Г. Г. Данагулян, Д. А. Тадевосян, Р. А. Тамазян^а, Г. А. Паносян^а

НОВЫЙ ПУТЬ ТРАНСФОРМАЦИИ ПИРИМИДИНОВОГО КОЛЬЦА ПОД ДЕЙСТВИЕМ ГИДРАЗИДОВ

На основании данных РСА доказано, что взаимодействие иодида 1,4,6-триметил-2-(этоксикарбонил)метилпиримидиния с гидразидами ряда карбоновых кислот приводит к производным пиразоло[1,5-*a*]пиримидина, а не к их изомерам – производным триазоло-[4,3-*a*]пиридина, как сообщалось ранее. Это новая, ранее не отмеченная перегруппировка 1,2-диалкилпиримидиниевых солей, протекающая путем рециклизации пиримидинового кольца с включением фрагмента нуклеофильного реагента в продукт трансформации.

Ключевые слова: иодид пиримидиния, пиразоло[1,5-*а*]пиримидин, перегруппировка Коста–Сагитуллина, рециклизация, РСА.

Действие гидразина и его производных на четвертичные соли алкилпиримидиния вызывает раскрытие пиримидинового кольца с последующим включением нуклеофила в образовавшийся цикл пиразола или триазола [1, 2]. Первичные амины при действии на те же соли также могут вызывать раскрытие пиримидинового кольца с последующим замыканием его, но уже не на реагент, а на боковые аминную или алкильную группы – перегруппировка Димрота [3, 4] или Коста–Сагитуллина [5, 6] соответственно. При перегруппировке Коста–Сагитуллина нуклеофильный реагент может также войти в положение 2 образовавшегося пиридина, давая так называемую "перегруппировку с переаминированием" [7–9]. Отметим также, что пиримидиниевые соли, содержащие первичную аминную группу в положениях 2 и 4, при взаимодействии с производными гидразина, аминогуанидином и семикарбазидом помимо производных пиразола и триазола могут образовать также продукты перегруппировки Димрота [1, 10, 11].

Ранее нами сообщалось, что действие на иодид 1,4,6-триметил-2-(этоксикарбонил)метилпиримидиния (1), аминогуанидина (2а) и изониазида (2b) – соединений, содержащих гидразиновый фрагмент, приводит к производным 1,2,4-триазоло[4,3-*a*]пиридина **4а,b** [12]. Предполагалось, что образование бициклического соединения происходит через промежуточный аддукт **3**, т. е. идет "перегруппировка с переаминированием" с последующей циклоконденсацией. Было также найдено, что параллельно образуется и продукт деметилирования исходной соли **5**, а в реакции с аминогуанидином также продукт перегруппировки Коста–Сагитуллина **6**. Однако проведенные позднее рентгенструктурные исследования показали, что действие гидразида изоникотиновой кислоты (**2b**) на иодид **1** приводит не к **5**,7-диметил-1-(4-пиридил)-4-этоксикарбонил-1,2,4-три-

2-4,7 а R = NH₂, b R = 4-Ру; **2,7** с R = CH₂CN, d R = CH₂Ph, е R = (4,6-диметилпиримидин-2-ил)метил, f R = Me; **2g** R = H; **2,3** а X = NH, b X = O; **2с-g** X = O

азоло[4,3-*a*]пиридину (**4b**), а к его структурному изомеру – 5,7-диметил-2-(4-пиридил)-3-этоксикарбонилпиразоло[1,5-*a*]пиримидину (**7b**). Отметим, что для правильного установления структуры соединения **7b** ранее полученные ЯМР ¹Н и масс-спектры оказались недостаточными и не вполне информативными, поскольку они могли быть практически идентичными для обеих изомерных структур **4** и **7**.

Развивая эти исследования, мы изучили действие на иодид 1 также гидразидов некоторых других карбоновых кислот (табл. 1 и 2).

Таблица 1

F	Растропитель	Время,		Выход	ы соедине	ний, %	
1 идразид	Гастворитель	Ч	7	8	5	6	9
2b	Этанол	50	37	-	19	-	-
	Вода	30	27	-	10	-	23
20	Этанол	60	27	16	12	13	-
20	Вода	25	13	4	8	-	40
2d	Этанол	20	21	18	12	10	-
2e	Этанол	30	26	11	15	11	-
2f	Этанол Вода	27 40	10	31 15	15 9	9 -	_ 50
2g	Этанол	30	-	49	13	22	_

Данные взаимодействия соли 1 с гидразидами 2b-g

Таблица 2

Coe- ли-	Брутто- формула	<u>]</u> Bi	<u>Найдено,</u> ычислено	<u>%</u> , %	Т. пл., °С	R_{f}^{*}
нение	φοριαγία	С	Н	Ν	0	
7b	$C_{16}H_{16}N_4O_2$	<u>64.62</u> 64.86	<u>5.34</u> 5.40	<u>18.84</u> 18.92	153–154	0.63 (1:3)
7c	$C_{13}H_{14}N_4O_2$	<u>60.37</u> 60.46	<u>5.41</u> 5.43	<u>21.78</u> 21.70	168–169	0.62 (1:1)
7d	$C_{18}H_{19}N_3O_2$	<u>69.81</u> 69.60	<u>6.10</u> 6.15	<u>13.58</u> 13.59	109–110	0.54 (1:1)
7e	$C_{18}H_{21}N_5O_2$	<u>63.69</u> 63.72	<u>6.17</u> 6.19	<u>20.63</u> 20.65	145–146	0.55 (1:2)
7f	$C_{12}H_{15}N_3O_2$	<u>61.33</u> 61.80	<u>6.28</u> 6.44	$\frac{18.13}{18.02}$	124–125	0.59 (1:1)
8	C ₈ H ₉ N ₃ O	<u>58.88</u> 58.90	<u>5.46</u> 5.52	<u>25.79</u> 25.77	239–240 240–242 °C [13].	0.59 (1:1)

Характеристики синтезированных соединений 7b-f и 8

* Элюент толуол-ацетон

В частности, оказалось, что нагревание гидразида циануксусной кислоты (**2c**) с солью **1** в абсолютном этаноле приводит к образованию 5,7диметил-2-цианометил-3-этоксикарбонилпиразоло[1,5-*a*]пиримидина (**7c**), структура которого также была подтверждена данными РСА.

