В. Д. Дяченко, А. Н. Чернега^а

НОВЫЙ ПОДХОД К СИНТЕЗУ ЗАМЕЩЕННЫХ 5-АРИЛКАРБАМОИЛ-6-МЕТИЛ-3-ЦИАНОПИРИДИН-2(1Н)-ТИОНОВ. МОЛЕКУЛЯРНАЯ И КРИСТАЛЛИЧЕСКАЯ СТРУКТУРА 2-АЛЛИЛТИО-6-МЕТИЛ-4-(5-МЕТИЛ-2-ФУРИЛ)-5-(2-МЕТОКСИФЕНИЛКАРБАМОИЛ)-3-ЦИАНО-1,4-ДИГИДРОПИРИДИНА

Взаимодействием енаминов ацетоацетанилидов с 5-метил-2-фурфурилиденцианотиоацетамидом получены 5-арилкарбамоил-6-метил-4-(5-метил-2-фурил)-3-циано-1,4дигидропиридин-2-тиолаты морфолиния, при алкилировании которых синтезированы тиоэфиры, а при окислении – соответствующие замещенные пиридин-2(1H)-тионы. Строение 2-аллилтио-6-метил-4-(5-метил-2-фурил)-5-(2-метоксифенилкарбамоил)-3-циано-1,4дигидропиридина изучено методом РСА.

Ключевые слова: 5-арилкарбамоил-6-метил-4-(5-метил-2-фурил)-3-циано-1,4-дигидропиридин-2-тиолаты морфолиния, енамины ацетоацетанилидов, 5-метил-2-фурфурилиденцианотиоацетамид, пиридин-2(1Н)-тионы, тиоэфиры, алкилирование, РСА.

Ранее нами разработаны методы синтеза 4-арил(гетерил)замещенных 5-арилкарбамоил-6-метил-3-цианопиридин-2(1H)-тионов, состоящие во взаимодействии арил(гетерил)метиленцианотиоацетамидов с анилидами ацетоуксусной кислоты [1, 2] или трехкомпонентной конденсации ароматических альдегидов, цианотиоацетамида и ацетоацетанилидов [3].

В настоящем исследовании найден новый подход к функционально замещенным 2-меркапто-1,4-дигидропиридинам – потенциальным антирадикальным [4], кардиоваскулярным [5] и гепатопротекторным [6] средствам. Он заключается в региоселективной реакции енаминов ацетоацетанилидов 1 с 5-метил-2-фурфурилиденцианотиоацетамидом 2, приводящей к соответствующим аддуктам Михаэля 3. Последние *in situ* гетероциклизуются по типу внутримолекулярного переаминирования [7] с образованием 5-арилкарбамоил-6-метил-4-(5-метил-2-фурил)-3-циано-1,4дигидропиридин-2-тиолатов морфолиния 4, кратковременное кипячение которых в ледяной уксусной кислоте на воздухе приводит к протонированию и дегидрированию до соответствующих замещенных пиридин-2(1H)-тионов 5.

Строение соединений 4 и 5 подтверждено данными физико-химических и спектральных исследований (табл. 1, 2, экспериментальная часть), а также путем алкилирования их алкилгалогенидами 6. Образование в ходе этой реакции тиоэфиров 7 и 8 является надежным доказательством строения солей 4 и тионов 5 [8].

1a, 4a, 5a, 7e, f R = H; 1c, 4c, 5c, 7a–d, 8a, f R = OMe; 1b, 4b, 5b, 7g, 8g R = Me; 6a, 7a X = CH=CH₂; 6b, 7b X = Et; 6c, 8a X = PhCO; 6d, 8c X = (CH₂)₃Br; 6e, 8d X = (CH₂)₂Br; 6f, 8e X= CH₂Br; 6g, 8g X = кумарин-3-ил-карбонил; 6h, 7c, f X= H; 6i, 7d X = Me; 6j, 7e, 8f X= Ph; 6k, 7g X = CO₂Et; 6l, 8b X = CO₂Bn; 6 a–g Hal = Br; h, i Hal = I; j, I Hal = Cl

