ТАУТОМЕРНЫЕ РАВНОВЕСИЯ В РАСТВОРАХ ПРОДУКТОВ РЕАКЦИИ 2-АМИНОБЕНЗОЛСУЛЬФОНАМИДА С 3-ОКСОАЛЬДЕГИДАМИ

Ключевые слова: 2-аминобензолсульфонамид, бензотиазин, β-кетоальдегиды, коль-чато-цепная таутомерия.

Недавно нами впервые наблюдалось кольчато-цепное таутомерное равновесие у 3-(2-оксоэтил-2-фенил)-2H,4H-бензотиазин-1,1-диоксидов, полу-ченных взаимодействием 2-аминобензолсульфонамида с замещенными бензоилуксусными альдегидами [1]. С целью изучения особенностей этого таутомерного равновесия в случае алифатического ряда кетоальдегидов, а также влияния заместителя в α -положении оксоальдегида, мы изучили реакцию 2-аминобензолсульфонамида с β -кетоальдегидами 2a-d.

Полученные продукты реакции $\bf 3a-d$ сразу после растворения образуют таутомерную смесь, представленную геометрическими изомерами енаминной формы $\bf A_{E,Z}$. Соотношение E- и Z-изомеров в значительной степени зависит от температуры раствора. Например, для соединения $\bf 3a~\bf A_E: \bf A_Z=1:10$ при 25 °C и 2.5 : 10 при 80 °C. Наличие заместителя в α -поло-жении исходного β -кетоальдегида, как и предполагалось [2], приводит к значительному росту $\bf A_E$ -формы, существующей в s-трансконформации, что подтверждается наличием корреляций сигналов $\bf C\underline{H_3}C=(1.75~\rm M.~\rm Z.,~c)$ и $\bf COC\underline{H_2}CH_3$ (2.75 м. д., к) в спектре NOESY соединения $\bf 3b$. Со временем в растворах появляется циклический бензотиазиновый таутомер $\bf B$, пред-ставленный для соединений $\bf 3b$ - $\bf d$ двумя диастереомерами. Кольчато-цеп-ное равновесие устанавливается в течение 4–5 мес при комнатной темпе-ратуре или за несколько дней при выдерживании раствора при 80 °C. Соотношение таутомерных форм $\bf A_E: \bf A_Z: \bf B$ (в скобках вклад диастерео-меров) в растворах ДМСО, достигших равновесия при 80 °C, составляет 2: 19: 79 для соединения $\bf 3a$, 56: 6: 38 (19 + 19) – в случае $\bf 3b$, 34: 26: 41 (24 + 17) – $\bf 3c$ и 54: 22: 24 (16 + 8) – $\bf 3d$.

2, 3 a $R^1 = CMe_3$, $R^2 = H$; **b** $R^1 = Et$, $R^2 = Me$; **c** R^1 , $R^2 = (CH_2)_4$; **d** R^1 , $R^2 = (CH_2)_3$

Взаимодействие 2-аминобензолсульфонамида с β -кетоальдегидами проводят по ранее описанной методике [1]. Спектры ЯМР 1 Н и 13 С записаны на приборе Bruker Avance 500 (500 и 126 МГц соответственно) в ДМСО- d_6 , внутренний стандарт ТМС. Резонансные сигналы бензольного кольца не указаны, сигналы R^1 и R^2 указаны только для основной формы.

2-(4,4-Диметилпент-1-ениламино-3-оксо)бензолсульфонамид (3а). Выход 40%, белые кристаллы, т. пл. 143 °С. Спектр ЯМР ¹H, δ , м. д. (J, Γ ц): \mathbf{A}_Z – 1.12 (9H, c, (CH_3)₃); 5.64 (1H, д, $J_{\mathrm{CH-CH}}$ = 8.4, $\mathrm{C}\underline{\mathrm{HCO}}$); 7.55–7.60 (1H, м, $\mathrm{C}\underline{\mathrm{H-NH}}$); 7.56 (2H, c, NH₂), 11.93 (1H, д, $J_{\mathrm{NH-CH}}$ = 11.8, NH); \mathbf{A}_E – 6.29 (1H, д, $J_{\mathrm{CH-CH}}$ = 12.7, $\mathrm{C}\underline{\mathrm{HCO}}$); 7.70 (1H, c, NH₂); 7.91 (1H, т, $J_{\mathrm{CH-CH}}$ = $J_{\mathrm{CH-NH}}$ = 13.0, $\mathrm{C}\underline{\mathrm{HNH}}$); 8.85 (1H, д, $J_{\mathrm{NH-CH}}$ = 12.5, NH); \mathbf{B} – 2.89 (1H, д. д, $J_{\mathrm{Ha-CH}}$ = 5.0, J_{zem} = 17.5, H-a (CH₂)); 3.23 (1H, д. д. д, $J_{\mathrm{Hb-CH}}$ = 7.0, J_{zem} = 17.5, H-b (CH₂)); 5.12 (1H, м, H-3); 6.97 (1H, c, 4-NH); 7.46 (2H, м, H-8, 2-NH). Спектр ЯМР ¹³С, δ , м. д.: \mathbf{A}_Z – 26.84 (С($\underline{\mathrm{CH}}_3$)₃); 95.26 ($\underline{\mathrm{CHCO}}$); 142.25 (CH–NH); 204.85 (CO); \mathbf{A}_E – 100.55 ($\underline{\mathrm{CHCO}}$); 140.79 (CH–NH); 202.32 (CO); \mathbf{B} – 43.48 (CH₂), 62.20 (\mathbf{C}_3), 210.50 (CO). Найдено: m/z 282.1036 [M] ^{+*}. $\mathbf{C}_{13}\mathbf{H}_{18}\mathbf{N}_{2}\mathbf{O}_{3}\mathbf{S}$. Вычислено: \mathbf{M} = 282.1038. **2-(2-Метилпент-1-ениламино-3-оксо)бензолсульфонамид (3b).** Выход 40%, желто-ватые кристаллы, т. пл. 209 °С.

