В. П. Фешин, Е. В. Фешина, Л. И. Жижина

ЭЛЕКТРОННОЕ И ПРОСТРАНСТВЕННОЕ СТРОЕНИЕ ПЯТИЧЛЕННЫХ КИСЛОРОД- ИЛИ СЕРОСОДЕРЖАЩИХ ЦИКЛИЧЕСКИХ СОЕДИНЕНИЙ ФОСФОРА И МЫШЬЯКА ПО РЕЗУЛЬТАТАМ КВАНТОВО-ХИМИЧЕСКИХ РАСЧЕТОВ

Выполнены неэмпирические квантово-химические расчеты пятичленных гетероциклических молекул, содержащих атомы О или S, а также Р или As в цикле, методами RHF/6-31G(d) и MP2/6-31G(d) с полной оптимизацией их геометрии. Изучено их электронное и пространственное строение, особенности взаимного влияния атомов в молекулах.

Ключевые слова: пятичленные кислород- или серосодержащие циклические соединения фосфора и мышьяка, квантово-химические расчеты, электронное и пространственное строение.

Для кислородсодержащих соединений 1 и 2 частоты ЯКР ³⁵Cl при 77 К значительно ниже, чем для соответствующих серосодержащих аналогов 3 и 4 (табл. 1) [1, 2], что указывает на более высокие электронные плотности в атомах Cl в 1 и 2. Это объяснено тем, что атом серы менее способен к p_{π^-} σ -сопряжению, чем атом кислорода [2]. Мы полагаем, что такое соотношение частот ЯКР и электронных плотностей для этих кислород- и серосодержащих соединений обусловлено поляризацией связей Z–Cl под действием заряда атома S или O непосредственно через поле, как и в других соединениях, содержащих нелинейную трехатомную группировку Y–Z–M или Y–Z=M (см., например, [3–6]). Отрицательный заряд на атомах кислорода в молекулах 3 и 4, что и должно приводить к наблюдаемому соотношению электронных плотностей в атомах Cl и частот ЯКР для этих соединений.

1 Z = P, M(1) = M(2) = O; 2 Z = As, M(1) = M(2) = O; 3 Z = P, M(1) = M(2) = S;4 Z = As, M(1) = M(2) = S

Для изучения электронного и пространственного строения молекул соединений 1–4, взаимного влияния атомов в них нами выполнены неэмпирические квантово-химические расчеты этих молекул методами RHF/6-31G(d) и MP2/6-31G(d) с полной оптимизацией их геометрии по программе GAUSSIAN 94W [7]. Начало системы координат выбрано в месте расположения ядра атома Cl. Ее ось *z* направлена вдоль связи Cl–Z.

Соеди- нение	ν _э , МГц	ν _b , ΜΓц (RHF)	ν _в , МГц (MP2)		
1	19.858 [1]	19.957	20.876		
2	20.676 [2]	20.737	21.522		
3	24.807 [1]	25.684	25.807		
4	21.701 [2]	24.739	24.882		

Экспериментальные (v₃) частоты ЯКР ^{35}Cl соединений 1–4 при 77 К и вычисленные (v_b) в рамках методов RHF/6-31G(d) и MP2/6-31G(d)

Основные геометрические параметры молекул 1–4 получены в результате оптимизации их геометрии методами RHF/6-31G(d) (табл. 2), и MP2/6-31G(d) (табл. 3). Как видно, эти параметры, полученные методами различного уровня, различаются незначительно, так же, как заряды на атомах (табл. 4) и заселенности валентных *p*-орбиталей атомов Cl и их составляющих (табл. 5). Согласно результатам оптимизации геометрии молекул 1–4, все они имеют аналогичное строение.

