Э. Силинь, Я. Ашакс, С. Беляков^а, Л. Печ, Ю. Банковский

СТРОЕНИЕ 8-СЕЛЕНОЛХИНОЛИНАТА ПАЛЛАДИЯ Pd(C9H6NSe)2

Методом PCA определено молекулярное и кристаллическое строение 8-селенолхинолината палладия $Pd(C_9H_6NSe)_2$. Сопоставлено строение однотипных пятичленных металлациклов 8-окси-, 8-меркапто- и 8-селенолхинолинатов палладия.

Ключевые слова: 8-меркапто-, 8-селенол- и 8-оксихинолинаты, внутрикомплексные соединения палладия, молекулярное строение.

В рамках исследования связи металл-сера во внутрикомплексных соединениях переходных и непереходных элементов в Лаборатории внутрикомплексных соединений Института неорганической химии Рижского технического университета синтезировано и структурно исследовано множество комплексов 8-меркаптохинолина и его производных [1]. По мере возможности полученные результаты были сопоставлены со структурными данными соответствующих 8-оксихинолинатов.

Для выяснения характера связей M–Se(S, O) и полной картины их динамики в однотипных пятичленных металлациклах изомолекулярных комплексов с лигандными атомами одной (VI) группы продолжаются синтез и рентгеноструктурные исследования внутрикомплексных соединений 8селенолхинолина и его производных. В литературе не известны систематические структурные исследования внутрикомплексных соединений, лиганды которых содержали бы координационно-активные группы SeH; поэтому принципиальны вопрос о координационных возможностях селена(II) как лигандного атома и экспериментальное определение длин валентных связей M–Se во внутрикомплексных соединениях. Ранее нами установлена молекулярная и кристаллическая структура комплексов Pt(C₉H₆NSe)₂, Cd(C₉H₆NSe)₂ [2], Zn(C₉H₆NSe)₂ [3, 4], In(C₉H₆NSe)₃ [5] и Sb(C₉H₆NSe)₃ [6].

В настоящей работе описаны синтез и результаты рентгеноструктурного исследования 8-селенолхинолината палладия(II) $Pd(C_9H_6NSe)_2$ (1). Так как известны кристаллические структуры 8-меркаптохинолината палладия (2) [7] и 8-оксихинолината палладия (3) [8], возможны сопоставление строения однотипных пятичленных металлациклов и обсуждение динамики экспериментально найденных длин связей Pd–Se, Pd–S, Pd–O, Pd–N.

Кристаллическая структура комплекса 1 состоит из нейтральных центросимметричных молекул Pd(C₉H₆NSe)₂ (рис. 1). Атомы палладия расположены в центрах симметрии [[000]] элементарной ячейки. Их бидентатно (Se, N) координируют два лиганда 8-селенолхинолина, хелатный угол Se(1)PdN(1) составляет 85.6(1)°. Окружение центрального атома палладия – *транс*-квадрат (2Se+2N). Связи Pd–Se и Pd–N (таблица) имеют ковалентный

Рис. 1. Общий вид комплекса Pd(C₉H₆NSe)₂ с обозначениями атомов

характер, так как их длины меньше сумм ковалентных радиусов соответствующих атомов ($r_{Pd} + r_{Se} = 2.537$ и $r_{Pd} + r_N = 2.102$ Å [9]). Длина связи Se–C(8) l = 1.881(4) Å близка к значению 1.893 Å, приведенному в [10] для фрагмента Csp²–Se(II) в тетраселенафульвалене. Валентный угол PdSe(1)C(8), $\omega = 95.1(1)^{\circ}$, свидетельствует об октаэдрическом расположении электронов внешнего слоя атома селена и возможности дополнительного усиления связи Se–Pd за счет π -связывания [11].

