А. А. Ачкасова, М. М. Ельчанинов

СИНТЕЗ И СВОЙСТВА 1-МЕТИЛ-2-(2-ФУРИЛ)-1Н-АЦЕНАФТО[9,10-*d*|ИМИДАЗОЛА

Конденсацией 9,10-аценафтенхинона с фурфуролом в присутствии ацетата аммония в ледяной уксусной кислоте с последующим N-метилированием образовавшегося 2-(2фурил)-1H-аценафто[9,10-*d*]имидазола иодистым метилом в N-метилпирролидоне-2 в присутствии КОН получен 1-метил-2-(2-фурил)-1H-аценафто[9,10-*d*]имидазол. Установлено, что в кислой среде его реакции электрофильного замещения протекают только по положению 2 фуранового кольца, а в нейтральной среде электрофильной атаке подвергаются как положение 2, так и положение 7 ароматической части молекулы.

Ключевые слова: 9,10-аценафтенхинон, 2-(2-фурил)-1Н-аценафто[9,10-*d*]имидазол, метилирование, реакции электрофильного замещения.

Продолжая исследования в ряду 2-замещенных имидазолов [1], мы задались целью разработать методы синтеза и изучить реакционную способность 2-(2-фурил)-1H-аценафто[9,10-*d*]имидазола (1), а также выяснить взаимное влияние многоядерной ароматической системы 1H-аценафто[9,10-*d*]имидазола и фуранового ядра, соединенных между собой простой связью.

Взаимодействие аценафтенхинона с ароматическими альдегидами в аммиачной среде было изучено ранее [2]. Согласно данным этой работы, различные ароматические альдегиды при низкой температуре образуют только оксазолы, а при высокой – имидазолы или смесь тех и других. 4-Нитро-, 4-окси- и 4-метоксибензальдегиды в аммиачной среде дают только имидазолы как при низкой, так и при более высокой температуре. Однако получить таким способом 2-фурилзамещенный аценафто[9,10]- имидазола (1) нам не удалось ни при низких, ни при высоких темпе- ратурах. Поэтому мы применили способ, заключающийся в конденсации 9,10аценафтенхинона и фурфурола в присутствии ацетата аммония в среде уксусной кислоты. Выход целевого имидазола 1 не превысил 50%, вследствие образования значительного количества смолы и побочного продукта красного цвета, который был выделен в чистом виде и, по данным спектра ЯМР ¹H, оказался не фурилаценафто[9,10-*d*]оксазолом, а, по-видимому, продуктом конденсации аценафтенхинона с аммиаком.

Реакцию метилирования имидазола 1 удалось провести с выходами, близкими к теоретическим, в системе КОН–N-метил-2-пирролидон эквивалентным количеством иодистого метила и без заметного образования продуктов кватернизации. Выбор нами столь экзотического растворителя, каковым является N-метил-2-пирролидон, обусловлен очень плохой растворимостью соединения 1. Продукт N-метилирования 1а был подвергнут действию электрофильных реагентов (карбоновых кислот и уротропина в ПФК, брома в дихлорэтане и ПФК, ацетилнитрата, серной и азотной кислот в ПФК и др.).

Ранее нами было показано [3, 4], что различные системы 2-гетарилимидазолов проявляют свойство стабилизировать входящие в состав молекул пятичленные *π*-избыточные гетероциклы, находящиеся в непосредственном сопряжении с имидазольным фрагментом. Потеря ацидофобных свойств, связанная с перераспределением избыточной электронной плотности между гетарильным и имидазольным ядрами, позволяет проводить различные электрофильные реакции в жестких условиях (температура до 200 °С, ПФК, конц. НСІ и др.), что значительно расширяет область изучения данных соединений. Как показывают наши исследования, изменение ароматической системы в ряду бензол– нафталин–аценафтен, конденсированной с имидазольным ядром, не оказывает существенного влияния на характер стабилизации молекул в кислой среде.

Взаимодействие соединения **1a** с карбоновыми кислотами и уротропином в присутствиии ПФК приводит исключительно к 5'-ацил-2фурил-1H-аценафто[9,10-*d*]имидазолам **1b–d**.