Детали рентгеноструктурных исследований и кристаллографические данные соединений **7b** и **7c** объединены в табл. 3. Структуры были расшифрованы прямым методом по программе SHELXTL [13]. Координаты атомов водорода определены из разностных синтезов Фурье. На конечном этапе координаты всех атомов, включая атомы водорода и анизотропные тепловые параметры неводородных атомов, были уточнены вместе в полноматричном МНК. Межатомные расстояния, валентные и конформационные углы в молекулах пиразоло[1,5-*a*]пиримидинов **7b** и **7c** приведены в табл. 4–6, а строение молекул – на рис. 1 и 2. Межатомные расстояния и валентные углы, определенные из уточнения моделей структур, согласуются со среднестатистическими значениями соответствующих величин.

В реакциях иодида 1 с гидразидами карбоновых кислот наряду с соединениями 5 и 6 было выделено и другое производное пиразоло[1,5-*a*]-пиримидина – 2-гидрокси-5,7-диметилпиразоло[1,5-*a*]пиримидин (8). Наличие в спектре ЯМР ¹Н сигналов двух протонов (Н-3 и Н-6) при 5.61 и 6.42 м. д., соответственно, и отсутствие сигналов сложноэфирной группы, в сочетании с данными спектров ЯМР ¹³С (табл. 7 и 8) и масс-спектров полностью подтверждает строение соединения 8. Дополнительным аргументом в пользу этого утверждения является встречный синтез соединения 8 из гидразида 2с и ацетилацетона [14], приводящий к соединению с аналогичными физико-химических характеристиками.

Рис. 1. Атомная структура молекулы 5,7-диметил-2-(4-пиридил)-3этоксикарбонилпиразоло[1,5-*a*]пиримидина (7**b**) с нашей нумерацией атомов

Рис. 2. Атомная структура молекулы 5,7-диметил-2-цианометил-3этоксикарбонилпиразоло[1,5-*a*]пиримидина (7с) с нашей нумерацией атомов

Таблица З

	Соединение 7b	Соединение 7с
Формула	C ₁₆ H ₁₆ N ₄ O ₂	$C_{13}H_{14}N_4O_2$
Молекулярный вес	296.33	258.28
Сингония	Триклинная	Триклинная
Пр.гр.	<i>P</i> -1(No.2)	<i>P</i> -1(No.2)
Параметры элементарной ячейки		
	7.6408(15)	8.3450(17)
a, Å		
b, Å	9.845(2)	8.4703(17)
с, А	11.337(2)	10.793(2)
α	108.03(3)	68.52(5) 70.10(2)
β	91.22(3)	/0.19(3)
γ	112.66(3)	86.55(3)
V, Å ³	738.7(4)	666.1(3)
Z	2	2
$D_{\rm peht}$, $\Gamma/{\rm cm}^3$	1.332	1.288
М (МоКα) мм ⁻¹	0.091	0.091
F(000)	312	272
Размеры кристалла, см	$0.025 \times 0.03 \times 0.03$	$0.03 \times 0.023 \times 0.03$
	Сбор данных	
Температура, К	293	293
Излучение, длина волны, Å	MoK α , $\lambda = 0.71073$	MoK α , $\lambda = 0.71073$
$\theta_{\min}, \theta_{\max}$	1.9, 30.0	2.0, 30.0
Индексы	-10 <h<10; -13<k<13;<br="">0<l<15< td=""><td>-11<<i>h</i><11; -11<<i>k</i><11; 0<<i>l</i><15</td></l<15<></h<10;>	-11< <i>h</i> <11; -11< <i>k</i> <11; 0< <i>l</i> <15
Число независимых измерений, <i>R</i> (int)	4500, 4299, 0.022	4081, 3888, 0.008
Число наблюдаемых отражений, <i>I</i> >2.0σ(<i>I</i>)	2709	3192
	Уточнение	Ĩ
Число отражений	4299	3888
параметров	264	229
<i>R</i> , <i>w</i> R2, <i>S</i>	0.0509, 0.1381, 1.02	0.0485, 0.1459, 1.04
Max. and Av. Shift/Error	0.00, 0.00	0.00, 0.00
$\Delta \rho_{\min}$	-0.21	-0.20
$\Delta \rho_{\text{max}}, e/\text{\AA}^3$	0.23	0.29

Соедин	ение 7 b	Соедин	ение 7 с
Связь	l, Å	Связь	l, Å
$O_{(13)} - C_{(12)}$	1.205(2)	$O_{(13)} - C_{(12)}$	1.213(18)
$O_{(14)} - C_{(12)}$	1.328(2)	O ₍₁₄₎ –C ₍₁₂₎	1.323(16)
$O_{(14)} - C_{(15)}$	1.444(3)	$O_{(14)} - C_{(15)}$	1.451(19)
N(1)-N(9)	1.361(2)	N(1)-N(9)	1.371(14)
N(1)-C(2)	1.341(2)	N ₍₁₎ -C ₍₂₎	1.332(16)
N(5)-C(4)	1.348(2)	N(5)-C(4)	1.344(15)
N(5)-C(6)	1.325(2)	N ₍₅₎ -C ₍₆₎	1.324(17)
N ₍₉₎ -C ₍₄₎	1.383(2)	N ₍₉₎ -C ₍₄₎	1.386(14)
N ₍₉₎ -C ₍₈₎	1.373(2)	N ₍₉₎ -C ₍₈₎	1.370(16)
$N_{(20)} - C_{(19)}$	1.331(3)	$N_{(19)} - C_{(18)}$	1.134(2)
$N_{(20)}-C_{(21)}$	1.332(3)	$C_{(2)} - C_{(3)}$	1.406(16)
$C_{(2)} - C_{(3)}$	1.423(2)	$C_{(2)} - C_{(17)}$	1.500(2)
$C_{(2)} - C_{(17)}$	1.485(2)	$C_{(3)} - C_{(4)}$	1.402(17)
$C_{(3)} - C_{(4)}$	1.410(2)	$C_{(3)} - C_{(12)}$	1.456 (17)
$C_{(3)} - C_{(12)}$	1.468(2)	$C_{(6)} - C_{(7)}$	1.417(18)
$C_{(6)} - C_{(7)}$	1.410(3)	$C_{(6)} - C_{(11)}$	1.492(2)
$C_{(6)} - C_{(11)}$	1.500(3)	$C_{(7)} - C_{(8)}$	1.361(17)
$C_{(7)} - C_{(8)}$	1.358(3)	$C_{(8)} - C_{(10)}$	1.486(18)
$C_{(8)}-C_{(10)}$	1.480(3)	$C_{(15)} - C_{(16)}$	1.468(3)
$C_{(15)} - C_{(16)}$	1.495(3)	$C_{(17)} - C_{(18)}$	1.457(2)
$C_{(17)} - C_{(18)}$	1.382(2)	C ₍₇₎ -H ₍₇₎	0.93(17)
$C_{(17)} - C_{(22)}$	1.392(2)	C(10)-H(10A)	0.94(2)
$C_{(18)} - C_{(19)}$	1.384(3)	C(10)-H(10B)	1.00(3)
$C_{(21)} - C_{(22)}$	1.380(3)	C(10)-H(10C)	0.98(3)
C ₍₇₎ -H ₍₇₎	0.97(2)	C ₍₁₁₎ -H _(11A)	0.96(3)
C(10)-H(10A)	0.94(3)	C ₍₁₁₎ -H _(11B)	0.97(3)
C(10)-H(10B)	0.97(3)	C ₍₁₁₎ -H _(11C)	0.99(3)
C(10)-H(10C)	0.96(3)	C(15)-H(15A)	0.99(3)
C ₍₁₁₎ -H _(11A)	0.96(4)	C(15)-H(15B)	0.92(3)
C ₍₁₁₎ -H _(11B)	0.99(4)	C(16)-H(16A)	1.05(2)
C ₍₁₁₎ -H _(11C)	0.91(4)	C(16)-H(16B)	0.90(4)
C(15)-H(15A)	0.99(3)	C(16)-H(16C)	1.09(4)
C(15)-H(15B)	1.05(3)	C ₍₁₇₎ -H _(17A)	0.98(3)
C(16)-H(16A)	0.96(3)	C(17)-H(17B)	0.97(3)
C(16)-H(16B)	0.97(3)		
C(16)-H(16C)	0.96(3)		
C ₍₁₈₎ -H ₍₁₈₎	0.94(2)		
C ₍₁₉₎ -H ₍₁₉₎	0.94(3)		
C ₍₂₁₎ -H ₍₂₁₎	1.00(2)		
C(22)-H(22)	0.94(2)		

