О. В. Гулякевич, П. В. Курман^а, А. С. Ляхов⁶, А. Л. Михальчук

3-АЦЕТИЛ-4-МЕТИЛПИРИДО[2,1-*а*]ИЗОХИНОЛИН-2-ОНЫ. [2+4]-ЦИКЛОКОНДЕНСАЦИЯ 3,4-ДИГИДРОИЗОХИНОЛИНОВ С ТРИАЦЕТИЛМЕТАНОМ

Взаимодействием 3,4-дигидроизохинолинов с триацетилметаном в кипящем спирте в течение 2–3 ч получены 3-ацетил-4-метилпиридо[2,1-*a*]изохинолин-2-оны и изучены их основные физико-химические характеристики.

Ключевые слова: азометины, бензо[*a*]хинолизины, 3,4-дигидроизохинолины, основания Шиффа, пиридо[2,1-*a*]изохинолины, триацетилметаны, аннелирование, [2+4]-цикло-конденсация.

Ранее [1–6] мы изучили реакции 3,4-дигидроизохинолинов и родственных им циклических азометинов с разнообразными β -дикарбонильными, а также с β , β '-трикарбонильными соединениями (β , β '-ткс) алициклического и гетероциклического рядов, протекающие по схеме аннелирования ([2+4]-циклоконденсации). Это позволило получить разнообразные полициклические гетероциклы, которые являются ценными синтонами и обладают важными биологическими свойствами [7–9]. Однако до настоящего времени такие реакции с участием простейших алифатических β , β '-ткс описаны не были. В связи с этим в настоящей работе мы изучили взаимодействие 3,4-дигидроизохинолинов **1а,b** с триацетилметаном **2**.

При кипячении эквимолярных смесей соединений **1а,b** с трикетоном **2** в спирте в течение 2–3 ч (при комнатной температуре реакция не идет) мы получили с выходами 30–40% пиридо[2,1-*a*]изохинолины **3а,b** (схема). Реакция сопровождается значительным осмолением, и для очистки конечных продуктов была использована препаративная хроматография. Напомним, что аналогичные реакции циклических азометинов алициклическими β , β '-тск протекали с более высокими [10, 11] или сравнимыми (в случае стерически затрудненных азометинов) выходами [12].

1,3 a R = H, **b** R = OMe

Следует отметить, что полученные пиридоизохинолины **За,b** можно рассматривать как 15,16-*секо*-аналоги проявляющих иммунодепрессантные свойства 8-азагонанов или бензо[*a*]циклопентано[*f*]хинолизинов **4** [13, 14], и с этой точки зрения они представляют безусловный интерес для изучения взаимосвязей структура–функция и структура–свойства.

Строение пиридоизохинолинов **За,b** подтверждено совокупностью физико-химических данных.

По данным ИК спектров, пиридоизохинолины **За,b**, как и их тетрациклические аналоги 8-азастероиды [15, 16], имеют схожую картину поглощения в области валентных C=O, C=C и деформационных C–H колебаний (1700–1350 см⁻¹). В то же время некоторые различия в C=O колебаниях пиридоизохинолинов **За,b** и 8-азастероидов вероятно связаны с различиями в их структурах (ср. [17]). Так, если у 8-азастероидов фрагмент N(8)–C(14)=C(13)(–C(12)=O(12))–C(15)=O(15) имеет фиксированную структурой N-*cis-s-trans* – *-trans-s-trans*-конфигурацию, то для пиридо[2,1-*a*]изохинолинов **За,b** наиболее предпочтительной представляется N-*cis-s-trans* – *-trans-s-cis*-конфигурация. Наблюдаемые различия в ИК спектрах 8-азастероидов **4** [10, 14] и производных **За,b** связаны с различиями в их пространственном строении, в частности, в конфигурациях карбонильных групп при C(3) соединений **3** и C(17) соединений **4**.

УФ спектры пиридоизохинолинов **За,b** подобны УФ спектрам 8-азастероидов, также имеющим в своей структуре α -ацил- β -аминовинилкарбонильную или енаминодикарбонильную группировку [10, 11], и характеризуются двумя интенсивными полосами поглощения в областях ~270 и ~320 нм. При этом длинноволновая полоса поглощения (~320 нм) батохромно смещена относительно аналогичных полос поглощения родственных дибензо[*a*,*f*]хинолизинов [10], что обусловлено конфигурационными различиями при атомах карбонильных групп C(3) и C(17) у производных **3** и **4** соответственно.