Таблица 2

Длины связей (*d*), валентные (α) и торсионные (β) углы в молекулах соединений 1–4, рассчитанные методом RHF/6-31G(d)

			1	1	1	
Соеди- нение	Связь	<i>d</i> , Å	Угол	α, град	Угол	β, град
1	Cl–P	2.107	Cl-P-O(1)	100.32	Cl-P-O(1)-C(1)	-75.44
	P-O(1)	1.612	Cl-P-O(2)	100.23	Cl-P-O(2)-C(2)	86.30
	P-O(2)	1.612	P-O(1)-C(1)	112.50	P-O(1)-C(1)-C(2)	-27.66
	O(1)–C(1)	1.421	P-O(2)-C(2)	114.46	P-O(2)-C(2)-C(1)	0.93
	O(2)–C(2)	1.422	O(1)-C(1)-C(2)	105.66	O(1)-C(1)-C(2)-O(2)	16.04
	C(1)–C(2)	1.539	O(2)–C(2)–C(1)	106.37		
2	Cl–As	2.219	Cl-As-O(1)	99.31	Cl-As-O(1)-C(1)	-75.56
	As-O(1)	1.744	Cl-As-O(2)	98.41	Cl-As-O(2)-C(2)	96.28
	As-O(2)	1.746	As-O(1)-C(1)	111.02	As-O(1)-C(1)-C(2)	-34.89
	O(1)–C(1)	1.416	As-O(2)-C(2)	113.36	As-O(2)-C(2)-C(1)	-15.52
	O(2)–C(2)	1.418	O(1)-C(1)-C(2)	106.54	O(1)-C(1)-C(2)-O(2)	31.54
	C(1)–C(2)	1.531	O(2)–C(2)–C(1)	107.65		
3	Cl–P	2.096	Cl-P-S(1)	102.52	Cl-P-S(1)-C(1)	-72.68
	P-S(1)	2.097	Cl-P-S(2)	102.72	Cl-P-S(2)-C(2)	93.08
	P-S(2)	2.111	P-S(1)-C(1)	96.86	P-S(1)-C(1)-C(2)	-50.40
	S(1)–C(1)	1.824	P-S(2)-C(2)	101.11	P-S(2)-C(2)-C(1)	-18.63
	S(2)–C(2)	1.837	S(1)-C(1)-C(2)	110.05	S(1)-C(1)-C(2)-S(2)	46.95
	C(1)–C(2)	1.522	S(2)–C(2)–C(1)	111.85		
4	Cl–As	2.219	Cl-As-S(1)	99.69	Cl-As-S(1)-C(1)	-71.05
	As-S(1)	2.209	Cl-As-S(2)	99.81	Cl-As-S(2)-C(2)	92.98
	As-S(2)	2.222	As-S(1)-C(1)	96.32	As-S(1)-C(1)-C(2)	-51.90
	S(1)–C(1)	1.826	As-S(2)-C(2)	100.50	As-S(2)-C(2)-C(1)	-23.34
	S(2)–C(2)	1.836	S(1)-C(1)-C(2)	110.80	S(1)-C(1)-C(2)-S(2)	52.51
	C(1)–C(2)	1.521	S(2)–C(2)–C(1)	112.63		