Длины связей (1) в молекулах 5,7-диметил-2-(4-пиридил)-3этоксикарбонилпиразоло[1,5-*а*]пиримидина (7b) и 5,7-диметил-2-цианометил-3этоксикарбонилпиразоло[1,5-*а*]пиримидина (7c)

Таблица 5

	Соедин	иение 7 b		Соединение 7с					
Угол	ω, град.	Угол	ω, град.	Угол	ω, град.	Угол	ω, град.		
$C_{(12)} - O_{(14)} - C_{(15)}$	117.15(16)	$C_{(2)} - C_{(17)} - C_{(22)}$	118.39(15)	$C_{(12)} - O_{(14)} - C_{(15)}$	118.07(12)	$C_{(6)} - C_{(7)} - H_{(7)}$	117.8(10)		
$N_{(9)} - N_{(1)} - C_{(2)}$	104.54(13)	$C_{(18)} - C_{(17)} - C_{(22)}$	117.07(16)	N ₍₉₎ -N ₍₁₎ -C ₍₂₎	103.63(9)	$C_{(8)} - C_{(7)} - H_{(7)}$	121.4(10)		
$C_{(4)} - N_{(5)} - C_{(6)}$	116.77(15)	$C_{(17)} - C_{(18)} - C_{(19)}$	118.91(17)	C ₍₄₎ -N ₍₅₎ -C ₍₆₎	116.87(10)	$C_{(8)}$ - $C_{(10)}$ - $H_{(10A)}$	111.9(14)		
$N_{(1)} - N_{(9)} - C_{(4)}$	113.04(14)	$N_{(20)}$ - $C_{(19)}$ - $C_{(18)}$	124.62(18)	$N_{(1)} - N_{(9)} - C_{(4)}$	112.90(10)	$C_{(8)}$ - $C_{(10)}$ - $H_{(10B)}$	111.8(12)		
$N_{(1)} - N_{(9)} - C_{(8)}$	124.09(14)	$N_{(20)} - C_{(21)} - C_{(22)}$	123.98(17)	$N_{(1)} - N_{(9)} - C_{(8)}$	124.75(10)	$C_{(8)}$ - $C_{(10)}$ - $H_{(10C)}$	109.0(12)		
$C_{(4)} - N_{(9)} - C_{(8)}$	122.82(14)	$C_{(17)} - C_{(22)} - C_{(21)}$	119.47(17)	C ₍₄₎ -N ₍₉₎ -C ₍₈₎	122.35(10)	$H_{(10A)}$ - $C_{(10)}$ - $H_{(10B)}$	108(2)		
$C_{(19)}$ - $N_{(20)}$ - $C_{(21)}$	115.92(17)	$C_{(6)} - C_{(7)} - H_{(7)}$	119.1(11)	N ₍₁₎ -C ₍₂₎ -C ₍₃₎	113.48(11)	H _(10A) -C ₍₁₀₎ -H _(10C)	108(2)		
$N_{(1)} - C_{(2)} - C_{(3)}$	112.41(15)	$C_{(8)} - C_{(7)} - H_{(7)}$	120.2(11)	$N_{(1)}-C_{(2)}-C_{(17)}$	120.56(11)	$H_{(10B)}$ - $C_{(10)}$ - $H_{(10C)}$	108(2)		
$N_{(1)} - C_{(2)} - C_{(17)}$	114.68(14)	C ₍₈₎ -C ₍₁₀₎ -H _(10A)	112.2(16)	$C_{(3)} - C_{(2)} - C_{(17)}$	125.95(12)	$C_{(6)}$ - $C_{(11)}$ - $H_{(11A)}$	113.2(17)		
$C_{(3)} - C_{(2)} - C_{(17)}$	132.91(16)	$C_{(8)}$ - $C_{(10)}$ - $H_{(10B)}$	111.7(19)	$C_{(2)} - C_{(3)} - C_{(4)}$	104.75(10)	$C_{(6)}$ - $C_{(11)}$ - $H_{(11B)}$	115.7(12)		
$C_{(2)} - C_{(3)} - C_{(4)}$	104.44(14)	C ₍₈₎ -C ₍₁₀₎ -H _(10C)	111.2(13)	$C_{(2)} - C_{(3)} - C_{(12)}$	126.15(12)	$C_{(6)}$ - $C_{(11)}$ - $H_{(11C)}$	110.8(16)		
$C_{(2)} - C_{(3)} - C_{(12)}$	129.49(15)	$H_{(10A)}$ - $C_{(10)}$ - $H_{(10B)}$	104(2)	$C_{(4)} - C_{(3)} - C_{(12)}$	129.06(11)	$H_{(11A)} - C_{(11)} - H_{(11B)}$	101(2)		
$C_{(4)}$ - $C_{(3)}$ - $C_{(12)}$	125.89(14)	H _(10A) -C ₍₁₀₎ -H _(10C)	106(3)	N(5)-C(4)-N(9)	121.91(11)	$H_{(11A)} - C_{(11)} - H_{(11C)}$	104(2)		
$N_{(5)} - C_{(4)} - N_{(9)}$	121.29(15)	$H_{(10B)}$ - $C_{(10)}$ - $H_{(10C)}$	111(2)	N ₍₅₎ -C ₍₄₎ -C ₍₃₎	132.87(11)	$H_{(11B)} - C_{(11)} - H_{(11C)}$	111(2)		
$N_{(5)}-C_{(4)}-C_{(3)}$	133.14(16)	$C_{(6)} - C_{(11)} - H_{(11A)}$	110(2)	N ₍₉₎ -C ₍₄₎ -C ₍₃₎	105.22(10)	O ₍₁₄₎ -C ₍₁₅₎ -H _(15A)	110.5(13)		
$N_{(9)}$ - $C_{(4)}$ - $C_{(3)}$	105.58(13)	$C_{(6)}$ - $C_{(11)}$ - $H_{(11B)}$	113(2)	N ₍₅₎ -C ₍₆₎ -C ₍₇₎	122.68(12)	$O_{(14)}$ - $C_{(15)}$ - $H_{(15B)}$	106.7(14)		
N ₍₅₎ -C ₍₆₎ -C ₍₇₎	123.15(16)	C ₍₆₎ -C ₍₁₁₎ -H _(11C)	113(2)	N ₍₅₎ -C ₍₆₎ -C ₍₁₁₎	117.22(12)	$C_{(16)}$ - $C_{(15)}$ - $H_{(15A)}$	112.2(12)		

