С. А. Ямашкин, Е. А. Орешкина^а, И. С. Романова, М. А. Юровская⁶

О ВОЗМОЖНОСТИ ИСПОЛЬЗОВАНИЯ 6-АМИНО-2,3-ДИМЕТИЛ-5-МЕТОКСИ(МЕТИЛ)- И 6-АМИНО-5-МЕТОКСИ(МЕТИЛ)-1,2,3-ТРИМЕТИЛИНДОЛОВ В СИНТЕЗЕ ПИРРОЛО[2,3-*f*]ХИНОЛИНОВ

Изучены реакции 6-амино-2,3-диметил-, 6-амино-1,2,3-триметил-5-метокси(метил)индолов с 4,4,4-трифторацетоуксусным эфиром, а для 6-амино-5-метокси-1,2,3-триметилиндола и с другими β-дикарбонильными соединениями и установлено, что для всех исследованных аминов конденсация протекает гладко с образованием соответствующих енаминов, в то время как возможность дальнейшей циклизации с образованием пирроло[2,3-*f*]хинолинов обнаружена только для продукта конденсации 6-амино-2,3,5-триметилиндола с 4,4,4-трифторацетоуксусным эфиром.

Ключевые слова: 6-амино-2,3-диметил-5-метоксииндол, 6-амино-5-метокси-1,2,3-триметилиндол, 6-амино-1,2,3,5-тетраметилиндол, 6-амино-2,3,5-триметилиндол, ацетилацетон, ацетоуксусный эфир, пирроло[2,3-*f*]хинолин, этиловый эфир 4,4,4-трифторацетоуксусной кислоты.

Продолжая исследования по разработке целенаправленных методов синтеза замещенных (в том числе трифторметилсодержащих) пирролохинолинов (потенциальных биологически активных соединений) с заданным сочленением колец [1], мы изучили реакции 6-амино-2,3,5-триметилиндола (1), 6-амино-1,2,3,5-тетраметилиндола (2), 6-амино-2,3-диметил-5метоксииндола (3), 6-амино-5-метокси-1,2,3-триметилиндола (4) с 4,4,4-трифторацетоуксусным эфиром и другими дикарбонильными соединениями.

При нагревании смеси аминоиндола **1** и трифторацетоуксусного эфира в бензоле с каталитическим количеством ледяной уксусной кислоты выделено соединение, которому, согласно спектральным данным, приписана структура **5**.

1,5 R = Me, R^1 = H, **2,6** R = R^1 = Me, **3,7** R = OMe, R^1 = H, **4,8** R = OMe, R^1 = Me

В спектре ЯМР ¹Н соединения **5** (табл. 1) имеются сигналы протонов групп 2-, 3-, 5-СН₃, неразрешенный сигнал протонов H-4 и 9-ОН (7.17 м. д.), а также два синглета протонов H-1 и H-6. Протоны метиленовой группы проявляются в виде двух дублетов (2.85 и 3.07 м. д.) с КССВ 15 Гц. Неравноценность протонов H-8 объясняется влиянием различно расположенных групп CF₃ и OH у ассиметрического атома C₍₉₎. В ИК спектре наблюдаются два сигнала (1630 и 1650 см⁻¹) неравноценных амидных карбонильных групп. Самым интенсивным пиком в масс-спектре соединения **5** является сигнал фрагментного иона с m/z 243, что соответствует потере молекулярным ионом радикала CF₃, приводящей к стабильной пирроло[2,3-*f*]хинолин-7,9-дионовой системе. Приведенные спектральные характеристики, а также УФ спектр амида **5** хорошо согласуются с литературными данными для подобных структур, полученных из 7-амино-2,3-диметил- и 6-амино-7-метокси-1,2,3-триметил-индолов [1, 2].

В отличие от амина 1, соединение 2 с трифторацетоуксусным эфиром в тех же условиях реагирует с образованием нециклического амида 6, который в CDCl₃ находится в смеси *Z*,*E*-енольных форм (Z:E = 1:1, согласно интегральной интенсивности сигнала винильного протона в спектрах ЯМР ¹Н).

Спектр ЯМР ¹Н соединения **6** содержит синглетные сигналы протонов четырех метильных групп, протонов группы NH, H-4 и H-7, Z-H вин. (5.39), *E*-H вин. (5.70), уширенный синглет протона группы OH (13.90 м. д.). Масс-спектр амида **6** характеризуется малоинтенсивным пиком молекулярного иона и пиком максимальной интенсивности с m/z 188 ([M–138]⁺), что соответствует M⁺ аминоиндола **2**. Этот ион образуется за счет потери молекулярным ионом соединения **6** трифтордикетена ([M–138]⁺).