В спектрах ЯМР ¹Н полученных пиридо[2,1-*а*]изохинолинов **3а,b** присутствуют характеристические сигналы, отвечающие приписанным структурам. Так, в области 2.30–2.55 м. д. наблюдаются сигналы резонансного поглощения C(4)-метильных и C(3)-ацетильных групп, проявляющиеся в виде трехпротонных синглетов. В областях 2.40–2.80 и 4.65–4.85 м. д. присутствуют сигналы резонансного поглощения ABX-спиновой системы протонов фрагмента C(1)–C(11b) молекул пиридо[2,1-*a*]изохинолинов **3а,b**. В спектре ЯМР ¹Н производного **3b** имеются сигналы, отвечающие C(9)-, C(10)-метоксигруппам. Остальные сигналы других молекулярных фрагментов пиридо[2,1-*a*]изохинолинов **3а,b** представлены в экспериментальной части.

Спектры ЯМР ¹³С пиридо[2,1-*а*]изохинолинов **3а,b** показали 78

присутствие требуемых приписанными структурами наборов сигналов резонансного поглощения, среди которых имеются характеристичные резонансные сигналы ядер С(3), С(4), С(11b) при ~115, ~168 и ~56–57 м. д. соответственно.

Окончательное строение пиридо[2,1-a]изохинолинов **За,b** подтверждается данными рентгеновского дифракционного эксперимента на монокристалле производного **За** (рис. 1, 2 и табл. 1–3). Эти данные подтверждают структурные отнесения, сделанные на базе спектральных данных, и дают информацию о пространственном строении этого вещества.

На основании данных РСА молекула производного **За** имеет следующие геометрические параметры. Цикл **А** – плоский, среднее отклонение атомов от среднеквадратичной плоскости составляет 0.005(2) Å. Валентные углы цикла близки к 120° (табл. 1), длины связей, формирующих этот цикл атомов, лежат в пределах 1.373(3)-1.395(2) Å, что свидетельствует о его ароматическом характере. Цикл **В** имеет конформацию *ванны*, что хорошо видно из рис. 1. Частично гидрированный γ -пиридоновый цикл **С** имеет конформацию *полукресла* с атомами C(1) и C(11B), лежащими по разные стороны от плоскости, образованной атомами C(2), C(3), C(4) и N(5) (табл. 2).

Как следует из рентгенографических данных, α -ацил- β -аминовинилдикарбонильный (ААВК) фрагмент N(5)–C(4)=C(3)(–C(2)=O(2))–C(12)=O(12) производного **3a** в кристаллах имеет конфигурацию, близкую к N-*cis*-*strans* – *-trans-s-cis* (рис. 1). Поскольку, по данным квантово-химических расчетов (АМ-1), такая конфигурация является наиболее энергетически предпочтительной, следует ожидать, что она будет наиболее заселенной и в растворах производного **3a**. Анализ геометрических и электронных

Рис. 1. Строение молекулы пиридо[2,1-а]изохинолина За

Рис. 2. Димерные агрегаты в кристаллической структуре пиридо[2,1-*a*]изохинолина **За**. Штриховыми линиями показаны С–Н…О водородные связи

параметров фрагмента ААВК позволяет констатировать, что сопряжение в этой p- π -электронной системе наиболее эффективно осуществляется по N-*cis-s-trans*-ветви фрагмента, в то время как N-*trans-s-cis*-ветвь является менее сопряженной, о чем свидетельствуют длины связей C(2)=O(2), C(12)=O(12), C(2)-C(3) и C(3)-C(4) (табл. 1). Это наблюдение ставит под сомнение ранее высказанное утверждение о предпочтительности N-*trans-s-mpahc*-сопряжения по сравнению с N-*cis-s-trans*-сопряжением во фрагментах ААВК [18].

Отметим, что атом N(5) имеет практически плоскую тригональную конфигурацию, сумма его валентных углов 359.86°, а его выход из плоскости трех связанных с ним атомов C(4), C(6), C(11B) составляет 0.03(3) Å. При этом обращает на себя внимание весьма существенная деформация валентных углов атома азота (табл. 2), вероятно, обусловленная p- π -электронными взаимодействиями с ендионовым фрагментом.

