И. В. Украинец, Л. В. Сидоренко, О. В. Горохова, Н. А. Джарадат^а

4-ГИДРОКСИХИНОЛОНЫ-2

92.* РЕАКЦИЯ 1-R-2-ОКСО-4-ХЛОР-3-ЭТОКСИКАРБОНИЛ-1,2-ДИГИДРОХИНОЛИНОВ С АНИЛИНАМИ

Предложен препаративный метод получения и осуществлен синтез 4-ариламино-2оксо-1,2-дигидрохинолинов. Проведено рентгеноструктурное исследование 2-оксо-1-пропил-4-(4-хлорфениламино)-1,2-дигидрохинолин-3-карбоновой кислоты, позволившее обосновать легкость декарбоксилирования таких соединений. Приведены результаты изучения противовоспалительной активности синтезированных соединений.

Ключевые слова: 4-ариламино-2-оксо-1,2-дигидрохинолины, декарбоксилирование, противовоспалительная активность, PCA.

Этиловые эфиры 1-R-2-оксо-4-хлор-1,2-дигидрохинолин-3-карбоновых кислот легко вступают в реакцию с алкиламинами, образуя соответствующие 4-алкиламинопроизводные, обладающие противовоспалительной активностью [2]. Продолжая исследования в этой области и с целью установления структурно-биологических закономерностей в данном ряду соединений, мы изучили поведение 1-R-2-оксо-4-хлор-3-этоксикарбонил-1,2-дигидрохинолинов 1 в реакциях с ароматическими аминами.

Оказалось, что в кипящем этаноле анилины реагируют с хлорхинолонами 1 подобно алифатическим аминам, т. е. образуют этиловые эфиры 1-R-4-ариламино-2-оксо-1,2-дигидрохинолин-3-карбоновых кислот 2. Аналогичный результат получен и после проведения синтеза в ДМФА при 100 °C. Однако в кипящем ДМФА проходят более глубокие структурные преобразования, заключающиеся в разрушении этоксикарбонильной группы и приводящие в конечном результате к 1-R-4-ариламино-2-оксо-1,2-дигидрохинолинам 3.

Следует все же отметить, что для полного превращения образующихся на первой стадии аминоэфиров 2 в 3H-4-ариламинохинолоны 3 требуется кипячение реакционной смеси не менее 20 ч. В противном случае продукт изучаемой реакции будет состоять из смеси двух веществ – эфира 2 и 3H-производного 3. Более гладко 1-R-4-ариламино-2-оксо-1,2-дигидрохинолины 3 можно синтезировать взаимодействием анилинов с 1-R-2-оксо-4-хлор-1,2-дигидрохинолин-3-карбоновыми кислотами 4. Продолжительность реакции при этом сокращается до 2 ч, а получаемые 3H-4-ариламинохинолоны 3 имеют высокую степень чистоты, поскольку промежуточные 1-R-4-ариламино-2-оксо-1,2-дигидрохинолин-3-карбоновые кислоты 5

 ^{*} Сообщение 91 см. [1].

2 а R = H, $R^1 = 4$ -OEt; b R = H, $R^1 = 4$ -Cl; c R = Me, $R^1 = H$; 3, 5 а-d R = H, e-l R = Pr; а $R^1 = 4$ -F; b $R^1 = 4$ -Cl; c $R^1 = 2$ -OMe-5-Cl; d $R^1 = 4$ -OEt; e $R^1 = 2$ -F; f $R^1 = 3$ -F; g $R^1 = 4$ -F; h $R^1 = 3$ -CF₃; i $R^1 = 4$ -Cl; j $R^1 = 2$ -COOH; k $R^1 = 4$ -COOH; l $R^1 = 4$ -SO₂NH-(4,6-диметилпиримидин-2-ил); 8 а, b R = Pr, а $R^1 = H$, b $R^1 = Me$

настолько легко декарбоксилируются, что их невозможно выделить после проведения синтеза в кипящем ДМФА. Тем не менее, в более мягких условиях, например в кипящем этаноле, кислоты 5 достаточно устойчивы и при необходимости их можно легко выделить [3]. Из этого следует, что отщепление CO_2 происходит уже после образования 4-аминохинолин-3-карбоновых кислот 5, причем активирующее влияние на этот процесс

Строение молекулы кислоты 5і с нумерацией атомов

оказывают как 4-амино-, так и группы 2-С=О. Известно, что β-оксокислоты, к которым можно отнести и кислоты **5**, декарбоксилируются очень легко. При этом суммарная скорость декарбоксилирования зависит от концентрации самой оксокислоты и от концентрации ее аниона, а быстрое декарбоксилирование таких соединений обусловлено переносом протона карбоксила к соседней группе C=O путем образования водородной связи [4].