2-(2-Метилпент-1-ениламино-3-оксо)бензолсульфонамид (**3b).** Выход 40%, желто-ватые кристаллы, т. пл. 209 °C. Спектр ЯМР 1 Н, δ , м. д. (J, Γ ц): \mathbf{A}_{E} – 1.02 (3H, т, $J_{\text{CH2-CH3}}$ = 7.2, CH₃); 1.75 (3H, c, CH₃C=C); 2.75 (2H, к, $J_{\text{CH2-CH3}}$ = 7.2, CH₂); 7.73 (2H, c, NH₂); 8.05 (1H, д, $J_{\text{CH-NH}}$ = 11.6, CH–NH); 8.76 (1H, д, $J_{\text{NH-CH}}$ = 12.0, NH); $\mathbf{A}_{\mathbf{Z}}$ – 1.97 (3H, c, CH₃C=C); 7.35 (1H, д, $J_{\text{CH-NH}}$ = 11.6, CH–NH); 7.45 (2H, c, NH₂); 11.80 (1H, д, $J_{\text{NH-CH}}$ = 11.6, NH–CH); \mathbf{B} – 2.99–3.05 (1H, c, CH₃CH₂); 4.80 и 5.00 (1H, д. д. д. $J_{\text{CH-NH}}$ = 8.1, $J_{\text{CH-NH}}$ = 12.0, H-3); 6.90 и 6.92 (1H, c, 4-NH); 7.44 и 7.48 (1H, д. $J_{\text{NH-CH}}$ = 12.0, 2-NH). Спектр ЯМР 13 С, δ , м.

д.: $\mathbf{A}_E - 8.87$ ($\mathbf{C}\mathbf{H}_3\mathbf{C} = \mathbf{C}$); 9.42 ($\mathbf{C}\mathbf{H}_3\mathbf{C}\mathbf{H}_2$); 28.92 ($\mathbf{C}\mathbf{H}_2$); 112.73 (= \mathbf{C} -CO); 136.91 (CH–NH); 198.22 (CO); $\mathbf{A}_Z - 102.12$ (= \mathbf{C} -CO); 138.69 (CH–NH); 201.14 (CO); $\mathbf{B} - 48.39$ и 48.66 (CH $_3\mathbf{C}\mathbf{H}$), 66.15 и 67.08 (C-3), 210.34 и 210.90 (CO). Найдено: m/z 268.0877 [M] $^+$ *. $\mathbf{C}_{12}\mathbf{H}_{16}\mathbf{N}_2\mathbf{O}_3\mathbf{S}$. Вычислено: $\mathbf{M} = 268.0882$.