В кристаллической структуре **За** существуют слабые взаимодействия C(11)-H(11)···O(2) (d C(11)···O(2) = 3.427(2) Å, $\omega C(11)$ -H(11)···O(2) = 162.2°), объединяющие молекулы в димеры (рис. 2). Наряду с ван-дер-ваальсовыми взаимодействиями, они определяют упаковку молекул в кристаллической структуре.

Никаких других укороченных межмолекулярных контактов, с которыми можно было бы ассоциировать отмеченные выше геометрические деформации в структуре молекул, не наблюдается. Следовательно эти деформации обусловлены исключительно внутримолекулярными взаимодействиями. Другие специфические особенности строения вновь полученных пиридо[2,1-*a*]изохинолинов представлены в табл. 1–3.

Таблица 1

Связь	<i>d</i> , Å	Связь	<i>d</i> , Å
C(1)-C(11B)	1.502(2)	C(7)–C(7A)	1.489(3)
C(1)–C(2)	1.515(2)	C(7A)–C(8)	1.387(3)
C(2)–O(2)	1.2287(18)	C(7A)–C(11A)	1.395(2)
C(2)–C(3)	1.445(2)	C(8)–C(9)	1.373(3)
C(3)–C(4)	1.398(2)	C(9)–C(10)	1.374(3)
C(3)–C(12)	1.477(2)	C(10)–C(11)	1.381(3)
C(4)–N(5)	1.338(2)	C(11)–C(11A)	1.379(3)
C(4)–C(14)	1.507(2)	C(11A)–C(11B)	1.509(2)
N(5)–C(6)	1.471(2)	C(12)–O(12)	1.221(2)
N(5)–C(11B)	1.480(2)	C(12)–C(13)	1.501(3)
C(6)–C(7)	1.504(3)		

Длины связей (d) в молекуле пиридо[2,1-a]изохинолина За

Таблица 2

Валентные углы	(ω)в молекуле	соединения За
----------------	---------------	---------------

Угол	ω, град.	Угол	ω, град.
C(11B) –C(1)–C(2)	109.84(13)	C(8)–C(7A)–C(7)	122.96(18)
O(2)–C(2)–C(3)	124.56(15)	C(11A)-C(7A)-C(7)	118.31(16)
O(2)–C(2)–C(1)	119.03(14)	C(9)-C(8)-C(7A)	121.0(2)
C(3)–C(2)–C(1)	116.06(13)	C(8)-C(9)-C(10)	119.98(19)
C(4)–C(3)–C(2)	119.64(14)	C(9)–C(10)–C(11)	120.0(2)
C(4)–C(3)–C(12)	122.07(15)	C(11A)-C(11)-C(10)	120.37(19)
C(2)–C(3)–C(12)	117.88(15)	C(11)–C(11A)–C(7A)	120.00(17)
N(5)-C(4)-C(3)	121.10(14)	C(11)-C(11A)-C(11B)	118.09(15)
N(5)-C(4)-C(14)	116.30(15)	C(7A)–C(11A)–C(11B)	121.91(16)
C(3)–C(4)–C(14)	122.55(16)	N(5)-C(11B)-C(1)	108.25(14)
C(4)–N(5)–C(6)	123.29(14)	N(5)-C(11B)-C(11A)	113.65(13)
C(4)-N(5)-C(11B)	117.34(13)	C(1)-C(11B)-C(11A)	113.62(14)
C(6)-N(5)-C(11B)	119.23(14)	O(12)–C(12)–C(3)	122.86(19)
N(5)-C(6)-C(7)	110.41(15)	O(12)-C(12)-C(13)	118.76(19)
C(7A)–C(7)–C(6)	110.54(17)	C(3)-C(12)-C(13)	118.35(17)
C(8)–C(7A)–C(11A)	118.7(2)		