Связь**	l, Å		
	1	2	3
Pd–X	2.404(4)	2.282	2.02(2)
Pd-N(1)	2.065(3)	2.01	2.02(2)
X-C(8)	1.881(4)	1.75	1.29(3)
C(8)–C(9)	1.418(6)	1.44	1.48(3)
N(1)-C(9)	1.381(5)	1.39	1.39(3)
N(1)-C(2)	1.330(5)	1.35	1.33(3)
Угол	о, град		
NPdX	85.6(1)	84.0	84.1(6)
PdXC(8)	95.1(1)	102.0	112.7(1.8)
PdN(1)C(9)	120.6(3)	119.0	108.0(1.2)
XC(8)C(9)	118.8(3)	120.0	117.2(1.7)
N(1)C(9)C(8)	119.8(4)	120.5	116.9(1.6)
C(2)N(1)C(9)	117.9(4)	120.0	123.3(1.6)
C(9)C(8)C(7)	119.1(4)	122.0	116.6(1.8)

Геометрические параметры молекул пятичленных металлациклов в изомолекулярных комплексах 1–3*

* $Pd(C_9H_6NX)_2$: 1 X = Se, 2 X = S, 3 X = O.

** Нумерация атомов в комплексах 2 и 3 согласована с обозначениями атомов в комплексе 1 (рис.1).

Пятичленные металлациклы – Pd–Se–C(8)–C(9)–N–, как и комплекс 1 в целом, в пределах ошибки (±0.04 Å) плоские. Строение хинолиновых колец обычное: связь N(1)–C(2) l = 1.330(5) Å существенно меньше связи N(1)-C(9) (1.381(5) Å) и проявляет тенденцию к двоесвязанности (длина полуторной связи Carvl-N составляет 1.333-1.345 Å [10]). Укорочены чередующиеся связи C(3)-C(4), C(5)-C(6), C(7)-C(8) (ср. 1.368 Å). Наиболее удлинена (1.42(7) Å) центральная связь С(9)-С(10). Углы ССС незначительно (±2.5°) отличаются от 120°. Величина угла C(2)N(1)C(9), равная 117.9(4)°, подтверждает участие атома N в донорно-акцепторной связи Pd-N. В кристаллической структуре комплексы 1 упаковываются, с геометрической точки зрения, слоями двух типов: в центрах симметрии [[000]] расположены атомы палладия, между ними находятся слои параллельно расположенных лигандов (рис. 2). Кратчайшие межмолекулярные контакты между атомами параллельных лигандов: $C(9)\cdots C(4)$ (1-x, -y, 1-z) 3.36, $C(2)\cdots C(5)$ (1-x, -y, 1-z) 3.404, $N(1)\cdots C(4)$ (1-x, -y, 1-z) 3.49 Å. Неисключено, что укороченный параметр ячейки *а* в комплексе 1 по сравнению с параметром комплекса 2 отражает взаимодейсвие атомов Pd···C(5) (x, y, z-1) 3.85, Pd···C(5) (-x, -y, 1-z) 3.85 Å.

Комплекс 1 изоструктурен с 8-селенолхинолинатом платины и 8-меркаптохинолинатом платины, а также с 8-меркаптохинолинатом палладия (2) (триклинная сингония, пр. гр. P 1). Однако упаковка изомолекулярных комплексов 8-оксихинолината палладия (3) в кристаллической решетке отличается (моноклинная сингония, пр. гр. $P2_1/b$). Для сопоставления координационных узлов (Pd+2Se+2N), (Pd+2S+2N) и (Pd+2O+2N) и аналогичных металлациклов в комплексах 1–3 в таблице обобщены их основные

Рис. 2. Проекция комплекса $Pd(C_9H_6NSe)_2$ на плоскость *хz*

Puc. 3. Зависимость экспериментально найденных длин связей Pd–Se, Pd–S, Pd–O (*1*), C–Se, C–S, C–O (*3*) и сумм соответствующих ковалентных радиусов (*2* и *4*) от длины ковалентных радиусов лигандных атомов Se, S, O