Валентные углы (ω) в молекулах 7b и 7с

	1 1	1			I	1	
$N_{(5)} - C_{(6)} - C_{(11)}$	116.13(18)	$H_{(11A)}$ - $C_{(11)}$ - $H_{(11B)}$	107(3)	$C_{(7)} - C_{(6)} - C_{(11)}$	120.09(12)	$C_{(16)}$ - $C_{(15)}$ - $H_{(15B)}$	113.0(14)
$C_{(7)} - C_{(6)} - C_{(11)}$	120.72(18)	H _(11A) -C ₍₁₁₎ -H _(11C)	107(3)	$C_{(6)} - C_{(7)} - C_{(8)}$	120.80(12)	$H_{(15A)}$ - $C_{(15)}$ - $H_{(15B)}$	107(2)
$C_{(6)} - C_{(7)} - C_{(8)}$	120.68(18)	H _(11B) -C ₍₁₁₎ -H _(11C)	107(3)	$N_{(9)} - C_{(8)} - C_{(7)}$	115.38(11)	$C_{(15)}$ - $C_{(16)}$ - $H_{(16A)}$	112.3(13)
$N_{(9)} - C_{(8)} - C_{(7)}$	115.24(16)	O ₍₁₄₎ -C ₍₁₅₎ -H _(15A)	109.6(14)	N ₍₉₎ -C ₍₈₎ -C ₍₁₀₎	118.27(11)	$C_{(15)}$ - $C_{(16)}$ - $H_{(16B)}$	120.7(19)
$N_{(9)}$ - $C_{(8)}$ - $C_{(10)}$	118.40(16)	O ₍₁₄₎ -C ₍₁₅₎ -H _(15B)	109.6(13)	$C_{(7)} - C_{(8)} - C_{(10)}$	126.34(13)	$C_{(15)}$ - $C_{(16)}$ - $H_{(16C)}$	92.4(18)
$C_{(7)} - C_{(8)} - C_{(10)}$	126.32(17)	C ₍₁₆₎ -C ₍₁₅₎ -H _(15A)	113.7(13)	O ₍₁₃₎ -C ₍₁₂₎ -O ₍₁₄₎	123.53(13)	$H_{(16A)}$ - $C_{(16)}$ - $H_{(16B)}$	116(2)
$O_{(13)}$ - $C_{(12)}$ - $O_{(14)}$	122.95(17)	C ₍₁₆₎ -C ₍₁₅₎ -H _(15B)	114.2(12)	O ₍₁₃₎ -C ₍₁₂₎ -C ₍₃₎	124.12(12)	$H_{(16A)}$ - $C_{(16)}$ - $H_{(16C)}$	103(2)
$O_{(13)} - C_{(12)} - C_{(3)}$	125.95(16)	$H_{(15A)}$ - $C_{(15)}$ - $H_{(15B)}$	103(2)	O ₍₁₄₎ -C ₍₁₂₎ -C ₍₃₎	112.34(11)	$H_{(16B)}$ - $C_{(16)}$ - $H_{(16C)}$	108(3)
$O_{(14)} - C_{(12)} - C_{(3)}$	111.10(15)	C ₍₁₅₎ -C ₍₁₆₎ -H _(16A)	111.6(15)	O ₍₁₄₎ -C ₍₁₅₎ -C ₍₁₆₎	107.18(17)	C ₍₂₎ -C ₍₁₇₎ -H _(17A)	105.3(14)
$O_{(14)} - C_{(15)} - C_{(16)}$	106.9(2)	C ₍₁₅₎ -C ₍₁₆₎ -H _(16B)	108.2(15)	C ₍₂₎ -C ₍₁₇₎ -C ₍₁₈₎	113.91(14)	$C_{(2)} - C_{(17)} - H_{(17B)}$	109.9(15)
$C_{(2)} - C_{(17)} - C_{(18)}$	124.47(15)	C ₍₁₅₎ -C ₍₁₆₎ -H _(16C)	109.2(19)	N ₍₁₉₎ -C ₍₁₈₎ -C ₍₁₇₎	177.2(2)	$C_{(18)}$ - $C_{(17)}$ - $H_{(17A)}$	106.7(13)
$H_{(16A)}$ - $C_{(16)}$ - $H_{(16B)}$	108(2)	$C_{(18)}$ - $C_{(19)}$ - $H_{(19)}$	117.8(13)	C ₍₁₈₎ -C ₍₁₇₎ -H _(17B)	106.2(12)	$H_{(17A)}$ - $C_{(17)}$ - $H_{(17B)}$	115(2)
$H_{(16A)}$ - $C_{(16)}$ - $H_{(16C)}$	111(3)	N ₍₂₀₎ -C ₍₂₁₎ -H ₍₂₁₎	117.0(16)				
$H_{(16B)}$ - $C_{(16)}$ - $H_{(16C)}$	109(3)	$C_{(22)}$ - $C_{(21)}$ - $H_{(21)}$	119.0(16)				
$C_{(17)}$ - $C_{(18)}$ - $H_{(18)}$	121.0(12)	$C_{(17)}$ - $C_{(22)}$ - $H_{(22)}$	120.5(12)				
$C_{(19)}$ - $C_{(18)}$ - $H_{(18)}$	120.1(12)	$C_{(21)}$ - $C_{(22)}$ - $H_{(22)}$	119.9(12)				
$N_{(20)}$ - $C_{(19)}$ - $H_{(19)}$	117.6(13)						