Для однозначного установления региоселективности реакции енаминов ацетоуксусной кислоты с 5-метил-2-фурфурилиденцианотиоацетамидом и выяснения направления алкилирования ее продуктов строение соединения 7а было исследовано методом РСА. Общий вид молекулы 7а приведен на рис. 1. Центральный шестичленный цикл N₍₁₎C₍₁₋₅₎ заметно неплоский (отклонения атомов от среднеквадратичной плоскости достигают 0.23 Å) и имеет конформацию полукресла (модифицированные параметры Кремера–Попла [9] S = 0.48, $\theta = 69.5^{\circ}$, $\Psi = 1.5^{\circ}$). Атомы N₍₁₎ и N₍₃₎ имеют плоскотригональную конфигурацию связей (сумма валентных углов составляет 358.9 и 358.1°). Эффективное сопряжение между неподеленной электронной парой атома N₍₁₎ и *π*-системами двойных связей $C_{(1)}=C_{(2)}$ и $C_{(4)}=C_{(5)}$ приводит к заметному укорочению связей $N_{(1)}$ – $C_{(1)}$ 1.365(4) и $N_{(1)}$ – $C_{(5)}$ 1.387(3) Å (стандартное значение для чисто одинарных связей $N(sp^2)$ – $C(sp^2)$ 1.45 Å [10]). Аналогичным образом *n*(N₍₃₎)-π(C₍₁₆₎=O₍₂₎) взаимодействие вызывает укорочение связи N₍₃₎-C₍₁₆₎ до 1.354(3) Å. Длины связей S₍₁₎-C₍₁₎ 1.749(3) и S₍₁₎-C₍₁₃₎ 1.816(4) Å

Coe-	Брутто-	<u>Найдено, %</u> Вычислено, %			т ос	
ди- нение	формула	С	Н	Ν	1. пл., °С	выход, %
4a	$C_{23}H_{26}N_4O_3S$	$\frac{62.80}{62.99}$	$\frac{5.79}{5.98}$	$\frac{12.81}{12.76}$	139–141	83
4b	$C_{24}H_{28}N_4O_3S$	$\frac{63.50}{63.60}$	<u>6.31</u>	<u>12.76</u> <u>12.25</u> 12.38	291–293	88
4c	$\mathrm{C}_{24}\mathrm{H}_{28}\mathrm{N}_4\mathrm{O}_4\mathrm{S}$	$\frac{61.40}{61.52}$	$\frac{5.87}{6.02}$	<u>12.38</u> <u>12.14</u> 11.96	140–143	72
5a	$C_{19}H_{15}N_3O_2S$	$\frac{65.20}{65.31}$	$\frac{4.41}{4.33}$	<u>11.85</u> 12.03	298-300*	70
5b	$C_{20}H_{17}N_3O_2S$	<u>65.92</u> 66.10	$\frac{4.80}{4.71}$	<u>11.43</u> 11.56	288–290	65
5c	$C_{20}H_{17}N_3O_3S$	$\frac{63.14}{63.31}$	$\frac{4.63}{4.52}$	$\frac{10.88}{11.07}$	262–264	68
7a	$C_{23}H_{23}N_3O_3S$	<u>65.50</u> 65.54	<u>5.33</u> 5.50	<u>10.12</u> 9.97	118–120	85
7b	$C_{23}H_{25}N_3O_3S$	$\frac{65.10}{65.23}$	<u>6.12</u> 5.95	<u>9.74</u> 9.92	136–138	72
7c	$C_{21}H_{21}N_3O_3S$	<u>63.81</u> 63.78	<u>5.39</u> 5.35	$\frac{10.50}{10.62}$	142–143	67
7d	$C_{22}H_{23}N_3O_3S$	$\frac{64.30}{64.54}$	<u>5.71</u> 5.66	$\frac{10.02}{10.26}$	147–148	79
7e	$C_{26}H_{23}N_3O_2S$	$\frac{70.58}{70.72}$	$\frac{5.18}{5.25}$	$\frac{9.64}{9.52}$	164–166	78
7f	$C_{20}H_{19}N_3O_2S$	<u>65.69</u> 65.73	<u>5.33</u> 5.24	$\frac{11.38}{11.50}$	156–158	80
7g	$C_{24}H_{25}N_3O_4S$	<u>63.95</u> 63.84	<u>5.44</u> 5.58	<u>9.19</u> 9.31	161–163	71
8a	$C_{28}H_{23}N_3O_4S$	<u>67.40</u> 67.59	$\frac{4.37}{4.66}$	<u>8.52</u> 8.44	160–161	85
8b	$C_{29}H_{25}N_3O_5S$	<u>65.89</u> 66.02	$\frac{4.60}{4.78}$	<u>8.12</u> 7.96	116–117	67
8c	C24H24BrN3O3S	<u>55.81</u> 56.03	$\frac{4.64}{4.70}$	<u>8.25</u> 8.17	222–224	79
8d	$C_{23}H_{22}BrN_3O_3S$	<u>55.32</u> 55.21	$\frac{4.30}{4.43}$	<u>8.25</u> 8.40	206–208	62
8e	C22H20BrN3O3S	<u>54.42</u> 54.33	<u>3.89</u> 4.14	<u>8.50</u> 8.64	273–275	64
8f	$C_{27}H_{23}N_3O_3S$	<u>68.87</u> 69.06	<u>5.11</u> 4.94	<u>9.04</u> 8.95	174–175	75
8g	$C_{31}H_{23}N_3O_5S$	<u>67.49</u> 67.75	<u>4.12</u> 4.22	<u>7.73</u> 7.65	247–248	72

