакции Дильса–Альдера при кипячении реагентов в толуоле. Образующимся при этом аддуктам можно однозначно приписать структуру новой конденсированной гетероциклической системы – диметил- $(2-R^1,3-R^2-7,7-диметил-4',5'-диметоксикарбонил-4,5-диоксо-4,5,7,11-тетра-гидроспиро(пирроло)[3,2,1-$ *ij*]тиопирано[2,3-*c*]хинолин-11,2'-[1,3]дитиол)-дикарбоксилатов**5а**–**f**. Последние получены также и одностадийно при взаимодействии пирроло[3,2,1-*ij*]хинолин-4,5-дионов**3а**–**f**с двойным избытком ДМАД в кипящем толуоле. При этом выходы целевых продуктов**5а**–**f**, в первом и втором вариантах практически не различаются и являются достаточно высокими (60–80%).

4, 5 a–d $R^2 = H$; a $R^1 = H$, b $R^1 = Me$, c $R^1 = OMe$, d $R^1 = OEt$, e $R^1 = H$, $R^2 = Me$, f $R^1 = R^2 = Me$

В спектрах ЯМР ¹Н илиденов **4a**–**f** (табл. 3), по сравнению со спектрами исходных 10-тиоксохинолин-4,5-дионов **3a–f**, химические сдвиги ароматических протонов возвращаются в "нормальную" область, в диапазон от 7.0 до 7.8 м. д., а в области 3.8–3.9 м. д. появляются в виде двух синглетов химические сдвиги метоксикарбонильных групп.

В спектрах ЯМР ¹Н бисаддуктов **5а–f** в области 3.8–3.9 м. д. наблюдается уже мультиплет химических сдвигов четырех метоксикарбонильных групп. Их магнитная неэквивалентность, очевидно, объясняется инверсией как спиро-1,3-дитиольного, так и дигидротиопиранового циклов. Характеристики и выходы синтезированных соединений **4а–f** и **5а–f** приведены в табл. 4.

Таблица З

Соеди- нение	Химический сдвиг, б, м. д. (Ј, Гц)
4a	2.10 (6H, c, C(CH ₃) ₂); 3.81, 3.88 (6H, 2c, OCH ₃); 6.99 (1H, д, <i>J</i> = 7.1, 3-CH); 7.15 (1H, т, <i>J</i> = 7.1, 2-CH); 7.71 (1H, д, <i>J</i> = 7.1, 1-CH)
4b	2.05 (6H, c, C(CH ₃) ₂); 2.33 (3H, c, 2-CH ₃); 3.83, 3.90 (6H, 2c, OCH ₃); 7.19 (1H, c, 3-CH); 7.63 (1H, c, 1-CH)
4c	2.12 (6H, c, C(CH ₃) ₂); 3.80, 3.82, 3.88 (9H, 3c, CH ₃ O); 7.05 (1H, c, 3-CH); 7.73 (1H, c, 1-CH)
4d	1.22 (3H, τ, $J = 7.0$, OCH ₂ CH ₃); 2.02 (6H, c, C(CH ₃) ₂); 3.81, 3.88 (6H, 2c, OCH ₃); 4.28 (2H, κ, $J = 7.0$, OCH ₂ CH ₃); 7.01 (1H, c, 3-CH); 7.70 (1H, c, 1-CH)
4e	2.00 (6H, c, C(CH ₃) ₂); 2.35 (3H, c, 3-CH ₃); 3.80, 3.86 (6H, 2c, OCH ₃); 7.11 (1H, д, <i>J</i> = 7.2, 2-CH); 7.43 (1H, д, <i>J</i> = 7.2, 1-CH)
4f	2.09 (6H, c, C(CH ₃) ₂); 2.23, 2.40 (6H, 2c, 2,3-(CH ₃) ₂); 3.84; 3.90 (6H, 2c, OCH ₃); 9.45 (1H, c, 1-CH)
5a	2.13 (6H, c, C(CH ₃) ₂); 3.8–3.9 (12H, м, OCH ₃); 6.97 (1H, д, <i>J</i> = 7.0, 3-CH); 7.13 (1H, т, <i>J</i> = 7.0, 2-CH); 7.51 (1H, д, <i>J</i> = 7.0, 1-CH)
5b	2.05 (6H, с, C(CH ₃) ₂); 2.33 (3H, с, 2-CH ₃); 3.8–3.9 (12H, м, OCH ₃); 7.19 (1H, с, 3-CH); 7.43 (1H, с, 1-CH)
5c	2.15 (6H, с, С(СН ₃) ₂); 3.82–3.95 (15H, м, ОСН ₃); 7.05 (1H, с, 3-СН); 7.51 (1H, с, 1-СН)
5d	1.22 (3H, т, <i>J</i> = 7.0, OCH ₂ <u>CH₃</u>); 2.09 (6H, с, C(CH ₃) ₂); 3.8–3.9 (12H, м, OCH ₃); 4.20 (2H, м, O <u>CH₂</u> CH ₃); 7.01 (1H, с, 3-CH); 7.50 (1H, с, 1-CH)
5e	2.00 (6H, с, С(СН ₃) ₂); 2.30 (3H, с, 3-СН ₃); 3.8–3.9 (12H, м, ОСН ₃); 7.11 (1H, д, <i>J</i> = 7.2, 2-СН); 7.47 (1H, д, <i>J</i> = 7.2, 1-СН)
5f	2.09 (6H, с, С(СН ₃) ₂); 2.26, 2.49 (6H, 2с, 2,3-(СН ₃) ₂); 3.8–3.9 (12H, м, ОСН ₃); 9.45 (1H, с, 1-СН)