Таблица б

Соединение 7	'b	Соединен	ие 7с
Угол	б, град.	Угол	б, град.
$C_{(15)} - O_{(14)} - C_{(12)} - O_{(13)}$	-0.4(3)	$C_{(15)} - O_{(14)} - C_{(12)} - O_{(13)}$	-0.4(2)
$C_{(12)} - O_{(14)} - C_{(15)} - C_{(16)}$	-179.5(2)	$C_{(12)} - O_{(14)} - C_{(15)} - C_{(16)}$	-175.24(18)
$N_{(9)}-N_{(1)}-C_{(2)}-C_{(3)}$	-0.11(19)	$C_{(2)} = N_{(1)} = N_{(9)} = C_{(4)}$	0.29(13)
$C_{(2)} - N_{(1)} - N_{(9)} - C_{(8)}$	-177.39(16)	$N_{(9)} - N_{(1)} - C_{(2)} - C_{(3)}$	0.53(14)
$C_{(6)} - N_{(5)} - C_{(4)} - N_{(9)}$	0.2(3)	$C_{(4)} - N_{(5)} - C_{(6)} - C_{(11)}$	179.51(12)
$C_{(4)} - N_{(5)} - C_{(6)} - C_{(11)}$	-179.41(19)	$C_{(6)} - N_{(5)} - C_{(4)} - N_{(9)}$	0.36(17)
$C_{(4)} - N_{(9)} - C_{(8)} - C_{(7)}$	2.3(3)	$N_{(1)} - N_{(9)} - C_{(4)} - N_{(5)}$	178.62(11)
$C_{(8)} - N_{(9)} - C_{(4)} - N_{(5)}$	-2.1(3)	$C_{(8)} - N_{(9)} - C_{(4)} - N_{(5)}$	-0.85(18)
$N_{(1)} - N_{(9)} - C_{(4)} - C_{(3)}$	-0.2(2)	$C_{(4)}$ - $N_{(9)}$ - $C_{(8)}$ - $C_{(7)}$	0.82(17)
$N_{(1)} - N_{(9)} - C_{(8)} - C_{(10)}$	1.8(3)	$N_{(1)} - N_{(9)} - C_{(8)} - C_{(7)}$	-178.59(12)
$C_{(21)} - N_{(20)} - C_{(19)} - C_{(18)}$	0.3(4)	$C_{(3)}$ - $C_{(2)}$ - $C_{(17)}$ - $C_{(18)}$	-177.57(14)
$N_{(1)} - C_{(2)} - C_{(17)} - C_{(18)}$	150.45(19)	$C_{(17)}$ - $C_{(2)}$ - $C_{(3)}$ - $C_{(4)}$	177.57(13)
$C_{(17)} - C_{(2)} - C_{(3)} - C_{(4)}$	-179.15(18)	$C_{(17)}$ - $C_{(2)}$ - $C_{(3)}$ - $C_{(12)}$	-4.2(2)
$C_{(3)} - C_{(2)} - C_{(17)} - C_{(22)}$	152.6(2)	$C_{(12)}$ - $C_{(3)}$ - $C_{(4)}$ - $N_{(5)}$	3.5(2)
$C_{(3)} - C_{(2)} - C_{(17)} - C_{(18)}$	-30.4(3)	$C_{(4)}$ - $C_{(3)}$ - $C_{(12)}$ - $O_{(14)}$	-0.50(19)
$C_{(2)}-C_{(3)}-C_{(4)}-N_{(9)}$	0.09(18)	$C_{(4)}$ - $C_{(3)}$ - $C_{(12)}$ - $O_{(13)}$	178.94(14)
$C_{(2)}-C_{(3)}-C_{(12)}-O_{(13)}$	2.4(3)	$C_{(2)}-C_{(3)}-C_{(12)}-O_{(14)}$	178.27(12)
$C_{(2)}-C_{(3)}-C_{(12)}-O_{(14)}$	177.14(17)	$C_{(11)} - C_{(6)} - C_{(7)} - C_{(8)}$	-179.47(13)
$C_{(4)} - C_{(3)} - C_{(12)} - O_{(13)}$	176.80(18)	$C_{(6)} - C_{(7)} - C_{(8)} - C_{(10)}$	178.74(13)
$N_{(5)}-C_{(6)}-C_{(7)}-C_{(8)}$	-0.9(3)	$C_{(15)} - O_{(14)} - C_{(12)} - C_{(3)}$	179.03(12)
$C_{(6)} - C_{(7)} - C_{(8)} - N_{(9)}$	-0.9(3)	$C_{(2)} - N_{(1)} - N_{(9)} - C_{(8)}$	179.74(12)
$C_{(2)}-C_{(17)}-C_{(18)}-C_{(19)}$	-178.27(19)	$N_{(9)} - N_{(1)} - C_{(2)} - C_{(17)}$	-178.23(12)
$C_{(2)} - C_{(17)} - C_{(22)} - C_{(21)}$	1//.4(2)	$C_{(4)} - N_{(5)} - C_{(6)} - C_{(7)}$	0.09(18)
$N_{(20)} - C_{(21)} - C_{(22)} - C_{(17)}$	1.2(4)	$C_{(6)} - N_{(5)} - C_{(4)} - C_{(3)}$	1/9.80(13)
$C_{(15)} - O_{(14)} - C_{(12)} - C_{(3)}$	1/9.22(1/)	$N_{(1)} - N_{(9)} - C_{(4)} - C_{(3)}$	-0.96(13)
$N_{(9)} - N_{(1)} - C_{(2)} - C_{(17)}$	1/9.21(14)	$C_{(4)} - N_{(9)} - C_{(8)} - C_{(10)}$	-1/8.38(12)
$C_{(2)} = N_{(1)} = N_{(9)} = C_{(4)}$	0.2(2)	$N_{(1)} - N_{(9)} - C_{(8)} - C_{(10)}$	2.21(18)
$C_{(4)} = N_{(5)} = C_{(6)} = C_{(7)}$	1.5(5)	$C_{(8)} - N_{(9)} - C_{(4)} - C_{(3)}$	1/9.3/(11)
$C_{(6)} = N_{(5)} = C_{(4)} = C_{(3)}$	-179.10(19) 177.43(16)	$N_{(1)} - C_{(2)} - C_{(3)} - C_{(4)}$	-1.11(13) 177 10(12)
$C_{(8)} = 1 \cdot (3) = C_{(4)} = C_{(3)}$	-17552(10)	$N_{(1)} = C_{(2)} = C_{(3)} = C_{(12)}$	1 0(2)
$N_{(4)} = N_{(6)} = C_{(4)} = N_{(6)}$	-179.66(16)	$\Gamma_{(1)} = C_{(2)} = C_{(1/)} = C_{(18)}$	1.17(13)
$N_{(1)} = N_{(2)} = C_{(2)} = C_{(2)}$	179.66(18)	$C_{(2)} = C_{(3)} = C_{(4)} = N_{(5)}$	-17834(13)
$C_{(1)} = N_{(2)} = C_{(2)} = C_{(2)}$	-1 4(4)	$C_{(2)} = C_{(3)} = C_{(4)} = N_{(3)}$	-176.97(12)
$C_{(17)} = C_{(27)} = C_{(37)} = C_{(17)}$	-3.9(3)	$C_{(12)} - C_{(3)} - C_{(12)} - O_{(13)}$	1.2(2)
$N_{(1)}-C_{(2)}-C_{(3)}-C_{(12)}$	175.31(17)	$N_{(5)}-C_{(6)}-C_{(7)}-C_{(8)}$	-0.1(2)
$N_{(1)}-C_{(2)}-C_{(3)}-C_{(4)}$	0.0(2)	$C_{(6)} - C_{(7)} - C_{(8)} - N_{(9)}$	-0.38(19)
$N_{(1)}-C_{(2)}-C_{(17)}-C_{(22)}$	-26.6(2)		
$C_{(12)}-C_{(3)}-C_{(4)}-N_{(9)}$	-175.43(16)		
C(12)-C(3)-C(4)-N(5)	4.0(3)		
$C_{(2)}-C_{(3)}-C_{(4)}-N_{(5)}$	179.50(19)		
$C_{(4)}$ - $C_{(3)}$ - $C_{(12)}$ - $O_{(14)}$	-2.8(2)		
$C_{(11)} - C_{(6)} - C_{(7)} - C_{(8)}$	179.8(2)		
$C_{(6)}$ - $C_{(7)}$ - $C_{(8)}$ - $C_{(10)}$	176.8(2)		
$C_{(22)}$ - $C_{(17)}$ - $C_{(18)}$ - $C_{(19)}$	-1.2(3)		
$C_{(18)}$ - $C_{(17)}$ - $C_{(22)}$ - $C_{(21)}$	0.2(3)		
$C_{(17)}$ - $C_{(18)}$ - $C_{(19)}$ - $N_{(20)}$	1.0(4)		