Характеристики синтезированных соединений 4а-с, 5а-с, 7а-g, 8а-g

* При 200 °С происходит сублимация.

и валентный угол $C_{(1)}S_{(1)}C_{(13)}$ 104.4(1)° практически совпадают с соответствующими значениями, найденными в молекуле Ph–S–Me (S–C(*sp*²) 1.749(4), S–C(*sp*³) 1.803(4) Å, CSC 105.6(7)°) [11]. В кристалле молекулы

Таблица 2

Спектральные характеристики соединений 4а-с, 5а-с, 7а-д, 8а-д

	ИК спектр,		Спектр ЯМР ¹ Н, б, м. д. (<i>J</i> , Гц)			
Соеди- нение	v, cm ⁻¹ CN, CONH	С ₍₆₎ СН ₃ , С _(5') СН ₃ , оба с	CONH, уш. c	другие сигналы		
4a [*]	2188, 1674	2.04, 2.16	9.72	2.98 (4H, т, <i>J</i> = 4.4, CH ₂ NCH ₂), 3.97 (4H, т, <i>J</i> = 4.6, CH ₂ OCH ₂), 4.61 (1H, c, H ₍₄₎), 5.81 (2H, м, H ₍₃₎ и H ₍₄₎ фурил), 6.98–7.70 (5H, м, C ₆ H ₅), 9.15 (1H, уш. c, NH)		
4b [*]	2195, 1670	2.03, 2.20	9.32	1.62 (3H, c, CH ₃), 3.05 (4H, т, <i>J</i> = 4.4, CH ₂ NCH ₂), 3.92 (4H, т, <i>J</i> = 4.7, CH ₂ OCH ₂), 4.57 (1H, c, H ₍₄₎), 5.92 (2H, м, H ₍₃₎ и H ₍₄₎ фурил), 6.98–7.39 (4H, м, C ₆ H ₄), 8.51 (1H, уш. с, NH)		
4c*	2190, 1678	2.16, 2.23	9.67	3.06 (4H, т, <i>J</i> = 4.4, CH ₂ NCH ₂), 3.76 (4H, т, <i>J</i> = 4.6, CH ₂ OCH ₂), 3.81 (3H, с, CH ₃ O), 4.25 (1H, с, H ₍₄₎), 5.93 (2H, м, H ₍₃₎ и H ₍₄₎ фурил), 6.72–7.25 (4H, м, C ₆ H ₄), 8.01 (1H, уш. с, NH)		
5a	2224, 1669	2.10, 2.41	10.40	6.40 (1Н, д, <i>J</i> = 3.4, Н ₍₄₎ фурил), 7.15–7.57 (6Н, м, C ₆ H ₅ и Н ₍₃₎ фурил), 14.11 (1Н, уш. с, NH)		
5b	2220, 1660	2.12, 2.23	9.71	2.47 (3H, c, CH ₃), 6.44 (1H, д, <i>J</i> = 3.4, H ₍₃₎ фурил), 7.15–7.58 (5H, м, C ₆ H ₄ и H ₍₄₎ фурил), 13.95 (1H, уш. c, NH)		