Таблица З

Двугранные углы (ф) в молекуле соединения За

Угол	ф, град.	Угол	ф, град.
C(11B)-C(1)-C(2)-O(2)	155.51(15)	C(8)-C(9)-C(10)-C(11)	1.5(3)
C(11B)-C(1)-C(2)-C(3)	-31.0(2)	C(9)–C(10)–C(11)–C(11A)	-0.8(3)
O(2)-C(2)-C(3)-C(4)	166.86(16)	C(10)-C(11)-C(11A)-C(7A)	-0.2(3)
C(1)-C(2)-C(3)-C(4)	-6.2(2)	C(10)-C(11)-C(11A)-C(11B)	179.78(17)
O(2)-C(2)-C(3)-C(12)	-5.9(3)	C(8)–C(7A)–C(11A)–C(11)	0.6(3)
C(1)-C(2)-C(3)-C(12)	-178.97(14)	C(7)–C(7A)–C(11A)–C(11)	178.18(17)
C(2)-C(3)-C(4)-N(5)	16.6(2)	C(8)–C(7A)–C(11A)–C(11B)	-179.41(17)
C(12)-C(3)-C(4)-N(5)	-170.95(15)	C(7)–C(7A)–C(11A)–C(11B)	-1.8(3)
C(2)-C(3)-C(4)-C(14)	-166.24(15)	C(4)-N(5)-C(11B)-C(1)	-50.98(19)
C(12)-C(3)-C(4)-C(14)	6.2(2)	C(6)–N(5)–C(11B)–C(1)	133.21(16)
C(3)-C(4)-N(5)-C(6)	-170.83(16)	C(4)–N(5)–C(11B)–C(11A)	-178.20(14)
C(14)-C(4)-N(5)-C(6)	11.9(2)	C(6)–N(5)–C(11B)–C(11A)	6.0(2)
C(3)-C(4)-N(5)-C(11B)	13.6(2)	C(2)-C(1)-C(11B)-N(5)	57.38(18)
C(14)-C(4)-N(5)-C(11B)	-163.75(14)	C(2)–C(1)–C(11B)–C(11A)	-175.38(14)
C(4)-N(5)-C(6)-C(7)	140.93(18)	C(11)-C(11A)-C(11B)-N(5)	-161.86(15)
C(11B)-N(5)-C(6)-C(7)	-43.5(2)	C(7A)-C(11A)-C(11B)-N(5)	18.2(2)
N(5)-C(6)-C(7)-C(7A)	58.0(2)	C(11)-C(11A)-C(11B)-C(1)	73.8(2)
C(6)–C(7)–C(7A)–C(8)	140.8(2)	C(7A)-C(11A)-C(11B)-C(1)	-106.22(19)
C(6)–C(7)–C(7A)–C(11A)	-36.7(3)	C(4)–C(3)–C(12)–O(12)	-33.2(3)
C(11A)-C(7A)-C(8)-C(9)	0.1(3)	C(2)–C(3)–C(12)–O(12)	139.33(19)
C(7)–C(7A)–C(8)–C(9)	-177.4(2)	C(4)–C(3)–C(12)–C(13)	144.67(19)
C(7A)-C(8)-C(9)-C(10)	-1.1(4)	C(2)–C(3)–C(12)–C(13)	-42.8(2)

Таким образом, изложенные результаты говорят о принципиальной возможности аннелирования 3,4-дигидроизохинолинов триацетилметанами, приводящего к новым важным для медико-биологических и физикохимических исследований функционализированным производным пиридо[2,1-*a*]изохинолина. Последние представляют интерес для синтеза алкалоидов и родственных гетероциклических соединений. Приведенные данные свидетельствуют о перспективности дальнейших исследований по аннелированию шиффовых оснований или азометинов поликарбонильными соединениями. Совокупность квантово-химических, структурных и спектральных характеристик, полученных нами, дополняет данные предыдущих исследований [15–17] и демонстрирует перспективы дальнейшего развития исследований взаимосвязей между структурой и свойствами в ряду конденсированных производных хинолизина.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

УФ спектры сняты на спектрофотометре Specord M-400 в этаноле, ИК спектры – на приборе UR-20 в таблетках КВг. Спектры ЯМР ¹Н и ¹³С получены на радиоспектрометре Bruker AC-200 (200 и 50 МГц соответственно) в CDCl₃, внутренний стандарт ТМС. 3,4-Дигидроизохинолины **1а,b** получены циклодегидратацией соответствующих фенетилформамидов по методу Бишлера–Напиральского [19]. Контроль за ходом реакций осуществлялся с помощью метода ТСХ на пластинках Silufol UV-254, элюент хлороформметанол, 9:1. Масс-спектры измерены на хромато-масс-спектрометре HP 5890/5972 GC/MS (кварцевая капиллярная колонка HP 5MS 30 м × 0.25 мм × 0.25 мкм, газ носитель гелий 0.7–1 мкл/мин, температура испарителя 250 °С, температурная программа 40–300 °С, 6 °С/мин). Температуры плавления определялись на нагревательном блоке Böetius.