По данным РСА (рисунок, табл. 1, 2), дигидропиридиновое кольцо 2-оксо-1-пропил-4-(4-хлорфениламино)-1,2-дигидрохинолин-3-карбоновой кислоты (5i) находится в конформации сильно уплощенной ванны (параметры складчатости: S = 0.19, $\Theta = 79.8^{\circ}$, $\Psi = 0.8^{\circ}$ [5]). Отклонения атомов N₍₁₎ и C₍₃₎ от среднеквадратичной плоскости остальных атомов цикла составляют 0.09 и 0.13 Å соответственно. При этом наблюдается скрученность двойной связи $C_{(2)}$ - $C_{(3)}$ (торсионный угол $C_{(1)}$ - $C_{(2)}$ - $C_{(3)}$ - $C_{(4)}$ -12.2(4)°). Двойная связь С₍₂₎-С₍₃₎ 1.390(4) Å удлинена по сравнению с ее средним значением 1.334 Å [6], а связи N₍₂₎-C₍₃₎ 1.361(4) и C₍₂₎-C₍₁₃₎ 1.482(4) Å укорочены (средние значения 1.416 и 1.502 Å соответственно). Причиной такого перераспределения электронной плотности может быть либо образование внутримолекулярной водородной связи (ВМВС) N₍₂₎-H_(2N)...O₍₃₎ H...O 1.84(5) Å, N-H...O 143(4)°, либо конъюгационные взаимодействия между ариламинным заместителем и карбоксильной группой. Длина связи C₍₁₃₎-O₍₃₎ 1.217(4) Å, соответствующая ее среднему Таблица 1

Связь	l, Å	Связь	l, Å	Связь	l, Å
Cl ₍₁₎ -C ₍₁₇₎	1.747(3)	C(8)-C(9)	1.411(5)	C(1)-C(2)	1.447(4)
N(1)-C(9)	1.384(4)	C ₍₁₁₎ -C ₍₁₂₎	1.504(5)	C ₍₂₎ -C ₍₁₃₎	1.482(4)
N ₍₂₎ -C ₍₃₎	1.361(4)	C(14)-C(19)	1.392(4)	C ₍₄₎ -C ₍₅₎	1.402(5)
O ₍₁₎ -C ₍₁₎	1.259(4)	C(16)-C(17)	1.376(5)	C(5)-C(6)	1.371(5)
O ₍₃₎ –C ₍₁₃₎	1.217(4)	C(18)-C(19)	1.386(5)	C(7)-C(8)	1.370(5)
C ₍₂₎ -C ₍₃₎	1.390(4)	N ₍₁₎ -C ₍₁₎	1.355(4)	$C_{(10)} - C_{(11)}$	1.519(5)
C(3)-C(4)	1.452(4)	N(1)-C(10)	1.476(4)	C(14)-C(15)	1.380(5)
C(4)-C(9)	1.413(4)	N(2)-C(14)	1.419(4)	C(15)-C(16)	1.386(5)
C ₍₆₎ -C ₍₇₎	1.378(5)	O ₍₂₎ -C ₍₁₃₎	1.319(4)	C(17)-C(18)	1.382(5)

Межатомные расстояния (*l*) в структуре кислоты 5і

значению 1.210 Å, позволяет предположить, что основной вклад в перераспределение электронной плотности во фрагменте $N_{(2)}...C_{(3)}...C_{(2)}...C_{(13)}$ вносят конъюгационные взаимодействия. Образование очень сильной ВМВС $O_{(2)}$ – $H_{(20)}...O_{(1)}$ [H...O 1.37(7) Å, O–H...O 160(5)°] приводит к удлинению связи $O_{(1)}$ – $C_{(1)}$ 1.259(4) Å (среднее значение 1.210 Å). При этом длина связи $C_{(13)}$ – $O_{(2)}$ 1.319(4) Å соответствует среднему значению длин связей в карбоксильной группе, а расстояние между атомом $O_{(2)}$ и атомом $H_{(20)}$ составляет 1.117 Å. Это позволяет предположить, что на поверхности потенциальной энергии существует только один минимум, соответствующий нахождению протона на атоме $O_{(2)}$.