Соеди- нение	Связь	d, Å	Угол	α, град	Угол	β, град
1	Cl–P	2.107	Cl-P-O(1)	100.89	Cl-P-O(1)-C(1)	-72.74
	P-O(1)	1.649	Cl-P-O(2)	100.55	Cl-P-O(2)-C(2)	91.98
	P-O(2)	1.649	P–O(1)–C(1)	108.97	P–O(1)–C(1)–C(2)	-37.94
	O(1)–C(1)	1.450	P-O(2)-C(2)	112.35	P-O(2)-C(2)-C(1)	-10.65
	O(2)–C(2)	1.451	O(1)-C(1)-C(2)	105.01	O(1)-C(1)-C(2)-O(2)	29.86
	C(1)–C(2)	1.539	O(2)–C(2)–C(1)	106.34		
2	Cl–As	2.225	Cl-As-O(1)	100.00	Cl-As-O(1)-C(1)	-73.22
	As-O(1)	1.784	Cl-As-O(2)	98.36	Cl-As-O(2)-C(2)	98.35
	As-O(2)	1.787	As-O(1)-C(1)	107.57	As-O(1)-C(1)-C(2)	-41.09
	O(1)–C(1)	1.447	As-O(2)-C(2)	110.57	As-O(2)-C(2)-C(1)	-20.89
	O(2)–C(2)	1.448	O(1)–C(1)–C(2)	106.32	O(1)-C(1)-C(2)-O(2)	39.91
	C(1)–C(2)	1.523	O(2)–C(2)–C(1)	107.87		
3	Cl–P	2.104	Cl-P-S(1)	102.52	Cl-P-S(1)-C(1)	-71.53
	P–S(1)	2.097	Cl-P-S(2)	102.83	Cl-P-S(2)-C(2)	92.97
	P–S(2)	2.113	P–S(1)–C(1)	95.66	P-S(1)-C(1)-C(2)	-53.05
	S(1)–C(1)	1.822	P-S(2)-C(2)	100.49	P-S(2)-C(2)-C(1)	-20.13
	S(2)–C(2)	1.834	S(1)-C(1)-C(2)	109.49	S(1)-C(1)-C(2)-S(2)	50.03
	C(1)–C(2)	1.518	S(2)-C(2)-C(1)	111.28		
4	Cl–As	2.227	Cl-As-S(1)	99.50	Cl-As-S(1)-C(1)	-69.84
	As–S(1)	2.216	Cl-As-S(2)	99.44	Cl-As-S(2)-C(2)	93.16
	As-S(2)	2.230	As-S(1)-C(1)	94.99	As-S(1)-C(1)-C(2)	-54.31
	S(1)–C(1)	1.825	As-S(2)-C(2)	99.50	As-S(2)-C(2)-C(1)	-25.39
	S(2)–C(2)	1.834	S(1)-C(1)-C(2)	110.16	S(1)-C(1)-C(2)-S(2)	56.15
	C(1)–C(2)	1.517	S(2)-C(2)-C(1)	112.29		

Длины связей (d), валентные (α) и торсионные (β) углы в молекулах соединений 1–4, рассчитанные методом MP2/6-31G(d)

Таблица 4

Заряды (q) на атомах Cl, C, Z (P, As) и M (O, S) в молекулах соединений 1–4, рассчитанные методами RHF/6-31G(d) и MP2/6-31G(d)

Me-	Соеди-	q,e								
тод	нение	Cl	Z	M(1)	M(2)	C(1)	C(2)			
RHF	1	-0.386	1.081	-0.704	-0.713	-0.058	-0.026			
	2	-0.320	1.097	-0.738	-0.751	-0.045	-0.004			
	3	-0.284	0.382	-0.015	-0.033	-0.507	-0.470			
	4	-0.274	0.265	0.037	0.026	0.498	-0.474			
MP2	1	-0.373	1.102	-0.719	-0.736	-0.073	-0.015			
	2	-0.314	1.094	-0.740	-0.755	-0.055	-0.002			
	3	-0.288	0.383	-0.010	-0.028	-0.510	-0.496			
	4	-0.278	0.268	0.039	0.029	-0.500	-0.473			

Соеди- нение	Орбиталь	Np_x , e	Np _y , e RHF	N <i>pz</i> , e	Np_x , e	Np_y , e MP2	Np_z , e
1	3 <i>p</i>	1.270	1.269	1.055	1.273	1.271	1.048
	4p	0.692	0.692	0.427	0.689	0.688	0.424
	ΣNp	1.962	1.961	1.482	1.962	1.959	1.472
2	3 <i>p</i>	1.264	1.268	1.043	1.269	1.265	1.036
	4p	0.685	0.689	0.418	0.682	0.683	0.418
	ΣNp	1.949	1.957	1.461	1.951	1.948	1.454
3	3 <i>p</i>	1.281	1.287	1.008	1.281	1.286	1.006
	4p	0.680	0.677	0.382	0.681	0.678	0.387
	ΣNp	1.961	1.964	1.390	1.962	1.964	1.393
4	3 <i>p</i>	1.273	1.278	1.010	1.272	1.278	1.008
	4p	0.681	0.678	0.396	0.681	0.679	0.400
	ΣNp	1.954	1.954	1.406	1.953	1.957	1.408

Заселенности валентных *p*-орбиталей атомов Cl (ΣNp), их 3*p*- и 4*p*-составляющих в молекулах соединений 1–4, оцененные в рамках методов RHF/6-31G(d) и MP2/6-31G(d)

Сумма углов у атома Р несколько больше, чем у атома As. У атома Р в молекулах соединения 1 она составляет ~295, а в соединении $3 - ~302^{\circ}$, тогда как у атома As в соединении 2 - ~289, а в соединении $4 - ~293^{\circ}$. Атомы Р и As имеют пирамидальное электронное строение. Двугранные углы ClZM(1)C(1) во всех изученных молекулах близки по величине, так же, как и ClZM(2)C(2).