Монокристаллы соединения **За** получались кристаллизацией из смеси спирт–эфир, 4:6. Для эксперимента был отобран кристалл размерами $0.38 \times 0.28 \times 0.24$ мм. Трехмерный набор рентгеновских дифракционных данных собран на автоматическом четырехкружном дифрактометре Nicolet R3m, МоКа-излучение, графитовый монохроматор, $\omega/2\theta$ -сканирование ($2\theta_{max} = 60^{\circ}$). Общее количество измеренных отражений 4209, независимых – 3953 ($R_{int} = 0.0155$). Соединение кристаллизуется в моноклинной сингонии, пространственная группа *c2/c*. Параметры элементарной ячейки: *a* = 18.310(4), *b* = 7.644(2), *c* = 19.639(5) Å, $\beta = 101.29(2)^{\circ}$, V = 2695.5(11) Å³; Z = 8; $d_{pentr} = 1.258$ г/см³; $\mu = 0.83$ см⁻¹. Структура соединения расшифрована прямым методом (SIR97 [20]). Положения атомов водорода рассчитаны геометрически. Уточнение (SHELXL-97 [21]) проведено полноматричным МНК с учетом анизотропии тепловых колебаний не водородных атомов. Атомы водорода уточнены в рамках "riding" модели. Окончательные значения факторов недостоверности: R1 = 0.0536, wR2 = 0.1514 ($I > 2\sigma(I)$); R1 = 0.0919, wR2 = 0.1852 (все данные); добротность подгонки GooF 1.067.

рац-3-Ацетил-4-метил-1,6,7,11b-тетрагидро-2H-пиридо[2,1-а]изохинолин-2-он (3а). Раствор 0.328 г (2.5 ммоль) изохинолина 1а и 0.355 г (2.5 ммоль) триацетилметана 2 в 5 мл этанола оставляют на 24 ч при 12 °C, а затем кипятят с обратным холодильником в течение 2 ч. Полученную смесь упаривают досуха, остаток растворяют в хлороформе и хроматографируют на 13 г силикагеля 5/40 µ. Бесцветные кристаллы, выход 0.19 г (30%), т. пл. 129–130 °С. УФ спектр, λ_{max} , нм (lg ϵ): 269.3 (4.11), 320.0 (4.30). ИК спектр, v, см⁻¹: 3100-2830, 1665, 1640 пл, 1624, 1550-1520, 1508. Спектр ЯМР ¹Н, б, м. д. (Ј, Гц): 2.46 (ЗН, с, 4-СН₃); 2.54 (3H, с, 3-СОСН₃); 2.59 (1H, т, *J*_{1,2} = 15.0, H_a-1); 2.76 (1H, д. д, *J*₁ = 15.0, *J*₂ = 4.0, H_e-1); 2.84 (1H, т. т, J₁ = 13.0, J_{2,3} = 3.5, H_e-7); 3.07 (1H, д. д. д, J_{1,2} = 13.0, J₃ = 3.5, H_a-7); 3.38 (1H, д. д. д. Д. J_{1,2} = 13.0, J₃ = 3.5, H_a-6); 4.24 (1H, т. т, J₁ = 13.0, J_{2,3} = 3.5, H_e-6); 4.83 (1Н, д. д, *J*₁ = 15.0, *J*₂ = 4.0, H_a-11b); 7.14–7.37 (4Н, м, Н-8,9,10,11). Спектр ЯМР ¹³С, б, м. д.: 19.17 (4-CH₃), 29.84 (C(7)), 32.69 (3-CO<u>C</u>H₃), 44.69 (C(1)), 45.29 (C(6)), 57.04 (C(11b)), 115.17 (C(3)), 125.94 (C(11)), 127.37 (C(9)), 127.47 C(10)), 128.382 (C(8)), 133.48 (C(11a)), 134.24 (С(7а)), 168.24 (С(4)), 189.37 (С(12)), 200.81 (С(2)). Масс-спектр*, *m/z* (*I*_{отн}, %): 255 $[M]^+$ (64); 240 (100); 212 (49); 198 (5); 184 (12); 132 (40); 131 (10); 130 (30); 129 (12); 128 (14); 117 (24); 116 (15); 115 (27); 103 (13); 101 (11); 100 (21); 96 (11); 91 (13); 77 (14); 67 (36); 43 (28). Найдено, %: С 75.16, 75.12; Н 6.65; N 5.38. С₁₆Н₁₇NO₂. Вычислено, %: С 75.27; H 6.71: N 5.49. M 255.32.