Таблица 2

Угол	ω, град.	Угол	ω, град.	Угол	ω, град.
C ₍₁₎ -N ₍₁₎ -C ₍₉₎	122.0(3)	O ₍₃₎ -C ₍₁₃₎ -C ₍₂₎	123.2(3)	C ₍₉₎ -C ₍₄₎ -C ₍₃₎	118.9(3)
$C_{(9)} - N_{(1)} - C_{(10)}$	121.1(3)	$C_{(15)}$ - $C_{(14)}$ - $C_{(19)}$	119.5(3)	$C_{(5)} - C_{(6)} - C_{(7)}$	120.2(3)
$O_{(1)} - C_{(1)} - N_{(1)}$	118.8(3)	C(19)-C(14)-N(2)	119.5(3)	$C_{(7)} - C_{(8)} - C_{(9)}$	120.2(3)
$N_{(1)} - C_{(1)} - C_{(2)}$	119.6(3)	$C_{(17)}$ - $C_{(16)}$ - $C_{(15)}$	119.1(3)	$N_{(1)} - C_{(9)} - C_{(4)}$	119.6(3)
$C_{(3)}$ - $C_{(2)}$ - $C_{(13)}$	121.5(3)	C ₍₁₆₎ -C ₍₁₇₎ -Cl ₍₁₎	119.4(2)	$N_{(1)}$ - $C_{(10)}$ - $C_{(11)}$	112.8(3)
$N_{(2)} - C_{(3)} - C_{(2)}$	120.9(3)	$C_{(17)}$ - $C_{(18)}$ - $C_{(19)}$	119.0(3)	$O_{(3)} - C_{(13)} - O_{(2)}$	120.4(3)
$C_{(2)} - C_{(3)} - C_{(4)}$	118.6(3)	$C_{(1)} - N_{(1)} - C_{(10)}$	116.8(3)	$O_{(2)} - C_{(13)} - C_{(2)}$	116.4(3)
C(5)-C(4)-C(3)	122.2(3)	$C_{(3)} - N_{(2)} - C_{(14)}$	125.2(3)	$C_{(15)}$ - $C_{(14)}$ - $N_{(2)}$	120.9(3)
$C_{(6)} - C_{(5)} - C_{(4)}$	120.9(3)	$O_{(1)} - C_{(1)} - C_{(2)}$	121.6(3)	$C_{(14)}$ - $C_{(15)}$ - $C_{(16)}$	120.6(3)
$C_{(8)}$ - $C_{(7)}$ - $C_{(6)}$	120.9(3)	$C_{(3)} - C_{(2)} - C_{(1)}$	119.4(3)	$C_{(16)}$ - $C_{(17)}$ - $C_{(18)}$	121.4(3)
N ₍₁₎ -C ₍₉₎ -C ₍₈₎	121.5(3)	$C_{(1)} - C_{(2)} - C_{(13)}$	118.9(3)	$C_{(18)}$ – $C_{(17)}$ – $Cl_{(1)}$	119.1(3)
$C_{(8)}$ - $C_{(9)}$ - $C_{(4)}$	118.8(3)	$N_{(2)} - C_{(3)} - C_{(4)}$	120.4(3)	$C_{(18)}$ - $C_{(19)}$ - $C_{(14)}$	120.2(3)
$C_{(12)}$ - $C_{(11)}$ - $C_{(10)}$	111.5(3)	$C_{(5)} - C_{(4)} - C_{(9)}$	118.8(3)		

Валентные углы (ω) в структуре кислоты 5і

Стерическое отталкивание между ароматическим циклом C₍₁₄₎...C₍₁₉₎ и 389

хинолоновым фрагментом [укороченные контакты $H_{(5)}...C_{(14)}$ 2.53 (сумма ван-дер-ваальсовых радиусов 2.87 Å [7]), $H_{(5)}...C_{(15)}$ 2.85 (2.87), $C_{(5)}...C_{(14)}$ 3.01 (3.42), $C_{(5)}...C_{(15)}$ 3.09 (3.42), $C_{(15)}...C_{(4)}$ 3.15 Å (3.42 Å)] обусловливает пирамидальную конфигурацию атома $N_{(2)}$ (сумма валентных углов составляет 355°). Этим же, вероятно, объясняются *sc*-ориентация хлорфенильного заместителя относительно связи $C_{(3)}$ – $C_{(4)}$ (торсионный угол $C_{(14)}$ – $N_{(2)}$ – $C_{(3)}$ – $C_{(4)}$ 42.9(4)°) и разворот плоскости ароматического кольца относительно связи $C_{(3)}$ – $N_{(2)}$ – $C_{(14)}$ – $C_{(15)}$ 25.3(5)°).

Отталкивание между заместителем при атоме $N_{(1)}$ и соседними карбонильной группой и атомом водорода в *пери*-положении бензольного кольца [внутримолекулярные контакты $H_{(8)}...C_{(10)}$ 2.52 (2.87), $H_{(8)}...H_{(10a)}$ 1.93 (2.34), $H_{(10a)}...C_{(8)}$ 2.48 (2.87), $H_{(10b)}...O_{(1)}$ 2.35 Å (2.46 Å)] приводит к удлинению связи $N_{(1)}$ – $C_{(9)}$ 1.384(4) Å по сравнению со средним значением 1.355 Å. Заместитель при атоме $N_{(1)}$ расположен перпендикулярно плоскости дигидроцикла (торсионный угол $C_{(9)}$ – $N_{(1)}$ – $C_{(10)}$ – $C_{(11)}$ 91.3(4)°).