5c	2225, 1667	2.16, 2.47	9.46	3.78 (3H, c, CH ₃ O), 6.27 (1H, д, <i>J</i> = 3.4, H ₍₃₎ фурил), 6.95 (3H, м, C ₆ H ₄), 7.34 (1H, д, <i>J</i> = 3.42, H ₍₄₎ фурил), 8.03 (1H, д, <i>J</i> = 7.5, C ₆ H ₄), 13.85 (1H, уш. c, NH)		
7a	2194, 1682	2.22, 2.29	9.23	3.39 и 3.46 (по 1H, оба д, <i>J</i> = 5.94, SCH ₂), 3.77 (3H, c, CH ₃ O), 4.50 (1H, c, C ₍₄₎ H), 5.04 и 5.10 (по 1H, оба д, <i>J_{cis}</i> = 5.24 и <i>J_{trans}</i> = 12.30, соответственно, =CH ₂), 5.78 (1H, м, CH=), 5.92 (1H, д, <i>J</i> = 2.94, H ₍₃₎ фурил), 6.07 (1H, д, <i>J</i> = 2.94, H ₍₄₎ фурил), 6.89 (3H, м, C ₆ H ₄), 8.12 (1H, c, NH), 8.16 (1H, д, <i>J</i> = 7.98, C ₆ H ₄)		
7b	2204, 1670	2.22, 2.28	9.29	1.04 (3H, т, <i>J</i> = 7.14, CH ₃), 1.65 (2H, м, CH ₂), 2.79 (2H, м, SCH ₂), 3.80 (3H, с, CH ₃ O), 4.54 (1H, с, C ₍₄₎ H), 5.97 (1H, д, <i>J</i> = 3.40, H ₍₃₎ фурил), 6.10 (1H, д, <i>J</i> = 3.40, H ₍₄₎ фурил), 6.90 (3H, м, C ₆ H ₄), 8.09 (1H, д, <i>J</i> = 7.78, C ₆ H ₄), 8.27 (1H, с, NH)		
7c	2202, 1666	2.22, 2.29	9.20	2.50 (3H, c, SCH ₃), 3.79 (3H, c, CH ₃ O), 4.45 (1H, c, C ₍₄₎ H), 5.93 (1H, д, <i>J</i> = 3.04, H ₍₃₎ фурил), 6.07 (1H, д, <i>J</i> = 3.04, H ₍₄₎ фурил), 6.86 (3H, м, C ₆ H ₄), 8.12 (1H, д, <i>J</i> = 9.20, C ₆ H ₄), 8.16 (1H, c, NH)		
7d	2193, 1662	2.22, 2.29	9.25	1.28 (3H, т, <i>J</i> = 7.02, CH ₃), 2.80 и 3.10 (по 1H, оба м, SCH ₂), 3.79 (3H, с, CH ₃ O), 4.58 (1H, с, C ₍₄₎ H), 5.95 (1H, д, <i>J</i> = 2.54, H ₍₃₎ фурил), 6.09 (1H, д, <i>J</i> = 2.54, H ₍₄₎ фурил), 6.87 (3H, м, C ₆ H ₄), 8.11 (1H, д, <i>J</i> = 9.72, C ₆ H ₄), 8.16 (1H, с, NH)		