1 b R = H, c R = Me, d R = Ph, h R = H, i $R = NO_2$

Таблица 1

Со- еди- не-	Брутто- формула	<u>Найдено, %</u> Вычислено,%			Т. пл., ^о С (<i>i</i> -PrOH)	ИК спектр,	Выход, %
ние		СН		Ν		V, CM	
1	$C_{17}H_{10}N_2O$	<u>78.77</u> 79.07	<u>4.12</u> 3.90		184–186	—	49
1 a	$C_{18}H_{12}N_2O$	<u>79.62</u> 79.39	<u>4.18</u> 4.44	<u>10.08</u> 10.29	87–89	—	90
1b	$C_{19}H_{12}N_2O_2$	<u>76.15</u> 75.99	<u>4.21</u> 4.03	<u>9.47</u> 9.33	111–113	1680	81
1c	$C_{20}H_{14}N_2O_2$	<u>76.18</u> 76.42	<u>4.17</u> 4.49	<u>9.24</u> 8.91	124–126	1660	86
1d	$C_{25}H_{16}N_2O_2$	<u>78.05</u> 79.77	$\frac{4.42}{4.28}$	<u>7.28</u> 7.44	147–149	1680	92
1e	$C_{18}H_{10}Br_2N_2O$	<u>50.38</u> 50.27	<u>2.56</u> 2.34	<u>6.27</u> 6.51	93–95		71
1f	$C_{18}H_{11}BrN_2O$	<u>61.74</u> 61.56	<u>3.28</u> 3.16	<u>7.69</u> 7.98	117–119*		78
1g	$C_{18}H_{12}N_2O_4S$	<u>61.49</u> 61.36	<u>3.62</u> 3.43	<u>7.68</u> 7.95	>400	1280	91
1h	$C_{18}H_{11}N_3O_2$	<u>67.93</u> 68.14	<u>3.61</u> 3.49	<u>13.12</u> 13.24	154–156	1350, 1530	83
1i	$C_{18}H_{10}N_4O_5$	<u>59.67</u> 59.82	<u>2.78</u> 2.63	<u>19.33</u> 19.53	236–238*	1370, 1530	74
1j	$C_{19}H_{14}N_2O_2$	<u>75.77</u> 75.48	<u>4.34</u> 4.67	—	214–216	3240	14

Физико-химические характеристики синтезированных соединений 1а-ј

*Из этанола.

Однако в отличие от бензоилирования ацетилирование соединения **1a** протекает с образованием значительных количеств (~36%) побочного продукта. По-видимому, реакция осложняется замещением в ацетильной группе, приводящим к 1-метил-2-(5-ацетоацетил-2-фурил)-1H-аценафто-[9,10-*d*]имидазолу (**1**k).

При действии брома на соединение **1a** реакция протекает двояким образом: в дихлорэтане атаке подвергаются атомы C не только в фурановом кольце, но и в аценафтеновом, в то время как взаимодействие