В кристалле кислоты **5i** обнаружены также межмолекулярная водородная связь $C_{(15)}$ - $H_{(15)}$... $O_{(2)'}$ (-1-*x*, 0.5+*y*, 0.5-*z*) H...O' 2.31 Å, C-H...O' 148° и уко-роченные межмолекулярные контакты $Cl_{(1)}$... $H_{(6)'}$ (-*x*, *y*-0.5, 0.5-*z*) 2.88, $Cl_{(1)}$... $H_{(19)'}$ (-*x*, 0.5+*y*, 0.5-*z*) 3.02 Å (сумма ван-дер-ваальсовых радиусов 3.06 Å).

Другими словами, карбоксильные группы кислот 5, благодаря внутрии межмолекулярным водородным связям, сориентированы в пространстве в очень удобном для декарбоксилирования положении. Немаловажную роль, очевидно, играет также и способность 4-аминогрупп к амино-иминной таутомерии, что должно способствовать образованию промежуточного енольного интермедиата 7. Вероятно схожий эффект оказывает и 4-гидроксигруппа (за счет кетоенольной таутомерии) в 1-R-4-гидрокси-2оксо-1,2-дигидрохинолин-3-карбоновых кислотах, имеющих аналогичную систему BMBC [8] и также склонных к легкому декарбоксилированию [9].

Подобно анилинам в кипящем ДМФА с 4-хлорхинолин-3-карбоновыми кислотами реагируют и алифатические аминокислоты, с хорошими выходами образуя соответствующие 4-(карбоксиалкиламино)хинолоны 8, что позволяет в целом рекомендовать данный метод как препаративный.

Полученные 4-аминохинолоны 2, 3, 5, 8 представляют собой бесцветные кристаллические вещества с четкими температурами плавления, растворимые в ДМФА и ДМСО, малорастворимые в спиртах (за исключением эфиров 2), практически нерастворимые в воде. Их химическое строение подтверждено данными элементного анализа и спектроскопии ЯМР ¹Н (табл. 3 и 4), а на отдельных примерах – хромато-масс-спектрометрически.

Как отличительную особенность спектров ЯМР ¹Н этиловых эфиров 1R-4-ариламино-2-оксо-1,2-дигидрохинолин-3-карбоновых кислот **2** можно отметить существенный парамагнитный сдвиг сигналов протонов групп 4-NH по сравнению с 4-N-алкильными аналогами [2]. Он составляет в среднем 1.8 м. д. и обусловлен соседством с ароматическим кольцом. Протон в положении 3 хинолонового ядра в спектрах ЯМР ¹Н 3H-4-ариламинохинолонов **3** проявляется еще одним характеристическим сигналом – синглетом интенсивностью 1H в области 5.05–6.24 м. д. (табл. 4).

Соеди-	Брутто-		<u>Найдено, %</u> Вычислено, %	Т. пл., ⁰С	Выход,		
нение	формула	C H N		Ν	(ДМФА)	%	
3 a	C ₁₅ H ₁₁ FN ₂ O	<u>70.71</u> 70.86	$\frac{4.43}{4.36}$	$\frac{11.14}{11.02}$	323-325	87	
3b	$C_{15}H_{11}ClN_2O$	<u>66.43</u> 66.55	<u>4.22</u> 4.10	<u>10.27</u> 10.35	296–298	90	
3c	$C_{16}H_{13}ClN_2O_2$	<u>63.77</u> 63.90	$\frac{4.26}{4.36}$	<u>9.38</u> 9.31	329–331	81	
3d	$C_{17}H_{16}N_2O_2$	<u>72.96</u> 72.84	<u>5.87</u> 5.75	<u>9.86</u> 9.99	289–291	82	
3e	$C_{18}H_{17}FN_2O$	<u>72.90</u> 72.96	<u>5.70</u> 5.78	<u>9.55</u> 9.45	194–196	88	
3f	$C_{18}H_{17}FN_2O$	$\frac{72.82}{72.96}$	$\frac{5.88}{5.78}$	<u>9.59</u> 9.45	181–183	79	
3g	$C_{18}H_{17}FN_2O$	<u>72.80</u> 72.96	<u>5.85</u> 5.78	<u>9.58</u> 9.45	213–215	84	
3h	$C_{19}H_{17}F_3N_2O$	<u>65.97</u> 65.89	<u>4.86</u> 4.95	$\frac{8.17}{8.09}$	185–187	77	
3i	C ₁₈ H ₁₇ ClN ₂ O	<u>69.24</u> 69.12	<u>5.53</u> 5.48	$\frac{8.90}{8.96}$	240–242	79	
3ј	$C_{19}H_{18}N_2O_3$	<u>70.95</u> 70.79	<u>5.72</u> 5.63	<u>8.57</u> 8.69	247–249	81	
3k	$C_{19}H_{18}N_2O_3$	<u>70.90</u> 70.79	<u>5.77</u> 5.63	<u>8.75</u> 8.69	294–296	80	
31	$C_{24}H_{25}N_5O_3S$	<u>62.33</u> 62.19	<u>5.39</u> 5.44	<u>15.02</u> 15.11	252–254	75	