Спектры ЯМР ¹Н соединений 4а–f, 5а–f

Таблица 4

Характеристики и выходы синтезированных соединений 4а–f и аддуктов 5а–f

Соеди-	Брутто-		<u>Най</u> Вычг	Т. пл., °С	Выход,		
нение	формула	С, %	Н, %	N, %	M*		/0
4a	$C_{20}H_{15}NO_6S_3$	<u>52.18</u> 52.05	$\frac{3.34}{3.28}$	$\frac{3.12}{3.03}$	<u>461</u> 461.54	172–173	42
4b	$C_{21}H_{17}NO_6S_3$	<u>53.18</u> 53.04	<u>3.72</u> 3.60	<u>2.87</u> 2.95	<u>475</u> 475.57	184–186	53
4c	$C_{21}H_{17}NO_7S_3$	<u>51.40</u> 51.31	<u>3.54</u> 3.49	<u>2.78</u> 2.85	<u>491</u> 491.57	179–181	45
4d	$C_{22}H_{19}NO_7S_3$	<u>52.37</u> 52.26	<u>3.87</u> 3.79	<u>2.84</u> 2.77	<u>505</u> 505.60	173–174	50
4e	$C_{21}H_{17}NO_6S_3$	<u>53.13</u> 53.04	<u>3.74</u> 3.60	<u>2.83</u> 2.95	<u>475</u> 475.57	187–188	47
4f	$C_{22}H_{19}NO_6S_3$	<u>54.10</u> 53.97	<u>4.03</u> 3.91	<u>2.91</u> 2.86	<u>489</u> 489.60	182-183	40
5a	$C_{26}H_{21}NO_{10}S_{3} \\$	<u>51.87</u> 51.73	<u>3.64</u> 3.51	<u>2.48</u> 2.32	<u>603</u> 603.65	184–185	70
5b	$C_{27}H_{23}NO_{10}S_3$	<u>52.61</u> 52.50	<u>3.81</u> 3.75	<u>2.34</u> 2.27	<u>617</u> 617.68	228–230	65
5c	$C_{27}H_{23}NO_{11}S_3$	$\frac{51.24}{51.18}$	$\frac{3.73}{3.66}$	$\frac{2.31}{2.27}$	<u>633</u> 633.68	199–201	68
5d	$C_{28}H_{25}NO_{11}S_3$	<u>52.03</u> 51.92	<u>3.77</u> 3.89	<u>2.24</u> 2.16	<u>647</u> 647.71	210–211	62
5e	$C_{27}H_{23}NO_{10}S_3$	<u>52.63</u> 52.50	<u>3.80</u> 3.75	<u>2.39</u> 2.27	<u>617</u> 617.68	225–226	60
5f	$C_{28}H_{25}NO_{10}S_3$	<u>53.37</u> 53.24	<u>3.89</u> 3.96	$\frac{2.36}{2.22}$	<u>631</u> 631.71	289–290	72

* Масс-спектрометрически.