7e	2198, 1670	2.09, 2.16	9.60	4.15 и 4.39 (по 1H, оба д, ² <i>J</i> = 14.1, SCH ₂), 4.76 (1H, с, С ₍₄₎ H), 5.88 (2H, м, H ₍₃₎ и H ₍₄₎ фурил), 7.00–7.57 (10H, м, 2С ₆ H ₅), 9.21 (1H, уш. с, NH)
7f	2194, 1665	2.08, 2.18	9.63	2.50 (3H, c, SCH ₃), 4.80 (1H, c, C ₍₄₎ H), 5.96 (2H, м, H ₍₃₎ и H ₍₄₎ фурил), 7.07 (1H, м, C ₆ H ₅), 7.26 (2H, м, C ₆ H ₅), 7.58 (2H, д, <i>J</i> = 7. 03, C ₆ H ₅), 9.07 (1H, уш. с, NH)
7g	2198, 1674	2.09, 2.15	9.11	1.23 (3H, т, <i>J</i> = 6.18, CH ₂ <u>CH₃</u>), 2.25 (3H, c, CH ₃), 3.79 и 3.95 (по 1H, оба д, ² <i>J</i> = 16.12, SCH ₂), 4.14 (2H, к, <i>J</i> = 6.18, OCH ₂), 4.85 (1H, c, C ₍₄₎ H), 5.92 (1H, д, <i>J</i> = 2.50, H ₍₃₎ фурил), 6.01 (1H, д, <i>J</i> = 2.50, H ₍₄₎ фурил), 7.00–7.29 (4H, м, C ₆ H ₄), 8.92 (1H, c, NH)
8a	2202, 1661	2.23, 2.27	9.64	3.75 (3H, c, CH ₃ O), 4.79 (2H, c, CH ₂), 6.25 (1H, д, <i>J</i> = 3.42, H ₍₃₎ фурил), 6.93 (2H, м, C ₆ H ₅), 7.05 (1H, д, <i>J</i> = 3.42, H ₍₄₎ фурил), 7.13 (1H, д, <i>J</i> = 3.30, H _{аром}), 7.57 (3H, м, H _{аром}), 7.97 (1H, д, <i>J</i> = 6.38, H _{аром}), 8.07 (2H, д, <i>J</i> = 6.94, H _{аром})
8b	2190, 1648	2.24, 2.42	9.48	3.79 (3H, c, CH ₃ O), 4.12 (2H, c, SCH ₂), 5.17 (2H, c, OCH ₂), 6.27 (1H, д, <i>J</i> = 3.08, H ₍₃₎ фурил), 6.84–7.05 (3H, м, C ₆ H ₄), 7.12 (1H, д, <i>J</i> = 3.08, H ₍₄₎ фурил), 7.35 (5H, уш. c, C ₆ H ₅), 8.04 (1H, д, <i>J</i> = 7.76, C ₆ H ₄)
8c	2198, 1657	2.21, 2.59	9.50	1.93 (2H, м, CH ₂), 2.44 (2H, м, CH ₂), 3.05 (2H, м, SCH ₂), 3.35 (2H, м, CH ₂ Br), 3.77 (3H, с, CH ₃ O), 6.21 (1H, д, <i>J</i> = 3.40, H ₍₃₎ фурил), 6.88–7.13 (4H, м, H ₍₄₎ фурил и C ₆ H ₄), 8.02 (1H, д, <i>J</i> = 7.76, C ₆ H ₄)
8d	2190, 1664	2.23, 2.60	9.57	2.44 (2H, м, CH ₂), 3.07 (2H, м, SCH ₂), 3.41 (2H, м, CH ₂ Br), 3.78 (3H, с, CH ₃ O), 6.24 (1H, д, <i>J</i> = 2.72, H ₍₃₎ фурил), 6.89–7.15 (4H, м, H ₍₄₎ фурил и C ₆ H ₄), 8.03 (1H, д, <i>J</i> = 7.20, C ₆ H ₄)
8e	2202, 1675	2.23, 2.61	9.46	2.47 (2H, м, SCH ₂), 3.68 (2H, м, CH ₂ Br), 3.79 (3H, с, CH ₃ O), 6.23 (1H, д, <i>J</i> = 3.52, H ₍₃₎ фурил), 6.82–7.21 (4H, м, H ₍₄₎ фурил и C ₆ H ₄), 8.07 (1H, д, <i>J</i> = 6.30, C ₆ H ₄)
8f	2204, 1673	2.22, 2.63	9.43	3.79 (3H, c, CH ₃ O), 4.52 (2H, c, CH ₂), 6.21 (1H, д, <i>J</i> = 3.42, H ₍₃₎ фурил), 6.88–7.47 (9H, м, H _{аром}), 8.06 (1H, д, <i>J</i> = 7. 82, C ₆ H ₄)
8g	2188, 1680	2.14, 2.31	9.71	2.99 (3H, c, CH ₃), 4.81 (2H, c, CH ₂), 6.33 (1H, д, <i>J</i> = 3.48, H ₍₃₎ фурил), 7.02–7.99 (9H, м, H _{аром}), 8.74 (1H, c, H ₍₄₎ кумаринил)

* Протоны фрагмента N⁺H₂ морфолиниевого катиона не наблюдаются, по-видимому, вследствие дейтерообмена.