2-((2-Оксоциклогексилиденил)метиламино)бензолсульфонамид (3c). Выход 51%, желтые кристаллы, т. пл. 181 °C. Спектр ЯМР ¹H, δ , м. д. (J, Γ ц): \mathbf{A}_E – 1.70–1.80 (4H, м, 2H-4', 2H-5'); 2.24–2.32 (2H, м, 2H-3'); 2.35–2.45 (2H, м, 2H-6'); 7.73 (2H, c, NH₂); 7.92 (1H, д. м, $J_{\text{CH-NH}}$ = 13.2, CH); 8.78 (1H, д. $J_{\text{NH-CH}}$ = 12.8, NH); \mathbf{A}_Z – 7.36 (1H, д. м, $J_{\text{CH-NH}}$ = 11.6, C $\underline{\mathbf{H}}$ —NH); 7.45 (2H, c, NH₂); 11.99 (1H, д. $J_{\text{NH-CH}}$ = 11.6, N $\underline{\mathbf{H}}$ —CH); \mathbf{B}_1 —4.94 (1H, д. д. $J_{\text{CH-NH}}$ = 12.0, $J_{\text{CH-CH}}$ = 8.0, H-3); 6.78–6.82 (2H, м, H-5, NH-4); 7.38 (1H, д. $J_{\text{NH-CH}}$ = 12.0, NH-2); \mathbf{B}_Z – 5.20 (1H, д. д. $J_{\text{CH-NH}}$ = 12.5, $J_{\text{CH-CH}}$ = 3.0, H-3); 6.90 (1H, c, 4-NH); 7.43 (1H, д. $J_{\text{CH-NH}}$ = 13.0, 2-NH). Спектр ЯМР ¹³C, δ , м. д.: \mathbf{A}_E – 22.09 (C_(4')); 22.34 (C_(5')); 23.36 (C_(6')); 38.62 (C_(3')); 111.76 (C_(1')); 133.91 (CH-NH); 137.88 (C₍₂₎); 196.32 (CO); \mathbf{A}_Z – 108.03 (C_(1')); 139.52 ($\underline{\mathbf{C}}$ H-NH); 198.67 (CO); \mathbf{B}_1 – 64.18 (C₍₃₎); 209.41 (CO); \mathbf{B}_2 – 63.56 (C₍₃₎); 208.51 (CO). Найдено: m/z 280.0884 [M]*• C₁₃H₁₆N₂O₃S. Вычислено: M = 280.0882.

2-((2-Оксоциклопентилиденил)метиламино)бензолсульфонамид (3d). Выход 45%, светло-желтые кристаллы, т. пл. 175 °С. Спектр ЯМР 1 Н, δ , м. д. (J, Γ ц): \mathbf{A}_E – 1.90–1.96 (2H, м, 2H-4'); 2.22–2.28 (2H, м, 2H-3'); 2.56 (2H, м, 2H-5'); 7.72 (1H, м, CH); 7.74 (2H, c, NH₂), 8.70 (1H, д, $J_{\text{NH-CH}}$ = 13.2, N_{H}); \mathbf{A}_Z – 7.44 (1H, д. м, $J_{\text{CH-NH}}$ = 11.4, C_{H} —NH); 7.49 (2H, c, NH₂); 11.23 (1H, д, $J_{\text{NH-CH}}$ = 12.0, N_{H} —CH); \mathbf{B}_1 – 4.98 (1H, д. д, $J_{\text{CH-NH}}$ = 12.0, $J_{\text{CH-CH}}$ = 5.4, H-3); 7.02 (1H, c, 4-NH); 7.34 (1H, д, $J_{\text{NH-CH}}$ = 12.0, 2-NH); \mathbf{B}_2 – 5.10 (1H, д. д, $J_{\text{CH-NH}}$ = 12.3, $J_{\text{CH-CH}}$ = 2.7, H-3); 6.82 (1H, c, 4-NH); 7.58 (1H, д, $J_{\text{CH-NH}}$ = 12.6, 2-NH). Спектр ЯМР 13 С, δ , м. д.: \mathbf{A}_E – 19.32 ($C_{\text{(4')}}$); 24.91 ($C_{\text{(5')}}$); 38.35 ($C_{\text{(3')}}$); 113.71 ($C_{\text{(1')}}$); 129.97 (CH–NH); 204.12 (CO); \mathbf{A}_Z – 134.34 (CH–NH); 205.36 (CO); \mathbf{B}_1 – 65.17 ($C_{\text{(3)}}$); 216.40 (CO); \mathbf{B}_2 – 63.83 ($C_{\text{(3)}}$); 215.79 (CO). Найдено: m/z 266.0718 [M] *•. C_{12} H₁₄N₂O₃S. Вычислено: M = 266.0725.

СПИСОК ЛИТЕРАТУРЫ

- 1. O. Maloshitskaya, J. Sinkkonen, V. Alekseyev, K. Zelenin, K. Pihlaja, Tetrahedron, 61, 7294 (2005).
- 2. Я. Ф. Фрейманис, Химия енаминокетонов, енаминоиминов, енаминотионов, Зинатне, Рига, 1974, с. 58.

О. А. Малошицкая, В. В. Алексеев, К. Пихлайа^а

Российская военно-медицинская академия, Санкт-Петербург 194044

e-mail: maloshitskaya@mail.ru

^aUniversity of Turku, FI-20014 Turku, Finland

 $X\Gamma C. - 2006. - N_{2} 2. - C. 309$

Поступило в редакцию 13.12.2005