193

Соеди- нение	Химические сдвиги, δ, м. д. (КССВ, <i>J</i> , Гц)*									
	N–CH ₃ , (3H, c)	H-4' (1H)	H-3' (1Н, д)	Н-7 аром. (1Н, д)	H-6 аром. (1Н, д)	H-9 аром. (1Н, д)	Н-5,8 аром.	H-4 аром. (1Н, д)	другие сигналы	
1a	4.18	6.56 (уш. с)	6.88 ($J_{43} = 2.49$)	7.44 $(J_{78} = 3.51)$	7.46 ($J_{65} = 3.74$)	7.59 ($J_{98} = 6.81$)	7.69 (2Н, т, <i>J</i> = 15.23)	7.83 $(J_{45} = 6.81)$	7.55 (1Н, д, J ₄₅ = 2.2, Н-5')	
1b	4.30	7.30 (д, J ₃₄ = 3.32)	7.12 $(J_{43} = 3.28)$	7.42 ($J_{78} = 3.50$)	7.46 $(J_{65}=3.72)$	7.59 ($J_{98} = 6.81$)	7.70 (2Н, т, <i>J</i> = 15.21)	7.81 ($J_{45} = 6.81$)	9.76 (1H, c, CHO)	
1c	4.28	7.28 (д, J ₃₄ = 3.30)	7.10 $(J_{43} = 3.30)$	7.43 $(J_{78} = 3.48)$	7.46 $(J_{65} = 3.70)$	7.60 $(J_{98} = 6.79)$	7.70 (2Н, т, <i>J</i> = 15.20)	7.80 ($J_{45} = 6.80$)	2.52 (3H, c, CH ₃)	
1d	4.30	7.25 (д, J ₃₄ = 3.30)	7.07 $(J_{43} = 3.30)$	7.43 $(J_{78} = 3.50)$	7.48 $(J_{65} = 3.72)$	7.59 ($J_{98} = 6.80$)	7.69 (2Н, т, <i>J</i> = 15.20)	7.83 $(J_{45} = 6.80)$	7.55 (3Н, м, 3Н аром.); 8.00 (2Н, д, 2Н аром.)	
1e	4.18	6.55 (д, J ₃₄ = 3.28)	7.08 $(J_{43} = 3.30)$	—	$7.42 (J_{65} = 3.70)$	7.55 $(J_{98} = 6.70)$	7.55 (1Н, д, <i>J</i> = 7.22); 7.70 (1Н, т, <i>J</i> = 15 20)	$7.80 \\ (J_{45} = 6.80)$	_	
1f	4.16	6.57 (д, <i>J</i> ₃₄ = 3.28)	7.10 $(J_{43} = 3.28)$	7.44 $(J_{78} = 3.51)$	7.42 $(J_{65} = 3.70)$	7.56 $(J_{98} = 6.72)$	7.70 (2H, T, J = 15.22)	7.83 $(J_{45} = 6.82)$	—	
1g	4.30	7.32 (д, J ₃₄ = 3.15)	7.15 $(J_{43} = 3.15)$	7.42 ($J_{78} = 3.48$)	7.48 $(J_{65} = 3.72)$	7.60 $(J_{98} = 6.80)$	7.68 (2Н, т, <i>J</i> = 15.20)	7.82 ($J_{45} = 6.80$)	—	
1h	4.32	7.35 (д, J ₃₄ = 3.32)	7.10 $(J_{43} = 3.30)$	7.44 ($J_{78} = 3.48$)	7.48 $(J_{65}=3.70)$	7.60 $(J_{98} = 6.80)$	7.70 (2Н, т, <i>J</i> = 15.15)	7.82 $(J_{45} = 6.82)$	—	
1i	4.25	6.45 (д, J ₃₄ = 3.30)	7.08 $(J_{43} = 3.28)$	7.40 $(J_{78} = 3.50)$	7.52 ($J_{65} = 3.74$)	7.62 $(J_{98} = 6.75)$	7.72 (2Н, т, <i>J</i> = 14.88)	7.86 ($J_{45} = 6.80$)	3.65 (2H, c, CH ₂)	
1j	4.32	7.40 (д, J ₃₄ = 3.30)	7.12 $(J_{43} = 3.30)$	_	7.56 $(J_{65} = 3.70)$	7.70 ($J_{98} = 6.80$)	8.48 (1Н, д, <i>J</i> ₈₉ = 7.20); 7.70 (1Н, т, <i>J</i> = 15.20)	$7.84 \\ (J_{45} = 6.80)$	_	

Спектры ЯМР ¹Н соединений 1а–ј

Таблица 2

 $\overline{}^{*}$ Спектры ЯМР ¹Н снимали в CDCl₃ (соединения **1а–f,i,j**) и ДМСО-d₆ (соединения **1g,h**).

194

с бромом в ПФК приводит к 5'-бромфурилпроизводному **1f**. Вступление заместителя в аценафтеновое ядро при бромировании в дихлорэтане является следствием π -донорного влияния гетарильного кольца, которое, по-видимому, повышает электронную плотность в положении 7 аценафтенового ядра. В сильнокислой среде (ПФК) происходит протонирование "пиридинового" атома N, приводящее к дезактивации аценафтоимидазольного фрагмента и атаке подвергается только фурановый цикл.

Сульфирование соединения **1а** эквивалентным количеством серной кислоты в ПФК при 110–120 °С, как и в случае ацилирования, протекает исключительно с образованием 5'-сульфопроизводного **1g**, а повышение температуры и увеличение концентрации H_2SO_4 приводит к частичному образованию сульфона.

Нитрование соединения **1a** удалось успешно провести действием комплекса $Cu(NO_3)_2$ и уксусного ангидрида [4]. При этом выяснилось, что соединение **1a** легко реагирует при 20 °C с образованием 5-нитрофурилпроизводного **1b**, в то время как при нагревании до 60 °C дает динитропроизводное **1i**.

Фурилаценафтоимидазол **1а** очень медленно реагирует с 37% формалином; после кипячения в течение 12 ч конверсия исходного гетероцикла составила лишь ~17%. Методом колоночной хроматографии карбинол **1** јбыл выделен с выходом 14%.