геометрические параметры. Длины связей Pd–N в комплексах 1–3 (таблица) различаются (Δ 0.055 Å), но их средняя величина составляет 2.022 Å и ложится на кривую *1* (рис. 3). Ослабление связи Pd–N в комплексе 1 связано с уменьшением основных свойств атома азота в 8-селенолхинолине по сравнению с 8-меркаптохинолином. Между суммами ковалентных радиусов $r_{Pd}+r_{Se}$, $r_{Pd}+r_{O}$ и ковалентными радиусами лигандных атомов существует линейная зависимость, которая сохраняется и в отношении экспериментально найденных длин связей Pd–Se, Pd–S, Pd–O. О незначительном удлинении связей Pd–Se(S, O) по мере увеличения ковалентного радиуса лигандного атома свидетельствует рис. 3, *1*. То же самое можно сказать о связях Se–C и S–C; тогда как связь O–C существенно укорочена (рис. 3, *2*).

В комплексе **3**, как уже отмечалось, связь С–О и геометрия фрагмента Pd–O–C существенно различаются. Валентный угол PdOC, $\omega = 112.7^{\circ}$ (в отличие от углов PdSe(1)C(8) 95.1° и PdSC 102°) указывает на тетраэдри-

ческую конфигурацию электронных орбиталей. Длина связи С–О, l = 1.29 Å, 399

близка к длине двойной связи в C_{aryl} –COO⁻, l = 1.255 Å [10]. Следовательно лигандный атом кислорода участвует в полуторной связи C–O, имеет отрицательный заряд, но не имеет свободных *d*-орбиталей для взаимодействия с *d*-электронами центрального атома. Поэтому механизм образования связи Pd–O отличается от образования связей Pd–Se в комплексе 1 и Pd–S в комплексе 2 при их идентичной прочности. Несмотря на геометрические различия длин связей и валентных углов (таблица), пятичленные металлациклы комплексов 1–3 в пределах экспериментальных ошибок плоские.

Спектральные исследования комплексов 1–3 в хлороформе выявили максимум поглощения при 505 нм для комплекса 1, 485 нм для комплекса 2 и 430 нм для комплекса 3, что свидетельствует об увеличении степени конъюгации от комплекса 3 к комплексу 1 и увеличении доли π -связывания в ряду лигандных атомов S и Se.

Поскольку строение комплексов 2 и 3 определено по данным фотометода с невысокой точностью, мы рассмотрели результаты всех исследованных 8-меркапто- и 8-оксихинолинатов палладия, содержащих центросимметричную *транс*-квадратную (2S+2N) и (2O+2N) координацию атома палладия. Длины связей в 5-фенилтио- [12] и 5-триметилсилилтио- [13] 8-меркаптохинолинатах палладия составляют, соответственно, 2.304(2) и 2.294(1) (Pd–S), 2.039(5) и 2.039(3) (Pd–N), 1.730(6) и 1.741(5) Å (S–C); в 5-метилтио- [14] и 2-метил-5-метилтио- [15] 8-оксихинолинатах палладия, соответственно, 2.000(3) и 1.9788(5) (Pd–O), 1.994(4) и 2.060(6) (Pd–N), 1.316(5) и 1.296(9) Å (O–C). Эти результаты существенно не отличаются от данных для комплексов 1–3.

Следует отметить, что в комплексе 2-метил-8-меркаптохинолината палладия [16], где атомы серы находятся в *транс*-положении к атомам азота, изменяется координационный узел атома палладия, который представляет собой искаженный цис-квадрат; это меняет распределение длин связей: связи Pd-S со средней длиной 2.249 Å короче, а связи Pd-N (ср. длина 2.126 Å) достигли границы суммы ковалентных радиусов. В трехядерном же комплексе 2-метилтио-8-меркапохинолината палладия Pd₃[C₉H₅(SCH₃)NS]₃ [17], где координационный узел – искаженный *транс*квадрат Pd(2S+N+C) c *mpahc*-фрагментом S-Pd-N, атом серы одновременно выступает как лигандный и мостиковый атом. Расстояние Pd-S составляет в среднем 2.307 Å и не отличается от такового в комплексе 2, но связь Pd-N заметно укорочена (ср. 1.998 Å). Следовательно объективное кристаллохимическое сопоставление однотипных металлациклов возможно только в ряду аналогичных изомолекулярных соединений.