рац-3-Ацетил-4-метил-9,10-диметокси-1,6,7,11b-тетрагидро-2H-пиридо[2,1-*а*]изохинолин-2-он (3b). Смесь 0.478 г (2.5 ммоль) изохинолина 1а и 0.366 г (2.5 ммоль) триацетилметана 2 в 5 мл этанола кипятят с обратным холодильником в токе аргона 3 ч. Затем реакционную смесь упаривают досуха, остаток растворяют в хлороформе и хроматографируют на 9 г силикагеля 5/40 µ, элюируя смесью хлороформ-метанол, 29:1. Получают 0.29 г продукта 3b в виде бесцветных кристаллов. Выход 36.8%, т. пл. 178–179 °С. УФ спектр, λ_{max} , нм (lg ε): 202.7 (5.02), 231.2 (4.32), 272.3 (4.43), 319.6 (4.58); λ_{min} , нм (lg ε): 221.9 (4.28), 247.3 (3.98), 288.1 (4.35). ИК спектр, v, см⁻¹: 3100–2830, 1680, 1633, 1540 пл. Спектр ЯМР ¹H, δ , м. д. (*J*, Гц): 2.35 (3H, с, 4-CH₃); 2.44, (3H, с, 3-COCH₃); 2.47 (1H, т, $J_{1,2}$ = 15.5, H_a-1); 2.63 (1H, д. д, J_1 = 15.5, J_2 = 4.0, H_e-1); 2.75 (1H, т. т, J_1 = 15.0,

^{*} Приведены M и пики ионов с интенсивностью более 10%. Пики изотопных ионов не приводятся.

J_{2,3} = 3.5, H_a-7); 2.92 (1H, д. т. д, J₁ = 15.0, J₂ = 13.0, J₃ = 3.5, H_e-7); 3.23 (1H, д. т. д, J₁ =

15.0, $J_2 = 13.0$, $J_3 = 3.5$, H_e -6); 3.78 (3H, c, OCH₃); 3.81 (3H, c, OCH₃); 4.16 (1H, т. т. $J_1 = 13.0$, $J_{2,2} = 3.5$, H_a -6); 4.66 (1H, д. д. $J_1 = 15.5$, $J_2 = 4.0$, H_a -11b); 6.54 (1H, c, H-8); 6.60 (1H, c, H-11). Спектр ЯМР ¹³С, δ , м. д.: 19.12 (4-CH₃), 29.34 (C(7)), 32.72 (3-COCH₃), 44.76 (C(1)), 45.73 (C(6)), 56.00 (C(11b)), 56.06 (10-OCH₃), 56.86 (9-OCH₃), 108.53 (C(11)), 110.94 (C(8)), 115.13 (C(3)), 125.52 (C(7a)), 126.05 (C(11a)), 148.25 (C(10)), 148.52 (C(9)), 168.21 (C(4)), 189.58 (C(2)), 200.89 (C(12)). Масс-спектр. m/z ($I_{\text{отн}}$, %): 315 [M]⁺ (49); 300 (58); 272 (100); 256 (15); 192 (22); 191 (10); 190 (29); 189 (12); 177 (32); 176 (26); 150 (17); 146 (19); 133 (10); 131 (14); 117 (10); 115 (17); 103 (14); 95 (15); 91 (18); 77 (19); 67 (49); 65 (10); 44 (15), 43 (49). Найдено, %: C 68.44; H 6.62; N 4.34. C₁₈H₂₁NO₄. Вычислено, %: C 68.55; H 6.71; N 4.44. M 315.37.

Авторы выражают благодарность академику НАН Республики Беларусь, проф. А. А. Ахрему за внимание к проводимым исследованиям и плодотворные обсуждения результатов.