Торсионные углы (δ) в молекулах соединений 7b и 7c

Co-	Химические сдвиги, δ, м. д. (КССВ, J, Гц)									
еди- нение	OCH_2CH_3 ,	5-CH ₃ ,	7-CH ₃ ,	$OCH_2,$	Н-6,	R				
nenne	T, J = /.1	c	с	K, J = 7.1	c					
7b	1.27	2.62	2.79	4.32	6.99	7.72 (2Н, д. J=6.8, Н-2",6");				
						8.74 (2H, д, <i>J</i> = 6.8, H-3",				
						H-5")				
7c	1.44	2.68	2.82	4.44	6.78	4.23 (2H, c, CH ₂ CN)				
7d	1.38	2.62	2.77	4.30	6.83	4.41 (2H, c, 2-CH ₂); 7.08–				
						7.29 (5H, м, C ₆ H ₅)				
7e	1.19	2.61	2.72	4.14	6.84	2.35 (6H, c, H-4',6');				
						4.55 (2H, c, 2-CH ₂); 6.86				
						(H, c, H-5')				
7f	1.29	2.59	2.71	4.34	6.82	2.57 (3H. c. 2-CH ₂)				
	>	,								
8	_	2.44	2.54	_	6.42	5.61 (H, c, H-3); 10.37 (H,				
						уш. c, OH)				

Спектры ЯМР ¹Н, , соединений 7b-f и 8 в ДМСО-d₆

Получение производных пиразоло[1,5-*a*]пиримидина привело нас к новой интерпретации данной трансформации. Схематически образование пиразолопиримидинов 7 и 8 можно представить следующим образом:

По-видимому, после атаки гидразинового фрагмента по положению 2 пиримидина [15] и последующей рециклизации образуется интермедиат 10, который далее может вторично циклизоваться в двух направлениях – с образованием соединений 7а–f (путь A) и 8 (путь B).