Строение координационного узла – центросимметричного *транс*квадрата Pd(2Se+2N) и пятичленных металлациклов –Pd–Se–C–C–N– установлено впервые; в Кембриджском банке структурных данных подобные комплексы не обнаружены.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

8-Селенолхинолинат палладия (1) синтезирован по методу [18].

Рентгеноструктурный анализ. Монокристаллы комплекса 1 выращены из пиридина. Дифракционная картина от монокристалла 1 размером $0.08 \times 0.10 \times 0.38$ мм измерена при 20 °C на автоматическом дифрактометре Bruker–Nonius KappaCCD с применением сканирования по φ и ω (Мо*К* α излучение, графитовый монохроматор) до $2\theta_{max} = 60^{\circ}$. Монокристаллы 1 принадлежат к триклинной сингонии, пространственная группа *P*1; параметры решетки: a = 7.2409(3), b = 7.8932(5), c = 7.8953(4) Å, $\alpha = 100.701(3)$, $\beta = 115.184(3)$, $\gamma = 92.253(3)^{\circ}$; V = 397.68(4) Å³, Z = 1, $M_r = 520.628$, $D_x = 2.174$ г/см³, $\mu = 5.74$ мм⁻¹. Молекулярная структура соединения установлена методом тяжелого атома и уточнена МНК по 1828 отражениям с $I > 3\sigma(I)$ до R = 0.040 (wR2 = 0.120) в анизотропном приближении для неводородных атомов с учетом координат атомов водорода, рассчитанных из геометрических соображений. Использованы программы [19, 20].

Кристаллографические характеристики, координаты атомов и их температурные параметры, значения длин связей и валентных углов в комплексе 1 депонированы в Кембриджском банке структурных данных (CSD) под номером CCDC-235367. Эта информация доступна по адресу: 12 Union Road, Cambridge CB2 IEZ UK [Fax: (internat.) +44-1223/336-033; e-mail deposit@ccdc.cam.ac.uk].

Авторы выражают благодарность Латвийскому совету по науке за финансирование работы (проект № 01.0683).