Характеристики 1R-4-ариламино-2-оксо-1,2-дигидрохинолинов За-I

Образующиеся при ионизации нейтральных молекул катион-радикалы (молекулярные ионы) в масс-спектрах аминохинолонов **3**, содержащих в N-арильных фрагментах алкоксигруппы, характеризуются высокой устойчивостью, о чем свидетельствуют их максимальные по интенсивности пики. Специфической характеристикой спектра хлорзамещенного соединения **3с** являются дублетные сигналы пиков молекулярного иона* $[M]^+$ 300/302 и фрагмента [M–OMe]⁺ 269/271 при соотношении интенсивностей сигналов в каждом дублете 3:1, что обусловлено наличием в молекуле исследуемого вещества одного атома хлора, природная распространенность двух изотопов которого (³⁵Cl и ³⁷Cl) составляет 75.53 и 24.47% соответственно [10].

Типичный распад ароматических соединений типа Ar–O–Alk под воздействием электронного удара протекает путем преимущественной диссоциации связей Ar–O с образованием ионов $[M – OAlk]^+$, тогда как интенсивность ионов $[M – Alk]^+$ обычно значительно ниже [10]. Действительно, фрагментация молекулярного иона метоксизамещенного хинолона **3с** протекает именно по такой схеме (интенсивность пика $[M – OMe]^+$ 269 составляет 77%, а пика $[M – Me]^+$ 300 – 12%), после чего уже следует последовательная потеря атома хлора и фенильного заметителя. Характерное для *мета-* и *пара-*метоксиаренов элиминирование CH₂O в случае

^{*} Здесь далее для пиков ионов в масс-спектрах приведены значения *m/z*.

Таблица 4

Соели	Химические сдвиги, δ, м. д. (<i>J</i> , Гц)*					
нение	4-NH (1H, c)	H-5 (1Н, д)	Н-7 (1Н, т)	Н аром. (м, H-6,8 + 4-N–Ar)	H-3 (1H, c)	\mathbf{R}^{1}
3 a	8.64	8.19 (<i>J</i> = 8.0)	7.63 (<i>J</i> = 7.2)	7.50–7.18 (6H)	5.56	-
3b	8.70	8.17 (<i>J</i> = 8.0)	7.64 (J = 7.5)	7.52–7.17 (6H)	5.74	_
3c	8.32	8.07 (J = 8.1)	7.48 (J = 7.5)	7.35–7.18 (5H)	5.05	3.77 (3H, c, OCH ₃)
3d	8.23	8.05 (<i>J</i> = 8.2)	7.38 (<i>J</i> = 7.4)	7.26–6.90 (6H)	5.51	4.06 (2H, к, <i>J</i> = 6.9, OCH ₂); 1.40 (3H, т, <i>J</i> = 6.9, CH ₃)
3e	8.53	8.19 (<i>J</i> = 8.0)	7.62 (J = 7.3)	7.55–7.21 (6H)	5.28	_
3f	8.75	8.13 (<i>J</i> = 8.0)	7.63 (<i>J</i> = 7.2)	7.56–6.85 (6H)	5.96	_
3g	8.61	8.16 (<i>J</i> = 8.0)	7.61 (<i>J</i> = 7.3)	7.54–7.16 (6H)	5.17	_
3h	8.87	8.14 (<i>J</i> = 7.9)	7.68 (J = 7.1)	7.60–7.23 (6H)	5.95	_
3i	8.55	8.13 (<i>J</i> = 7.8)	7.62 (J = 7.1)	7.51–7.18 (6H)	5.88	_
3j	10.20	8.00 (J = 8.0)	7.66 (J = 7.5)	7.95 (1Н, д, J = 8.1, Н-3'); 7.52–7.05 (5Н)	6.24	12.60 (1H, c, COOH)
3k	8.79	8.13 (<i>J</i> = 7.9)	7.64 (<i>J</i> = 7.4)	7.93 (2H, $dar{J}$, $J = 8.1$, H-3',5'); 7.52 (1H, $dar{J}$, $J = 8.0$, H-8); 7.35 (2H, $dar{J}$, $J = 8.1$, H-2',6'); 7.27 (1H, $tar{J}$, $J = 7.4$, H-6)	6.16	12.42 (1H, c, COOH)
31	8.83	8.09 (J = 8.0)	7.63 (<i>J</i> = 7.5)	7.95 (2H, \exists , $J = 8.6$, H-3',5'); 7.51 (1H, \exists , $J = 8.1$, H-8); 7.40 (2H, \exists , $J = 8.6$, H-2',6'); 7.25 (1H, \exists , $J = 7.5$, H-6)	6.13	11.41 (1H, с, SO ₂ H); 6.73 (1H, с, H-5 пиримидина); 2.25 (6H, с, 2CH ₃)

Спектры ЯМР ¹Н 1R-4-ариламино-2-оксо-1,2-дигидрохинолинов 3а-l

* Сигналы протонов групп 1-NH хинолонов **3а-d** имеют вид синглета в области 10.92–11.18 м. д.; 1-N-пропильный фрагмент хинолонов **3е-l** проявляется тремя сигналами – 4.10 (2H, т, NCH₂), 1.56 (2H, м, NCH₂CH₂) и 0.91 м. д. (3H, т, CH₃).