^{= 2.05 (011, 0, 0(011, 20, 2.0, 0(011, 20, 20, 0(011, 20, 20, 0(011, 0, 0, 0)))))))}

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Контроль за ходом реакции и индивидуальностью полученных веществ осуществляли методом TCX на пластинах Silufol UV-254, элюент хлороформ, этилацетат. ИК спектры снимали на приборе Specord M-80 в вазелиновом масле. Спектры ЯМР¹Н – на приборе Вгикег АС-300 (300 МГц) в ДМСО-d₆, внутренний стандарт ТМС. Масс-спектры – на приборе LKB-9000, энергия ионизирующих электронов 70 эВ.

Исходные [1,2]дитиоло[3,4-с]хинолин-1-тионы **1а**-д получали как описано в работе [1].

2-R¹-R²-7,7-Диметил-10-тиоксо-4,5,7,10-тетрагидро[1,2]дитиоло[3,4-с]пирроло-[3,2,1-и] хинолин-4,5-дионы За-д. Смесь 0.01 моль соответствующего [1,2] дитиоло[3,4-с]хинолин-1-тиона **1а-f** и 0.011 моль оксалилхлорида в 30 мл абсолютного толуола кипятят 1.5-2 ч, охлаждают, выпавший осадок отфильтровывают и перекристаллизовывают из ДМФА.

Диметил-2-(8-R¹-9-R²-4,4-диметил-1,2-диоксо-5-тиоксо-1,2,5,6-тетрагидро-4Нпир-роло[3,2,1-*ii*]хинолин-6-илиден)-1,3-дитиол-4,5-дикарбоксилаты 4a-f. Смесь 0.01 моль соответствующего соединения **За-f** растворяют в 50 мл ДМФА, прибавляют по каплям при комнатной температуре 0.01 моль ДМАД и оставляют реакционную массу на ночь. По окончании реакции (контроль с помощью ТСХ) реакционную массу выливают в 200 мл воды, осадок отфильтровывают, сушат и перекристаллизовывают из диоксана.

Диметил-(2-R¹-3-R²-7,7-диметил-4',5'-диметоксикарбонил-11)-4,5-диоксо-4,5,7,11тетрагидроспиро(пирроло)[3,2,1-*ij*]тиопирано[2,3-с]хинолин-11,2'-[1,3]дитиол)-9,10-дикарбоксилаты 5а-f. А. Смесь 0.01 моль диена 4а-f и 0.01 моль ДМАД в 30 мл толуола кипятят 4-5 ч, толуол отгоняют при пониженном давлении и остаток кристаллизуют из диоксана.

Б. Смесь 0.01 моль [1,2]дитиоло[3,4-с]хинолин-1-тиона **За-f** и 0.02 моль ДМАД в 30 мл толуола кипятят 4-5 ч, толуол отгоняют при пониженном давлении и остаток кристаллизуют из диоксана.

СПИСОК ЛИТЕРАТУРЫ

- 1. J. P. Brown, J. Chem. Soc. (C), 1074 (1968).
- 2. О. А. Ожогина, М. А. Гольдфейн, Х. С. Шихалиев, Ж. В. Шмырева, Э. Г. Розанцев, Изв. АН СССР. Сер. хим., 782 (1991).
- 3. X. С. Шихалиев, Е. В. Лещева, С. М. Медведева, *ХГС*, 852 (2002).

- Х. С. Шихалиев, Ж. В. Шмырева, Л. П. Залукаев, *ЖОрХ*, 24, 232 (1988).
 R. Stolle, *Ber.*, 46, 3915 (1913).
 Х. С. Шихалиев, С. М. Медведева, Г. И. Ермолова, Г. В. Шаталов, *ХГС*, 656 (1999).

Воронежский государственный университет, Воронеж 394006, Россия e-mail: shikh@online.ru

Поступило в редакцию 29.04.2003 После доработки 06.02.2006