Конкурентной этим трансформациям является перегруппировка Коста– Сагитуллина, приводящая к соединению 6. В случае атаки по метильной

Таблица 8

Соели-						Химич	неские сдві	иги, δ, м. д	(.			
нение	OCH ₂ CH ₃	5-CH ₃	7-CH ₃	O–CH ₂	C ₍₂₎	C ₍₃₎	C ₍₅₎	C ₍₆₎	C ₍₇₎	C ₍₉₎	C=O	R
7b	13.82	16.23	24.28	59.13	148.54	99.54	161.60	110.47	145.19	148.14	161.21	123.45 (С _(3') и С _(5')); 139.90 (С _(4')); 153.94 (С _(1') и С _(6'))
7c	14.03	16.24	24.80	59.17	149.36	98.53	162.04	110.61	145.62	147.55	161.56	17.80 (2-CH ₂); 115.72 (CN)
7d	13.97	16.28	24.07	58.42	158.27	99.89	160.33	109.39	144.85	147.82	161.88	33.60 (2-CH ₂); 125.22 (С _(4')); 127.34 (С _(2') и С _(4')); 128.26 (С _(3') и С _(5')); 138.58 (С _(1'))
7e	13.82	16.36	24.14	58.23	156.07	99.77	160.26	109.28	144.88	147.93	161.73	23.12 (4'- и 6'-CH ₃); 116.6 (C _(5')); 166.83 (C _(2')); 165.32 (C _{(4') и} C _(6'))
7f	14.12	16.28	24.10	58.37	156.26	95.36	162.10	109.20	144.67	147.91	160.26	14.55 (2-CH ₃)
8	_	16.40	23.68	_	156.33	99.54	165.67	105.53	143.47	148.47	_	_

Спектры ЯМР ¹³С соединений 7b-g и 8

группе кватернизированного атома азота образуется продукт деметилирования 5. Фактически соль 1 трансформируется в четырех конкурентных направлениях.

Отметим, что в случае гидразидов уксусной 2f и муравьиной 2g кислот основным продуктом реакции становится соединение 8, которое в случае аминогуанидина 2a и изониазида 2b вовсе не образуется. В реакции с гидразидом 2g нам не удалось выделить соединение 7g.

При проведении реакции в водной среде, как и в случае перегруппировки той же соли действием водных растворов аминов [16], вместо продукта нормальной перегруппировки Коста–Сагитуллина обра- зуется пиридон 9.

Таким образом, полученные результатыне только расширяют представления о рециклизациях пиримидиниевых солей, но и открывают новый оригинальный путь синтеза производных пиразоло[1,5-*a*]пиримидина.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Спектры ЯМР ¹Н и ¹³С получены на спектрометре фирмы Varian Mercury 300 (300, 76 МГц соответственно), используемом в рамках программы US CRDF RESC 17-5, в ДМСО-d₆, внутренний стандарт ТМС. РСА проводили на рефрактометре CAD-4 Enraf-Nonius. Масс-спектры зарегистрированы на спектрометре MK-1321 с прямым вводом образца в ионный источник при энергии ионизации 70 эВ. ТСХ проводили на пластинках Silufol UV-254, проявляли парами иода и реактивом Эрлиха. Препаративное деление осуществляли колоночной хроматографией на силикагеле (L $^{5}/_{40}$). Соединения 5 [R_f 0.67 (толуол–ацетон, 1:1)], 6 [R_f 0.62 (толуол–ацетон, 4:1)] и 9 [R_f 0.52 (толуол–ацетон, 1:2)] идентичны по температурам плавления и спектрам ЯМР заведомым образцам, а гидразиды 2b–d,f,g получены аналогично методике получения соединения 2e. Характеристики и данные спектров ЯМР ¹Н и ¹³С синтезированных соединений 7b–f и 8 приведены в табл. 2,7 и 8.

Гидразид 4,6-диметил-2-пиримидинилуксусной кислоты (2е). Смесь 1.94 г (0.01 моль) этилового эфира 4,6-диметил-2-пиримидинилуксусной кислоты и 1 мл (0.02 моль) 85% раствора гидрата гидразина нагревают 18 ч в 10 мл этанола. Растворитель и избыток гидразина отгоняют в вакууме, остаток перекристаллизовывают из 10 мл абсолютного этанола. Кристаллы отфильтровывают, промывают горячим гексаном и получают 1.69 г (94%) гидразида 2е, т. пл. 135–137 °С. Спектр ЯМР ¹Н, δ , м. д.: 2.41 (6H, c, 4-и 6-CH₃); 3.32 (2H, уш. с, NH₂); 3.60 (2H, с, CH₂); 6.95 (1H, с, H-5); 9.03 (H, уш. с, NH). Спектр ЯМР ¹³С, δ , м. д.: 23.16 (4-и 6-CH₃); 44.12 (CH₂); 117.15 (C₍₅₎); 164.26 (C₍₂₎); 165.58 (C₍₄₎ и C₍₆₎); 167.45 (C=O).

Взаимодействие соли 1 с гидразидом изоникотиновой кислоты (2b) в абсолютном этаноле. Смесь 5.1 г (0.015 моль) соли 1 и 4.1 г (0.03 моль) гидразида 2b в 20 мл абсолютного этанола нагревают 50 ч при ~100 °С. Далее отгоняют растворитель, остаток растворяют в 10 мл воды и экстрагируют толуолом (4 × 10 мл). Толуольные вытяжки сушат MgSO₄ и упаривают в вакууме. Остаток делят на колонке (толуол–ацетон, 3:1). Получают 1.64 г (37%) соединения 7b и 0.55 г (19%) соединения 5.

Взаимодействие соли 1 с гидразидом 2b в воде. Раствор 1.34 г (0.004 моль) иодида 1 и 1.1 г (0.008 моль) гидразида 2b в 10 мл воды нагревают 30 ч при ~100 °C, затем экстрагируют хлороформом (3 × 10 мл), сушат MgSO₄ и отгоняют растворитель. Остаток делят на колонке (толуол–ацетон, 2:1) и получают 0.27 г (27%) соединения 7b, 0.075 г (10%) соединения 5 и 0.18 г (23%) соединения 9.

Взаимодействие соли 1 с гидразидом циануксусной кислоты 2с в абсолютном этаноле. Смесь 4.08 г (0.012 моль) соли 1 и 2.37 г (0.024 моль) гидразида 2с нагревают 50 ч в 15 мл абсолютного этанола. Отгоняют растворитель, остаток растворяют в 10–12 мл воды и экстрагируют толуолом (3 × 15 мл). Толуольный раствор сушат MgSO₄, отгоняют

растворитель, а остаток делят на колонке (толуол–ацетон, 4:1). Получают 0.85 г (27%) соединения **7с**, 0.28 г (12%) соединения **5** и 0.32 г (13%) соединения **6**. Из водного раствора отгоняют растворитель и препаративным делением на колонке (толуол–ацетон, 1:1) получают 0.31 г (16%) соединения **8**. Масс-спектр соединения **8**, m/z ($I_{\text{отн}}$, %): 163 (100), 124 (10), 108 (16), 93 (11), 81 (10), 67 (9), 53 (7).