хинолона **3с** в значительной степени подавлено (интенсивность пика $[M - CH_2O]^+$ 270 составляет всего 14%), что может служить дополни-тельным подтверждением именно *орто*-метоксизамещения.

Напротив, в масс-спектре 4-этоксипроизводного **3d** первичный процесс распада молекулярного иона связан с потерей этильной группы и образованием осколочного иона (251), имеющего хиноидную структуру, с последующим выбросом молекулы СО. Второй путь фрагментации, т. е. разрыв связи RO–Et для 4-этоксифениламинохинолона **3d**, можно считать нехарактерным, поскольку интенсивность соответствующего пика [M – OEt]⁺ 236 в спектре составляет всего лишь 5%.

Противовоспалительные свойства синтезированных соединений изучены на белых крысах обоего пола массой 180-200 г на модели каррагенинового отека стопы по известной методике [11]. Воспаление вызывали субплантарным введением в одну из задних лапок 0.1 мл 1% раствора каррагенина. Исследуемые вещества и препарат сравнения (вольтарен) вводили внутрижелудочно в дозе 8 мг/кг (ЕД50 вольтарена) за 1 ч до инъекции каррагенина. О развитии отека судили по изменению объема стопы, который измеряли в динамике через 1, 2, 3, 4 и 5 ч онкометрически. Анализ полученных экспериментальных данных показывает, что этиловые эфиры 1-R-4-ариламино-2-оксо-1,2-дигидрохинолин-3-карбоновых кислот 2 не оказывают практически никакого влияния на протекание воспалительной реакции. Из группы 3Н-4-ариламино-2-оксо-1,2-дигидрохинолинов 3 внимания заслуживает только орто-фторзамещенное производное Зе. по уровню антиэкссудативной активности (50%) почти не уступающее вольтарену (65%). Интересно, что для остальных веществ этой группы характерны провоспалительные свойства, т. е. они усиливают воспалительную реакцию, причем максимально (на 250-300%) этот эффект проявляется опять же в случае монофторфениламинохинолонов, но уже *мета-* и *пара-*замещенных **3f**,**g**. 4-(Карбоксиалкиламино)хинолоны **8a**,**b** проявляют умеренное (30–32%) антиэкссудативное действие в течение 1 ч после введения флогогена, однако ко второму часу активность резко снижается и переходит в слабовыраженную противовоспалительную.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Спектры ЯМР ¹Н синтезированных соединений записаны на приборе Varian Mercury-VX-200 (200 МГц) в ДМСО- d_6 , внутренний стандарт ТМС. Хромато-масс-спектры зарегистрированы на магнитном масс-спектрометре KRATOS MS 890 A, ионизация электронным ударом 70 эВ при прямом вводе образца, нагрев штока прямого ввода теплом камеры, температура камеры 250 °С.

2-Оксо-4-хлор-1,2-дигидрохинолин-3-карбоновые кислоты 4, их сложные эфиры 1 и 2оксо-1-пропил-4-(4-хлорфениламино)-1,2-дигидрохинолин-3-карбоновая кислота (5i) получены по известным методикам [12, 13 и 3 соответственно].

Этиловый эфир 2-оксо-4-(4-этоксифениламино)-1,2-дигидрохинолин-3-карбоновой кислоты (2а). Смесь 2.51 г (0.01 моль) этилового эфира 2-оксо-4-хлорхинолин-3-карбоновой кислоты (1, R = H), 1.50 г (0.01 моль) *пара*-фенетидина и 1.4 мл (0.01 моль) триэтиламина в 30 мл этанола кипятят 5 ч. При осуществлении синтеза в ДМФА триэтиламин не добавляют, реакционную смесь выдерживают 4–5 ч при 100 °С. По окончании реакции реакционную смесь разбавляют водой. Выпавший осадок отфильтровывают, промывают водой, сушат. Выход 3.13 г (89%). Т. пл. 190–192 °С (этанол). Спектр ЯМР ¹Н, δ , м. д. (*J*, Гц): 11.12 (1H, с, CONH); 8.53 (1H, с, 4-NH); 8.02 (1H, д, *J* = 8.0, H-5); 7.50 (1H, т, *J* = 7.5, H-7); 7.27 (1H, д, *J* = 8.1, H-8); 7.14 (1H, т, *J* = 7.5, H-6); 7.00 (2H, д, *J* = 8.4, H-3',5'); 6.83 (2H, д, *J* = 8.4, H-2',6'); 4.00 (2H, к, *J* = 6.9, Ar–OCH₂); 3.51 (2H, к, *J* = 7.0, COOCH₂); 1.16 (3H, т, *J* = 6.9, Ar–OCH₂C<u>H</u>₃); 1.00 (3H, т, *J* = 7.0, COOCH₂C<u>H</u>₃).