Углы ClZO(1)C(1) оптимальны для поляризации связей Cl–Z под действием неподеленных пар электронов атома O(1) непосредственно через поле, но не для p_{π} - σ -сопряжения. Последнее просто невозможно при такой геометрии молекул. Углы ClZO(2)C(2) несколько менее благо-приятны для такой поляризации (см., например, [8]).

Можно полагать, что закономерности изменения электронной плотности в атоме Cl, длин связей Z–Cl и т. д. при изменении ориентации неподеленных электронных пар атома S относительно связи Z–Cl в группировке Cl–Z–S будут такими же, как в случае атома O в группировке Cl–Z–O [8]. Поэтому изложенное выше для кислородсодержащих молекул справедливо и для серосодержащих аналогов.

Как и следовало ожидать, отрицательные заряды на атомах О в молекулах соединений 1 и 2 значительно выше, чем на атоме S в соединении 3. В молекуле соединения 4 атом S имеет небольшой положительный заряд (табл. 4). В соответствии с неиндукционным влиянием атома M на атом Y в группировках Y–Z–M и Y–Z=M (см., например, [3–6]) значительный отрицательный заряд на атоме O (M = O) приводит к увеличению электронной плотности атома Cl (Y = Cl) и уменьшению ее на атоме P (Z = P) в молекуле соединения 1 и As (Z = As) в молекуле соединения 2 по сравнению с молекулами соединений 3 и 4 соответственно (табл. 4). Отрицательный заряд на атоме O в молекуле соединения 2 несколько выше, чем в молекуле соединения 1. В соответствии с указанной закономерностью при прочих равных условиях это должно приводить к более высокой электронной плотности атома Cl и более низкой частоте $\text{ЯКР}^{35}\text{Cl}$ молекулы соединения 2. Однако в действительности отрицательный заряд на атоме Cl в этой молекуле несколько ниже, чем в молекуле соединения 1, а ее экспериментальная и вычисленная частоты $\text{ЯКР}^{35}\text{Cl}$ выше. Это обусловлено тем, что поляризация связи Y–Z в группировке Y–Z–M зависит не только от заряда атома M, но и обратно пропорциональна квадрату расстояния между этим зарядом и электронным облаком связи Y–Z (см., например, [3, 9]). Поскольку объем атома As больше, чем для молекулы соединения 1, что и приводит к наблюдаемому соотношению электронных плотностей атомов Cl и частот $\text{ЯКР}^{35}\text{Cl}$ молекул соединений 1 и 2. Соотношение зарядов на атомах M и Cl в молекулах соединений 3 и 4 соответствует указанной выше закономерности (табл. 4).

Ранее (см., например, [3, 10, 11]) нами получено удовлетворительное соответствие между экспериментальными частотами ЯКР ³⁵Cl и вычисленными по уравнению (1) [12].

$$v = (e^2 Q q_{ar}/2h) [-N_z + (N_x + N_y)/2] (1 + \eta^2/3)^{1/2}$$
(1)

с заселенностями (N) 3*p*-составляющих валентных *p*-орбиталей атомов Cl, найденными при проведении неэмпирических квантово-химических расчетов органических и элементоорганических молекул различными методами. Это соответствие позволяет более глубоко интерпретировать экспериментальные спектры ЯКР ³⁵Cl.

Аналогично были вычислены частоты ЯКР ³⁵Cl для изученных молекул соединений 1–4 (табл. 1). Значения частот, рассчитанные для молекул соединений 1 и 2 (особенно в рамках метода RHF/6-31G(d)), практически совпадают с экспериментальными. Вычисленная и экспериментальная частоты ЯКР молекулы соединения 2 лишь незначительно выше, чем соединения 1. Рассчитанная частота ЯКР молекулы соединения 3 несколько выше, а молекулы соединения 4 – значительно выше экспериментальной.