Рис. 1. Общий вид молекулы **7а.** Основные длины связей (*l*, Å) и валентные углы (ω , град.): S₍₁₎–C₍₁₎ 1.749(3), S₍₁₎–C₍₁₃₎ 1.816(4), N₍₁₎–C₍₁₎ 1.365(4), N₍₁₎–C₍₅₎ 1.387(3), N₍₂₎–C₍₇₎ 1.137(4), N₍₃₎–C₍₁₆₎ 1.354(3), N₍₃₎–C₍₁₇₎ 1.411(4), C₍₁₎–C₍₂₎ 1.347(4), C₍₂₎–C₍₃₎ 1.520(3), C₍₃₎–C₍₄₎ 1.525(3), C₍₄₎–C₍₅₎ 1.353(4), C₍₄₎–C₍₁₆₎ 1.489(3); C₍₁₎S₍₁₎C₍₁₃₎ 104.4(1), C₍₁₎N₍₁₎C₍₅₎ 120.5(2), C₍₁₆₎N₍₃₎C₍₁₇₎ 126.3(3), N₍₁₎C₍₁₎C₍₂₎ 120.0(2), C₍₁₎C₍₂₎C₍₃₎ 120.4(2), C₍₂₎C₍₃₎C₍₄₎ 107.26(19), C₍₃₎C₍₄₎C₍₅₎ 120.2(2), N₍₁₎C₍₅₎C₍₄₎ 119.5(2)

Рис. 2. Кристаллическая упаковка соединения **7а** (пунктирными линиями обозначены межмолекулярные водородные связи). Для упрощения заместитель $C_4H_2O-CH_3$ при атоме $C_{(3)}$ не показан

соединения 7а за счет межмолекулярных водородных связей $N_{(1)}-H_{(1)}\cdots O_{(2)}$ ($N_{(1)}-H_{(1)} 0.91(3)$, $N_{(1)}\cdots O_{(2)} 2.911(3)$, $H_{(1)}\cdots O_{(2)} 2.02(3)$ Å, $N_{(1)}-H_{(1)}\cdots O_{(2)} (2)^{\circ}$) средней прочности [12] объединены в бесконечные спиралевидные цепочки (рис. 2).

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

ИК спектры синтезированных соединений записывали на приборе ИКС-29 в вазелиновом масле. Спектры ЯМР ¹Н регистрировали на приборах Gemini-200 (200 МГц) (для соединений **7а–d, 8а–f**), Bruker AC-200 (200 МГц) (для соединений **7f,g, 8g**) и Bruker WP-100 SY (100 МГц) (для соединений **4а–с, 5а–с, 7e**) в ДМСО-d₆, внутренний стандарт Me₄Si. Масс-спектры снимали на спектрометре Kratos MS-890 (70 эВ). Температуры плавления определяли на блоке Кофлера. Контроль за ходом реакций и чистотой полученных соединений осуществляли методом TCX (Silufol UV-254, ацетон–гексан, 3:5, проявитель пары иода).