Соединения 2b,с и 3і получают по аналогичной методике.

Этиловый эфир 2-оксо-4-(4-хлорфениламино)-1,2-дигидрохинолин-3-карбоновой кислоты (2b). Выход 92%. Т. пл. 222–224 °С (из этанола). Спектр ЯМР ¹Н, δ, м. д. (*J*, Гц): 11.41 (1H, с, CONH); 8.68 (1H, с, 4-NH); 7.94 (1H, д, *J* = 7.9, H-5); 7.53 (1H, т, *J* = 7.4, H-7); 7.27 (1H, д, *J* = 8.0, H-8); 7.32 (1H, т, *J* = 7.4, H-6); 7.26 (2H, д, *J* = 8.4, H-3',5'); 6.99 (2H, д, *J* = 8.4, H-2',6'); 3.68 (2H, к, *J* = 7.0, COOCH₂); 1.00 (3H, т, *J* = 7.0, COOCH₂C<u>H</u>₃).

Этиловый эфир 1-метил-2-оксо-4-фениламино-1,2-дигидрохинолин-3-карбоновой кислоты (2с). Выход 83%. Т. пл. 149–151 °С (из этанола). Спектр ЯМР ¹Н, б, м. д. (*J*, Гц): 8.73 (1H, с, 4-NH); 8.12 (1H, д, *J* = 8.0, H-5); 7.78–6.95 (8H, м, H-7,8,6 + C₆H₅); 3.57 (3H, с, N–CH₃); 3.49 (2H, к, *J* = 7.0, COOCH₂); 0.99 (3H, т, *J* = 7.0, COOCH₂C<u>H₃</u>).

2-Оксо-1-пропил-4-(4-хлорфениламино)-1,2-дигидрохинолин (3i). А. К раствору 2.93 г (0.01 моль) этилового эфира 4-хлор-2-оксо-1-пропилхинолин-3-карбоновой кислоты (1, R = Pr) в 20 мл ДМФА прибавляют 1.27 г (0.01 моль) *п*-хлоранилина и кипятят с обратным холодильником 20 ч, после чего реакционную смесь охлаждают и разбавляют водой. Выделившийся осадок аминохинолона **3i** отфильтровывают, промывают спиртом, сушат. Выход 1.98 г (63%).

Б. К раствору 2.65 г (0.01 моль) 2-оксо-1-пропил-4-хлорхинолин-3-карбоновой кислоты (4, R = Pr) в 10 мл ДМФА прибавляют 1.27 г (0.01 моль) *n*-хлоранилина и кипятят с обратным холодильником 2 ч. Далее реакционную смесь обрабатывают по методике предыдущего опыта. Выход 2.46 г (79%).

Смешанная проба образцов аминохинолона **3i**, полученных различными методами, не дает депрессии температуры плавления, их спектры ЯМР ¹Н идентичны.

По аналогичной методике получены остальные 1-R-4-ариламино-2-оксо-1,2-дигидрохинолины **3** (табл. 3), а также соединения **8а,b**.

2-Оксо-1-пропил-1,2-дигидрохинолин-4-иламиноуксусная кислота (8а). Выход 80%. Т. пл. 255–257 °С (из ДМФА). Спектр ЯМР ¹Н, δ , м. д. (*J*, Гц): 12.56 (1H, с, СООН); 7.94 (1H, д, *J* = 8.0, H-5); 7.57 (1H, т, *J* = 7.6, H-7); 7.43 (1H, д, *J* = 8.1, H-8); 7.20 (1H, т, *J* = 7.6, H-6); 7.10 (1H, т, *J* = 6.0, 4-NH); 5.29 (1H, с, H-3); 4.10 (2H, т, *J* = 7.7, NCH₂CH₂); 3.89 (2H, д, *J* = 6.9, NCH₂COOH); 1.54 (2H, м, NCH₂CH₂); 0.92 (3H, т, *J* = 7.4, NCH₂CH₂CH₃). Найдено, %: С 64.43; H 6.33; N 10.61. С₁₄H₁₆N₂O₃. Вычислено, %: С 64.60; H 6.20; N 10.76. 394

2-(2-Оксо-1-пропил-1,2-дигидрохинолин-4-иламино)пропионовая кислота (8b). Выход 75%. Т. пл. 212–214 °С (из ДМФА). Спектр ЯМР ¹Н, δ , м. д. (J, Γ ц): 12.60 (1H, с, COOH); 8.15 (1H, д, J = 8.0, H-5); 7.59 (1H, т, J = 7.6, H-7); 7.44 (1H, д, J = 8.1, H-8); 7.20 (1H, т, J = 7.6, H-6); 6.88 (1H, д, J = 6.4, 4-NH); 5.30 (1H, с, H-3); 4.03 (3H, м, NCH₂ + C<u>H</u>–CH₃); 1.51 (5H, м, NCH₂C<u>H</u>₂ + CH₃); 0.90 (3H, т, J = 7.4, NCH₂CH₂C<u>H₃</u>). Найдено, %: C 65.77; H 6.48; N 10.11. C₁₅H₁₈N₂O₃. Вычислено, %: C 65.68; H 6.61; N 10.21.