Вычисленные частоты ЯКР ³⁵Cl двух последних молекул различаются незначительно. Также незначительно должны различаться и экспериментальные частоты ЯКР этих соединений. Однако в литературе [2] приведена экспериментальная частота ЯКР ³⁵Cl соединения **4**, значительно более низкая, чем для **3** (табл. 1). Наиболее вероятно, что в статье [2] неверно приведена частота ЯКР ³⁵Cl соединения **4**.

Удовлетворительное соответствие между экспериментальными частотами ЯКР ³⁵Cl органических и элементоорганических соединений и вычисленными по заселенностям 3*p*-составляющих валентных *p*-орбиталей их атомов Cl, в том числе и соединений 1–3, позволяет проанализировать причины изменений частот ЯКР для соединений 1–4 при переходе от одного к другому. Повышение частот ЯКР при переходе от кислородк серосодержащим молекулам в некоторой степени обусловлено незначительным повышением полусуммы заселенностей 3*p*-составляющих валентных p_x - и p_y -орбиталей атомов Cl. Основной же вклад в это повышение вносит значительное уменьшение при таком переходе заселенностей 3*p*-составляющих валентных $p_z(p_{\sigma})$ -орбиталей этих атомов (табл. 5, уравнение (1)), что вполне согласуется с объяснением соотношения частот ЯКР ³⁵Cl этих соединений поляризацией связей Z–Cl под действием заряда атома М непосредственно через поле.

СПИСОК ЛИТЕРАТУРЫ

- 1. И. А. Кюнцель, Г. Б. Сойфер, *Каталог спектров ЯКР* ³⁵*Cl соединений фосфора*, *содержащих связь Р–Cl*, Изд-во Том. ун-та. Пермское отделение, 1991, ч. 1, 56 с.
- 2. Д. У. Закиров, Д. Я. Осокин, И. А. Сафин, Н. А. Чадаева, Л. К. Юлдашева, *Теор. и* эксперим. химия, **13**, 80 (1977).
- 3. В. П. Фешин. Электронные эффекты в органических и элементоорганических молекулах, Екатеринбург, 1997, 377 с.
- 4. V. P. Feshin, E. V. Feshina, L. I. Zhizhina, J. Mol. Struct., 650, 33 (2003).
- 5. В. П. Фешин, М. Ю. Коньшин, Е. В. Фешина, *ЖОХ*, **68**, 1656 (1998).
- 6. В. П. Фешин, М. Ю. Коньшин, Е. В. Фешина, *ЖОХ*, **69**, 380 (1999).
- M. J. Frisch, G. W. Trucks, H. B. Schlegel, P. M. W. Gill, B. G. Johnson, M. A. Robb, J. R. Cheeseman, T. Keith, G. A. Petersson, J. A. Montgomery, K. Raghavachari, M. A. Al-Laham, V. G. Zakrzewski, J. V. Ortiz, J. B. Foresman, J. Cioslowski, B. B. Stefanov, A. Nanayakkara, M. Challacombe, C. Y. Peng, P. Y. Ayala, W. Chen, M. W. Wong, J. L. Andres, E. S. Replogle, R. Gomperts, R. L. Martin, D. J. Fox, J. S. Binkley, D. J. Defrees, J. Baker, J. P. Stewart, M. Head-Gordon, C. Gonzalez, J. A. Pople, *GAUSSIAN 94, Revision E.3*, Gaussian, Inc., Pittsburgh PA, 1995.
- 8. В. П. Фешин, Е. В. Фешина, ЖОХ, 71, 1895 (2001).
- 9. В. П. Фешин, П. А. Никитин, М. Г. Воронков, ДАН, **238**, 6, 1404 (1978).
- 10. V. P. Feshin, E. V. Feshina, Z. Naturforsch., 55a, 555 (2000).
- 11. D. B. Shlyapnikov, V. P. Feshin, Z. Naturforsch., 57a, 974 (2002).
- 12. T. P. Das, E. L. Hahn, *Nuclear Quadrupole Resonance Spectroscopy*, Acad. Press Inc., New York, 1958.

Институт технической химии УрО РАН, Пермь 614990 e-mail: cheminst@mpm.ru Поступило в редакцию 11.05.2004