Рентгеноструктурное исследование монокристалла соединения 7а с линейными размерами 0.37 × 0.43 × 0.47 мм проведено при комнатной температуре на автоматическом четырехкружном дифрактометре Enraf-Nonius CAD-4 (МоКα-излучение, отношение скоростей сканирования $2\theta/\omega = 1.2$, $\theta_{max} = 27^{\circ}$, сегмент сферы $0 \le h \le 17, 0 \le k \le 10$, -27 ≤ l ≤ 27). Всего было собрано 5935 отражений, из которых 5322 являются симметрически независимыми ($R_{int} = 0.012$). Кристаллы соединения 7а моноклинные, а = 13.535(4), b = 8.367(2), c = 21.847(8) Å, $\beta = 99.08(2)^{\circ}$, V = 2443(1) Å³, M = 421.51, Z = 4, $d_{\text{выч}} = 1.15 \text{ г/см}^3$, $\mu = 1.50 \text{ см}^{-1}$, F(000) = 888.62, пространственная группа $P2_1/n$. Структура расшифрована прямым методом и уточнена МНК в полноматричном анизотропном приближении с использованием комплекса программ CRYSTALS [13]. В уточнении использовано 2565 отражений с I > 4(I) (279 уточняемых параметров, число отражений на параметр 9.2). Все атомы водорода (кроме атомов Н при атомах C₍₁₄₎ и C₍₁₅₎) были выявлены из разностного синтеза электронной плотности. Атомы H₍₁₎ и H₍₃₎ были уточнены изотропно, остальные атомы водорода были включены в уточнение с фиксированными позиционными и тепловыми параметрами. Учет поглощения в кристалле был выполнен с помощью метода азимутального сканирования [14]. При уточнении использована весовая схема Чебышева [15] с тремя параметрами: 2.21, 2.19 и 1.59. Окончательные значения факторов расходимости R = 0.069 и $R_W = 0.068$, GOF = 1.125. Остаточная электронная плотность из разностного ряда Фурье 1.15 и -0.36 e/Å³. Координаты неводородных атомов могут быть получены у авторов.

5-Арилкарбамоил-6-метил-4-(5-метил-2-фурил)-3-циано-1,4-дигидропиридин-2-тиолаты морфолиния 4а-с. Смесь 10 ммоль енамина ацетоацетанилида 1 и 1.92 г (10 ммоль) 5-метил-2-фурфурилиденцианотиоацетамида 2 в 15 мл этанола перемешивают 20 мин и оставляют. Через 1 сут образовавшийся осадок отфильтровывают, промывают этанолом и гексаном. Получают соли **4а-с** (табл. 1, 2).

5-Арилкарбамоил-6-метил-4-(5-метил-2-фурил)-3-цианопиридин-2(1Н)-тионы 5а-с получают при перекристаллизации соответствующих солей **4а-с** из ледяной уксусной кислоты (табл. 1, 2).Масс-спектр соединения **5с**, *m/z* (*I*_{отн}, %): 379 [M]⁺ (48), 271 (10), 257 (100), 229 (11), 123 (44), 92 (10), 77 (9), 65 (11), 43 (14).

5-Арилкарбамоил-6-метил-4-(5-метил-2-фурил)-3-циано-2-Х-метилтио-1,4-дигидропиридины 7а–g. Смесь 10 ммоль соответствующих соли 4 и 10 ммоль алкилгалогенида 6 в 8 мл ДМФА перемешивают 4 ч, разбавляют 10 мл воды и оставляют на 1 сут. Образовавшийся осадок отфильтровывают, промывают водой, этанолом и гексаном. Получают соединения 7а–g, которые перекристаллизовывают из этанола (табл. 1, 2).

Масс-спектры соединений **7а–d**, *m/z* (I_{0TH} , %). **7а**: 421 [M]⁺ (10), 380 (42), 299 (38), 271 (35), 257 (100), 135 (14), 123 (58), 108 (19), 77 (13), 41 (27). **7b**: 423 [M]⁺ (22), 380 (46), 338 (82), 299 (38), 273 (66), 259 (84), 123 (100), 108 (30), 77 (14), 65 (19), 43 (58). **7c**: 395 [M]⁺ (22), 393 [M–2]⁺ (13), 380 (16), 338 (28), 273 (44), 271 (100), 245 (22), 123 (43), 77 (11), 65 (17). **7d**: 409 [M]⁺ (27), 380 (35), 366 (20), 338 (65), 287 (39), 259 (100), 257 (48), 123 (86), 108 (24), 92 (21), 77 (12), 65 (18), 43 (17).