СПИСОК ЛИТЕРАТУРЫ

- 1. Ю. А. Банковский, Химия внутрикомплексных соединений меркаптохинолина и его производных, Зинатне, Рига, 1978, 488 с.
- L. Pech, V. Belsky, A. Stash, J. Ashaks, E. Silina, Yu. Bankovsky, *Latv. Ķīmijas Žurn.*, 237 (2003).
- 3. E. Silina, J. Ashaks, V. Belsky, A. Stash, L. Pech, Yu. Bankovsky, *Latv. Ķīmijas Žurn.*, 419 (2001).
- E. Silina, J. Ashaks, V. Belsky, A. Stash, L. Pech, J. Bankovsky, in *Abstracts of XX International Congress & General Assembly of Union of Crystallography*, Krakov, Poland, 2001, p. 267.
- 5. L. Pech, Yu. Bankovsky, V. Belsky, A. Stash, J. Ashaks, Latv. Kīmijas Žurn., 63 (1996).
- 6. Л. Я. Печ, Ю. А. Банковский, Э. Я. Силинь, Я. В. Ашакс, В. Е. Заводник, *Журн. неорган. химии*, **45**, 940 (2000).
- 7. А. Д. Озола, Я. К. Озолс, А. Ф. Иевиньш, Изв. АН ЛатвССР. Сер. хим., 662 (1973).
- 8. C. K. Prout, A. G. Wheeler, J. Chem. Soc., Sec. A, 1286 (1966).
- 9. Дж. Кемпбел, Современная общая химия, Мир, Москва, 1975, 1, 415 с.
- F. H. Allen, O. Kennard, D. G. Watson, L. Brammer, A. G. Orpen, R. Taylor, J. Chem. Soc., Perkin Trans. 2, No. 12, S1 (1987).
- 11. Ю. А. Банковский, Latv. Ķīmijas Žurn., 344 (2002).
- 12. И. Р. Берзиня, В. К. Бельский, Ю. А. Банковский, Г. Э. Янсон, Я. В. Ашакс, Latv. Ķīmijas Žurn., 533 (1992).
- 13. Ю. А. Банковский, Л. Я. Печ, А. Н. Соболев, А. П. Стурис, *Журн. неорган. химии*, **39**, 612 (1994).
- 14. Л. Я. Печ, Ю. А. Банковский, И. Р. Берзиня, В. К. Бельский, Я. В. Ашакс, Latv. Ķīmijas Žurn., 19 (1997).
- 15. Л. Я. Печ, Ю. А. Банковский, А. Н. Соболев, Я. В. Ашакс, Latv. Ķīmijas Žurn., 147 (1994).
- 16. Л. Я. Печ, Ю. А. Банковский, А. А. Кемме, Э. Я. Силинь, Я. В. Ашакс, А. П. Стурис, Latv. Ķīmijas Žurn., 19 (2000).
- 17. Э. Силинь, Ю. А. Банковский, В. К. Бельский, А. И. Сташ, Л. Я. Печ, Я. Э. Леейс, Журн. неорган. химии, 46, 1317 (2001).

- 18. Я. Ашакс, Ю. Банковский, Д. Зарума, И. Шестакова, И. Домрачева, А. Нестерова, Э. Лукевиц, *XTC*, 905 (2004).
- 19. Z. Otwinowski, W. Minor, *Methods in Enzimology*, **276**, *Macromolecular Crystallography*, Pt A, C. W. Carter Jr & R. M. Sweet (Eds.), Acad. Press, New York, 1997, p. 307.
- 20. S. Mackay, C. J. Gilmore, C. Edwards, N. Stewart, K. Shankland, maXus. Computer Program for the Solution and Refinement of Crystal Structures. Brucker Nonius, The Netherlands, Mac Science, Japan & The University of Glasgow, 1999.

Институт неорганической химии Рижского технического университета, Саласпилс, LV-2169, Латвия e-mail: nki@nki.lv Поступило в редакцию 14.04.2004 После доработки 05.01.2006

^аЛатвийский институт органического синтеза, Рига LV-1006, Латвия

Э.Силинь, Я.Ашакс, С.Беляков, Л.Печ, Ю.Банковский

СИНТЕЗ И СТРОЕНИЕ 8-СЕЛЕНОЛХИНОЛИНАТА ПАЛЛАДИЯ

$Pd(C_9H_6NSe)_2$

E.Silina, J.Ashaks, S.Belyakov^a, L.Pech, Yu.Bankovsky.

STRUCTURE OF PALLADIUM 8-HYDROSELENOQUINOLINATE Pd(C9H6NSe)2.

Institute of Inorganic Chemistry of the Riga Technical University, 34 Miera Str., Salaspils,

e-mail: nki@nki.lv, Fax: (371)-7800779, LV-2169, LATVIA

^aLatvian Institute of Organic Synthesis, 21 Aizkraukles Str., Riga, LV-1006, LATVIA

Переписку вести с Э.Я.Силинь

Служебный адрес:

Институт неорганической химии Рижского технического университета,

Саласпилс, ул. Миера 34, LV-2169, Латвия

e-mail: nki@nki.lv,

Fax: (371)-7800779,

Телефон: 7-800773

Домашний адрес: Саласпилс, ул. Диенвиду 3/1, кв. 101, LV-2169, Латвия Телефон: 7-945641