Взаимодействие соли 1 с гидразидом 2с в воде. Смесь 4.08 г (0.012 моль) соли 1 и 2.37 г (0.24 моль) 2с нагревают 25 ч в 15 мл воды. Далее обрабатывают аналогично методике взаимодействия соединений 1 и 2с в воде и из толуольного раствора получают 0.21 г (8%) соединения 5 и 0.4 г (13%) соединения 7с, а из водного – 0.93 г (40%) соединения 9 и 0.07 г (4%) соединения 8.

Взаимодействие соли 1 с гидразидом 4,6-диметил-2-пиримидинилуксусной кислоты (2е) в абсолютном этаноле. Смесь 1.34 г (0.004 моль) соли 1 и 1.44 г (0.03 моль) гидразида 2е в 7 мл абсолютного этанола нагревают 30 ч при ~100 °С. Далее отгоняют растворитель, остаток делят препаративно на колонке (толуол–ацетон, 1:1). Получают 0.35 г (26%) соединения 7е, 0.12 г (15%) соединения 5, 0.09 г (11%) соединения 6 и 0.07 г (11%) соединения 8. Масс-спектр 2е, m/z ($I_{отн}$, %): 339 (64), 294 (44), 293 (100), 267 (12), 266 (15), 112 (13), 42 (14), 28 (18), 18 (37).

Взаимодействие соли 1 с гидразидом фенилуксусной кислоты (2d) в абсолютном этаноле. Раствор 2.04 г (0.006 моль) соли 1 и 1.8 г (0.03 моль) гидразида 2d 10 мл абсолютного этанола нагревают 20 ч. Далее обрабатывают аналогично методике взаимодействия соединений 1 и 2e в воде и получают 0.39 г (21%) соединения 7d, 0.14 г (12%) соединения 5, 0.12 г (10%) соединения 6 и 0.18 г (18%) соединения 8.

Взаимодействие соли 1 с гидразидом уксусной кислоты 2f в абсолютном этаноле. Смесь 1.02 г (0.003 моль) соли 1 и 0.44 г (0.06 моль) гидразида 2f в 8 мл абсолютного этанола нагревают 27 ч при ~100 °С. Отгоняют растворитель, остаток последовательно промывают гексаном и хлороформом. Из гексановой вытяжки удаляют растворитель, а остаток делят на колонке (гексан–ацетон, 4:1). Получают 0.7 г (10%) соединения 7f, 0.09 г (15%) соединения 5, 0.55 г (9%) соединения 6. Из хлороформной вытяжки отгоняют растворитель, а остаток делят препаративно на колонке (толуол–ацетон, 2:1). Получают 0.15 г (31%) соединения 8.

Взаимодействие соли 1 с гидразидом 2f в воде. Раствор 1.34 г (0.004 моль) иодида 1 и 0.66 г (0.008 моль) гидразида 2f 10 мл воды нагревают 40 ч, экстрагируют гексаном и хлороформом и обрабатывают аналогично методике взаимодействия соединений 1 и 2f в абсолютном этаноле и получают из гексанового раствора 0.07 г (9%) соединения 5, а из хлороформенного – 0.1 г (15%) соединения 8 и 0.39 г (50%) соединения 9.

Взаимодействие соли 1 с гидразидом муравьиной кислоты 2g в абсолютном этаноле. Смесь 1.34 г (0.003 моль) соли 1 и 0.44 г (0.06 моль) гидразида 2g в 8 мл абсолютного этанола нагревают 30 ч при ~100 °С. Отгоняют растворитель, остаток промывают хлороформом и препаративным делением на колонке (гексан–ацетон, 3:1), получают 0.1 г (13%) соединения 5, 0.18 г (22%) соединения 6 и 0.32 г (49%) соединения 8.

Работа выполнена при финансовой поддержке Национального фонда науки и передовых технологий Армении и Фонда гражданских исследований и развития США (NFSAT RA – US CRDF, грант N CH 090-02 / 12040), а также в рамках научной темы 0543 Министерства науки и образования Республики Армения.

Авторы благодарят проф. Алана Катрицкого (Университет Флориды, США) за поддержку и сотрудничество.

СПИСОК ЛИТЕРАТУРЫ

- 1. R. G. Dickinson, N. W. Jacobsen, R. G. Gillis, Austral. J. Chem., 28, 859 (1975).
- 2. R. G. Dickinson, W. J. Noel, Austral. J. Chem., 28, 2435 (1975).
- 3. D. J. Brown, Mechanism of Molecular Migration, J. Wiley, New-York, 1968, 1, 209.
- 4. M. Wahren, Zeitschr. Chem., 9, 241 (1969).
- 5. R. S. Sagitullin, A. N. Kost, G. G. Danagulyan, Tetrahedron Lett., 4135 (1978).

- 6. Я. П. Страдынь, *ХГС*, 1567 (1979).
- 7. G. G. Danagulyan, L.G. Sahakyan, A. R. Katritzky, S. N. Denisenko, Heterocycles, 53, 419 (2000).
- 8. Г. Г. Данагулян, Л. Г. Саакян, ХГС, 1434 (1999).
- 9. Г. Г. Данагулян, Л. Г. Саакян, Хим. журн. Армении, 53, 147 (2000).
- 10. С. К. Робев, ХГС, 1587 (1981).
- 11. S. K. Robev, Tetrahedron Lett., 23, 2903 (1982).
- 12. Г. Г. Данагулян, Л. Г. Саакян, Д. А. Тадевосян, ХГС, 305 (2003).
- 13. G. M. Sheldrick, SHELXTL, Version 6.12, Bruker AXS 5465 Inc., Madison, WI-53711-5373, USA (copyright 2000).
- 14. W. Ried, E.-U. Koher, Liebigs Ann. Chem., 647, 116 (1961).
- Г. Г. Данагулян, Ф. С. Киноян, Д. А. Тадевосян, *XГС*, 303 (2003).
 Г. Г. Данагулян, Л. Г. Саакян, А. Р. Катрицкий, С. Н. Денисенко, *XГС*, 1572 (1999).

Институт органической химии НАН Республики Армения, Ереван 375091 e-mail: gdanag@email.com

Поступило в редакцию 26.10.2005

^аЦентр исследования строения молекул НАН Республики Армения, Ереван 375014 e-mail: henry@msrc.am.