5-Арилкарбамоил-6-метил-4-(5-метил-2-фурил)-3-циано-2-2-метилтиопиридины

8а–g. К суспензии 10 ммоль соответствующего пиридинтиона **5** в 8 мл ДМФА при перемешивании прибавляют 5.6 мл (10 ммоль) 10% водного раствора КОН и 10 ммоль алкилгалогенида **6**, после чего перемешивают 4 ч. Затем реакционную смесь разбавляют 10 мл воды и оставляют на 1 сут. Образовавшийся осадок отделяют, промывают водой, этанолом и гексаном. Получают соединения **8**, которые перекристаллизовывают из ледяной уксусной кислоты (табл. 1, 2).

Масс-спектры соединений **8а–f**, m/z ($I_{\text{огн}}$, %). **8a**: 497 [M]⁺ (9), 392 (11), 376 (13), 375 (57), 105 (100), 77 (37). **8b**: 527 [M]⁺ (18), 405 (88), 269 (13), 241 (14), 155 (12), 91 (100), 65 (12). **8c**: [M]⁺ отсутствует, 434 [M–Br]⁺ (100), 348 (12), 311 (69), 284 (72), 257 (41), 225 (18), 123 (38), 108 (14), 87 (16), 55 (17), 43 (39). **8d**: [M]⁺ отсутствует, 420 [M–Br]⁺ (80), 297 (100), 277 (76), 257 (40), 241 (10), 127 (69), 108 (20), 92 (19), 77 (11), 43 (35). **8e**: [M]⁺ отсутствует, 406 [M–Br]⁺ (95), 313 (27), 283 (64), 257 (32), 123 (100), 77 (14), 40 (38). **8f**: 469 [M]⁺ (42), 468 [M–1]⁺ (27), 347 (74), 91 (100), 65 (20).

СПИСОК ЛИТЕРАТУРЫ

- 1. В. Д. Дяченко, С. Г. Кривоколыско, В. П. Литвинов, ХГС, 560 (1997).
- 2. В. Д. Дяченко, С. Г. Кривоколыско, В. П. Литвинов, *ЖОрХ*, **34**, 927 (1998).
- 3. В. Д. Дяченко, С. Г. Кривоколыско, В. Н. Нестеров, В. П. Литвинов, ХГС, 1243 (1996).
- 4. Д. Тирзите, А. Краузе, А. Зубарева, Г. Тирзите, Г. Дубурс, ХГС, 902 (2002).
- 5. А. А. Краузе, Р. О. Витолиня, М. Р. Романова, Г. Я. Дубурс, *Хим.-фарм. журн.*, **22**, 548 (1988).
- А. А. Краузе, А. Г. Одынец, А. А. Веррева, С. К. Германе, А. Н. Кожухов, Г. Я. Дубурс, Хим.-фарм. журн., 25, 40 (1991).
- Общая органическая химия, под ред. Д. Бартона, У. Д. Оллиса, Химия, Москва, 1982, 3, с. 482.
- V. P. Litvinov, L. A. Rodinovskaya, Yu. A. Sharanin, A. M. Shestopalov, A. Senning, *Sulfur Reports*, 13, 1 (1992).
- 9. Н. С. Зефиров, В. А. Палюлин, ДАН, 252, 111 (1980).
- 10. M. Burke-Laing, M. Laing, Acta Crystallogr., B32, 3216 (1976).
- 11. S. Samdal, H. M. Seip, T. Torgrimsen, J. Mol. Struct., 57, 105 (1979).
- 12. L. N. Kuleshova, P. M. Zorkii, Acta Crystallogr., B37, 1363 (1981).
- 13. D. J. Watkin, C. K. Prout, J. R. Carruthers, P. W. Betteridge, *CRYSTALS Issue 10, Chemical Crystallography Laboratory*, Univ. of Oxford, 1996.
- 14. A. C. T. North, D. C. Phillips, F. Scott, F. S. Mathews, Acta Crystallogr., A24, 351 (1968).
- 15. J. R. Carruthers, D. J. Watkin, Acta Crystallogr., A35, 698 (1979).

Луганский государственный педагогический университет им. Тараса Шевченко, Луганск 91011, Украина e-mail:dvd lug@online.lg.ua Поступило в редакцию 15.07.2003

^аИнститут органической химии НАН Украины, Киев 02094