Рентгеноструктурное исследование. Кристаллы 2-оксо-1-пропил-4-(4-хлорфениламино)-1,2-дигидрохинолин-3-карбоновой кислоты (**5i**) моноклинные, при 20 °C: a = 11.062(5), b = 10.678(4), c = 14.290(6) Å, $\beta = 104.03(3)^\circ$, V = 1638(1) Å³, $M_r = 356.80$, Z = 4, пространственная группа $P2_1/c$, $d_{выч} = 1.447$ г/см³, μ (МоК α) = 0.255 мм⁻¹, F(000) = 744. Параметры элементарной ячейки и интенсивности 2740 отражений (2588 независимых, $R_{int} = 0.023$) измерены на автоматическом четырехкружном дифрактометре Siemens P3/PC (МоК α , графитовый монохроматор, 2 θ/θ -сканирование, $2\theta_{max} = 50^\circ$). Структура расшифрована прямым методом по комплексу программ SHELXTL [14]. Положения атомов водорода выявлены из разностного синтеза электронной плотности и уточнены изотропно. Структура уточнена по F^2 полноматричным МНК в анизотропном приближении для неводородных атомов до $wR_2 = 0.136$ по 2531 отражениям ($R_1 = 0.052$ по 1925 отражениям с $F > 4\sigma(F)$, S = 1.050). Полная кристаллографическая информация депонирована в Кембриджском банке структурных данных (депонент № ССDС 250566). Межатомные расстояния и валентные углы представлены в табл. 1, 2.

СПИСОК ЛИТЕРАТУРЫ

- 1. И. В. Украинец, Л. В. Сидоренко, О. В. Горохова, О. В. Шишкин, ХГС, 217 (2006).
- 2. П. А. Безуглый, И. В. Украинец, Н. Скаиф, О. В. Горохова, Л. В. Сидоренко, *Фармаком*, № 3, 23 (2003).
- И. В. Украинец, Л. В. Сидоренко, С. В. Слободзян, В. Б. Рыбаков, В. В. Чернышев, XГС, 1362 (2005).
- 4. П. Сайкс, Механизмы реакций в органической химии, Химия, Москва, 1991.
- 5. N. S. Zefirov, V. A. Palyulin, E. E. Dashevskaya, J. Phys. Org. Chem., 3, 147 (1990).
- 6. H.-B. Burgi, J. D. Dunitz, Struc. Correl., VCH, Weinheim, 1994, 2, 741.
- 7. Ю. В. Зефиров, П. М. Зоркий, *Успехи химии*, **58**, 713 (1989).
- S. V. Shishkina, O. V. Shishkin, I. V. Ukrainets, A. N. Dakkah, L. V. Sidorenko, Acta Crystallogr., E58, 0254 (2003).
- 9. И. В. Украинец, Дис. докт. хим. наук, Харьков, 1992.
- 10. П. Б. Терентьев, А. П. Станкявичюс, *Масс-спектрометрия биологически активных* азотистых оснований, Мокслас, Вильнюс, 1987.
- С. М. Дроговоз, И. А. Зупанец, Н. А. Мохорт, Л. В. Яковлева, Б. М. Клебанов, в кн. Доклинические исследования лекарственных средств, под ред. А. В. Стефанова, Авиценна, Киев, 2001, с. 292.
- 12. И. В. Украинец, С. Г. Таран, О. В. Горохова, И. В. Горлачева, П. А. Безуглый, А. В. Туров, *XГС*, 1104 (1996).
- И. В. Украинец, С. Г. Таран, О. В. Горохова, Н. А. Марусенко, С. Н. Коваленко, А. В. Туров, Н. И. Филимонова, С. М. Ивков, XTC, 195 (1995).
- 14. G. M. Sheldrick, SHELXTL PLUS. PC Version. A System of Computer Programs for the Determination of Crystal Structure from X-ray Diffraction Data. Rev. 5.1 (1998).

Национальный фармацевтический университет, Харьков 61002, Украина e-mail: uiv@kharkov.ua Поступило в редакцию 14.09.2004

^aAn-Najah National University College of Pharmacy, Palestine, Nablus, P.O. Box 7 e-mail: nidaljaradat@yahoo.com