ЭКСПЕРИМЕНТАЛЬАЯ ЧАСТЬ

ИК спектры исследуемых соединений получали на спектрометре Specord-75 в вазелиновом масле, спектры ЯМР 1 Н – на спектрометре Varian Unity 300 (300 Гц) внутренний стандарт ГМДС (δ 0.05 м. д.). Контроль за ходом реакции и индивидуальностью синтезированных соединений осуществляли методом TCX на пластинах с Al₂O₃ II ст. акт. по Брокману (проявление парами иода) в CH₂Cl₂ и на пластинах Silufol UV-254 в CH₂Cl₂. Физико-химические и спектральные характеристики полученных соединений представлены в табл. 1, 2.

2-(2-Фурил)-1Н-аценафто[9,10-*d***]имидазол (1).** К кипящему раствору 1.82 г (10 ммоль) аценафтенхинона в 50 мл уксусной кислоты быстро добавляют раствор 15.4 г (200 ммоль) ацетата аммония и 1.34 г (14 ммоль) фурфурола в 10 мл уксусной кислоты. Смесь кипятят 1.5–2 ч и оставляют стоять при комнатной температуре 2–3 ч. Осадок промежуточного продукта отфильтровывают и промывают 10 мл уксусной кислоты. Фильтрат разбавляют 100 мл холодной воды и нейтрализуют водным раствором аммиака. Кристаллы отделяют, высушивают. Выход 1.26 г.

1-Метил-2-(2-фурил)-1Н-аценафто[9,10-*d***]имидазол (1а).** В раствор 2.58 г (10 ммоль) соединения **1** в 10 мл N-метил-2-пирролидона вносят 0.62 г (11 ммоль) КОН в порошке. К смеси по каплям прибавляют 1.42 г (10 ммоль) иодистого метила и перемешивают при комнатной температуре 2 ч. Реакционную массу разбавляют 50 мл воды, выпавший осадок отделяют и высушивают. Выход 2.45 г.

1-Метил-2-(5-формил-2-фурил)-1Н-аценафто[9,10-*d***]имидазол (1b). Перемешивают 2.72 г (10 ммоль) соединения 1а и 4.2 г (30 ммоль) уротропина в 40 г ПФК при 80–90 °С в течение 4 ч. Реакционную массу разбавляют 200 мл воды, нейтрализуют раствором аммиака. Выделившийся продукт реакции экстрагируют метиленхлоридом. Экстракт высушивают Na₂SO₄ и хроматографируют на колонке с Al₂O₃, элюируя метилендихлоридом. Выход 2.43 г.**

1-Метил-2-(5-ацетил-2-фурил)-1Н-аценафто[9,10-*d***]имидазол (1с).** Перемешивают 2.72 г (10 ммоль) соединения **1а** и 0.6 г (20 ммоль) уксусной кислоты в 40 г ПФК при 120 °С в течение 8 ч. Продукт реакции выделяют аналогично соединению **1b**. Выход 2.70 г.

1-Метил-2-(5-ацетоацетил-2-фурил)-1Н-аценафто[9,10-*d***]имидазол (1k).** После выхода из колонки соединения **1с**, продолжая элюирование, выделяют побочный продукт **1k** в виде кристаллов желтого цвета с т. пл. 242–244 °C (из спирта). ИК спектр, v, см⁻¹: 1620,

1660. Спектр ЯМР ¹H (CDCl₃), δ , м. д. (J, Гц): 2.55 (3H, c, CH₃); 4.28 (3H, c, N-CH₃); 6.15 (1H, д, J = 1.07, CH₂); 6.45 (1H, д, J = 2.15, CH₂); 7.30 (1H, д, $J_{34} = 3.30$, H-4'); 7.12 (1H, д, $J_{43} = 3.30$, H-3'); 7.42 (1H, д, $J_{78} = 3.48$, H-7 аром.); 7.46 (1H, д, $J_{65} = 3.70$, H-6 аром.); 7.60 (1H, д, $J_{98} = 6.79$, H-9 аром.); 7.72 (2H, т, J = 15.20, H-5,8 аром.); 7.80 (1H, д, $J_{45} = 6.80$, H-4 аром.). Найдено, %: С 73.82; H 4.17. С₂₂H₁₆N₂O₃. Вычислено, %: С 74.15; H 4.53. М (масс-спектро-метрически) 356.