СПИСОК ЛИТЕРАТУРЫ

- 1. А. А. Ахрем, О. В. Гулякевич, А. Л. Михальчук, в кн. *Енамины в органическом синтезе*, УрО РАН, Екатеринбург, 2001, с. 47.
- А. А. Ахрем, О. В. Гулякевич, А. Л. Михальчук, в кн. Азотистые гетероциклы и алкалоиды, под ред. В. Г. Карцева, Г. А. Толстикова, Иридиум-Пресс, Москва, 2001, 1, с. 31.
- Д. Б. Рубинов, М. В. Будникова, Т. А. Желдакова, А. Л. Михальчук, в кн. Азотистые гетероциклы и алкалоиды, под ред. В. Г. Карцева, Г. А. Толстикова, Иридиум-Пресс, Москва, 2001, 1, с. 503.
- 4. А. Л. Михальчук, О. В. Гулякевич, В. П. Пересада, А. М. Лихошерстов, А. А. Ахрем, *Докл. РАН*, **356**, 769 (1997).
- 5. О. В. Гулякевич, А. Л. Михальчук, А. А. Ахрем, Изв. АН, Сер. хим., 1358 (1997).
- 6. А. Л. Михальчук, О. В. Гулякевич, А. А. Ахрем, Журн. прикл. химии, 71, 645 (1998).
- J. R. Huff, P. S. Anderson, J. J. Baldwin, B. V. Clineschmitt, J. P. Guare, V. J. Lotti, D. J. Pettibone, W. C. Randale, J. P. Vacca, J. Med. Chem., 28, 1756 (1985).
- E. S. Viri, I. Toth, G. T. Somogyi, L. Szabo, L. G. Harsing, Jr., Cs. Szantay, J. Med. Chem., 30, 1355 (1987).
- 9. T. Kametani, S. A. Surgenor, K. Fukumoto, Heterocycles, 14, 303 (1980).
- О. В. Гулякевич, А. Л. Михальчук, А. И. Веренич, Д. Б. Рубинов, А. А. Зенюк, А. А. Ахрем, в кн. *Енамины в органическом синтезе*, УрО РАН, Екатеринбург, 1996, с. 111.
- 11. А. Л. Михальчук, О. В. Гулякевич, А. А. Ахрем, ХГС, 1239 (1993).
- 12. А. Л. Михальчук, О. В. Гулякевич, А. А. Зенюк, Ю. В. Шкляев, В. С. Шкляев, А. А. Ахрем, *ЖОХ*, **63**, 1891 (1993).
- А. А. Ахрем, Б. Б. Кузьмицкий, Ф. А. Лахвич, В. А. Хрипач, Ю. Л. Журавков, в кн. Химия и биология иммунорегуляторов, Зинатне, Рига, 1985, с. 265.
- А. А. Ахрем, Ф. А. Лахвич, В. Н. Пшеничный, О. В. Гулякевич, И. И. Петрусевич, Б. Б. Кузьмицкий, Н. К. Кевра, Г. И. Реутская, И. А. Горбачева, А. с. СССР 974800; *Б. И.* № 39-40, 200 (1993).
- 15. А. А. Ахрем, О. В. Гулякевич, Г. Н. Лысенко, А. Л. Михальчук, Г. Б. Толсторожев, *Журн. прикл. спектроскопии*, **68**, 427 (2001).
- 16. А. А. Ахрем, О. В. Гулякевич, Г. Н. Лысенко, А. Л. Михальчук, Г. Б. Толсторожев, Журн. прикл. спектроскопии, 68, 551 (2001).
- 17. Н. А. Борисевич, О. В. Гулякевич, А. Л. Михальчук, И. В. Скорняков, Журн. прикл. спектроскопии, 70, 28 (2003).
- 18. В. З. Курбако, ДАН БССР, 34, 716 (1990).

- 19. В. М. Уэлли, Т. Р. Говиндачари, *Органические реакции*, Изд-во иностр. лит., Москва, 1953, **6**, с. 98.
- 20. A. Altomare, M. C. Burla, M. Camalli, G. Cascarano, C. Giacovazzo, A. Guagliardi, A. G. G. Moliterni, G. Polidori, R. Spagna, *J. Appl. Crystallogr.*, **32**, 115 (1999).
- 21. G. M. Sheldrick, Program for Crystal Structure Refinement, Univ. Göttingen, Göttingen, Germany, 1997.

Государственное научное учреждение Институт биоорганической химии НАН Республики Беларусь, Минск 220141 e-mail: mikhalch@imaph.bas-net.by Поступило в редакцию 23.01.2004

^аРНТЦ "ЭКОМИР" НАН Республики Беларусь, Минск 220012 ⁶НИИ Ф-ХП БГУ им. Ф. Скорины, Минск 220050, Республика Беларусь