1-Метил-2-(5-бензоил-2-фурил)-1Н-аценафто[9,10-*d***]имидазол (1d). Перемешивают 2.72 г (10 ммоль) соединения 1а и 6.1 г (50 ммоль) бензойной кислоты в 40 г ПФК при 140 °С в течение 6 ч. Продукт реакции выделяют аналогично соединению 1b. Выход 3.46 г.**

1-Метил-2-(5-бром-2-фурил)-1Н-7-бромаценафто[9,10-*d***]имидазол (1е).** К раствору 2.72 г (10 ммоль) соединения **1а** в 40 мл дихлорэтана при комнатной температуре постепенно добавляют раствор 3.2 г (20 ммоль) брома в 20 мл дихлорэтана. По окончании прибавления смесь кипятят 2 ч. Затем разбавляют водой, нейтрализуют раствором аммиака, после чего нижний слой отделяют и хроматографируют на колонке с Al₂O₃, элюируя метилендихлоридом. Выход 3.05 г.

1-Метил-2-(5-бром-2-фурил)-1Н-аценафто[9,10-*d***]имидазол (1f).** Смесь 2.72 г (10 ммоль) соединения **1a**, 40 г ПФК и 1.6 г (10 ммоль) брома нагревают при 80–90 °С в течение 4 ч. Реакционную массу охлаждают, разбавляют 200 мл воды. Выделившийся продукт реакции отделяют, перекристаллизовывают из спирта. Выход 2.74 г.

1-Метил-2-(5-сульфо-2-фурил)-1Н-аценафто[9,10-*d***]имидазол (1g).** Нагревают 2.72 г (10 ммоль) соединения **1a**, 1.95 г (20 ммоль) серной кислоты (*d* 1.84) и 40 г ПФК при 100 °С в течение 1 ч. Реакционную массу охлаждают, разбавляют 200 мл воды и отфильтровывают выпавший осадок сульфокислоты. Для очистки продукт реакции растворяют в 5% щелочи, кипятят с активированным углем и нейтрализуют соляной кислотой до слабокислой реакции. Выход 3.20 г.

1-Метил-2-(5-нитро-2-фурил)-1Н-аценафто[9,10-d]имидазол (1h). К раствору 2.72 г (10 ммоль) соединения **1a** в 20 мл свежеперегнанного уксусного ангидрида при интенсивном перемешивании небольшими порциями приливают 2.85 мл нитрующей смеси [4] при комнатной температуре. Перемешивают 30–40 мин. К полученной смеси приливают 50 мл холодной воды, нейтрализуют раствором аммиака. Продукт экстрагируют метиленхлоридом и хроматографируют на колонке с Al₂O₃, элюируя метиленхлоридом. Выход 2.63 г.

1-Метил-2-(5-нитро-2-фурил)-1Н-7-нитроаценафто[9,10-*d***]имидазол (1i). К раствору 2.72 г (10 ммоль) соединения 1а в 20 мл свежеперегнанного уксусного ангидрида при интенсивном перемешивании небольшими порциями приливают 2.85 мл нитрующей смеси [4] при комнатной температуре. Затем смесь нагревают на водяной бане при 60 °C в течение 2–3 мин. Выпавшие при охлаждении кристаллы отфильтровывают, промывают небольшим количеством уксусной кислоты, водой, нейтрализуют раствором аммиака и высушивают. Перекристаллизовывают из спирта. Выход 2.68 г.**

1-Метил-2-(5-оксиметил-2-фурил)-1Н-аценафто[9,10-*d***]имидазол (1j).** Раствор 2.72 г (10 ммоль) соединения **1а** в 25 мл 37% формалина нагревают на кипящей водяной бане в течение 16 ч. Экстрагируют метиленхлоридом, хроматографируют на колонке с Al₂O₃, элюируя метиленхлоридом. Выход 0.43 г

СПИСОК ЛИТЕРАТУРЫ

- 1. А. А. Печкин, М. М. Ельчанинов, В. М. Стоянов, *ЖОрХ*, 38, 5 (2002).
- 2. A. Ch. Sircar, S. Ch. Sen, J. Indian Chem. Soc., 8, 605 (1931).
- 3. М. М. Ельчанинов, А. М. Симонов, Л. Я. Олейникова, ХГС, 1047 (1979).
- 4. М. М. Ельчанинов, А. М. Симонов, Л. Я. Олейникова, ХГС, 71 (1980).
- 5. Ю. Д. Чуркин, В. И. Савин, *ХГС*, 369 (1968).

Южно-Российский государственный технический университет (НПИ), Новочеркасск 346428 e-mail:fcoh@novoch.ru Поступило в редакцию 22.04.2004