Таким образом, группа N–CH₃ в аминоиндоле **2** блокирует положение 7 для образования циклической амидной системы. Последняя не образуется и в случае N–H индола, например метоксииндола **3**.

Соединение **3**, как и амин **2**, с трифторацетоуксусным эфиром образует амид **7**, который на основании значения δ винильного протона (5.68 м. д.) в спектре ЯМР ¹Н (CDCl₃) имеет структуру трифторацетоацетиламида в *Z*-енольной форме. Кроме этого сигнала в спектре присутствуют синглетные сигналы протонов H-1, H-4 и H-7, групп 2-, 3-CH₃, 5-OCH₃, амидной группы N–H и уширенный синглет протона группы OH (13.90 м. д.).

Первый этап фрагментации молекулярного иона амида 7 под действием электронного удара аналогичен распаду амида 6, а именно, в спектре присутствуют слабоинтенсивный пик молекулярного иона и сигнал максимальной интенсивности $[M-138]^+$ с m/z 190, обусловленный потерей молекулярным ионом молекулы трифтордикетена. Образующийся молекулярный ион аминоиндола 3 (с m/z 190) в дальнейшем элиминирует радикал Ме и молекулу СО, что характерно для 5-метоксизамещенных индолов [3].

Невозможность образования циклического амида для аминоиндола **3**, по-видимому, связана с дезактивацией положения 7 индола к электрофильной атаке *мета*-расположенной группой 5-OMe, о чем сообщалось и ранее [4].

Таблица 1

Corr	V4				
Сое- ди- не- ние	Уф (λ _{max} , HM	lg ε	Спектр ЯМР ¹ Н, б, м. д. (<i>J</i> , Гц)	Масс-спектр, <i>m/z</i> (I _{отн} , %)	
5	222 260 322	4.35 4.33 4.12	2.10 (3H, c, 3-CH ₃), 2.30 (6H, c, 2-, 5-CH ₃), 2.85 (1H, д, <i>J</i> = 15, H-8), 3.07 (1H, д, <i>J</i> = 15, H-8), 7.17 (2H, c, H-4, 9-OH), 9.20 (1H, c, H-6), 9.72 (1H, c, H-1)	312 [M] ⁺ (44), 311 (64), 243 (100), 241 (10), 228 (14), 225 (14), 173 (17), 156 (10), 69 (8)	
6	208 241 303	4.32 4.48 4.03	2.20–2.30 (9H, м, 2-, 3-, 5-CH ₃), 3.64 (3H, с, 1-CH ₃), 5.39 (0.5H, с, H вин. (<i>E</i>)), 5.70 (0.5H, с, H вин. (<i>Z</i>)), 7.00–7.70 (3H, м, H-4,7, NH), 13.90 (1H, уш. с, OH)	326 [M] ⁺ (29), 188 (100), 69 (34)	
7	208 227 263 (пл.) 323	4.39 4.38 4.23 4.26	2.20 (3H, c, 3-CH ₃), 2.35 (3H, c, 2-CH ₃), 3.96 (3H, c, 5-OCH ₃), 5.68 (1H, c, H вин.), 6.90 (1H, c, H-4), 7.63 (1H, c, NH); 7.95 (1H, c, H-1), 8.31 (1H, c, H-7), 13.85 (1H, уш. c, OH)	328 [M] ⁺ (23), 190 (100), 189 (22), 175 (68), 147 (28), 146 (24), 69 (45)	
8	208 227 256 (пл.) 323	4.37 4.35 4.27 4.21	2.21 (3H, c, 3-CH ₃), 2.33 (3H, c, 2-CH ₃), 3.65 (3H, c, 1-CH ₃), 3.96 (3H, c, 5-OCH ₃), 5.68 (1H, c, H вин.), 6.92 (1H, c, H-4), 8.00 (1-H, c, NH), 8.30 (1H, c, H-7), 13.87 (1H, уш. с, OH)	342 [M] ⁺ (19), 204 (100), 203 (17), 189 (73), 161 (24), 160 (22), 146 (13), 69 (34)	
9	208 227 317	4.35 4.30 4.23	1.20 (3H, т, $J = 7$, OCH ₂ C <u>H₃</u>), 1.92 (3H, c, C=C-CH ₃), 2.17 (3H, c, 3-CH ₃), 2.30 (3H, c, 2-CH ₃), 3.59 (3H, c, 1-CH ₃), 3.80 (3H, c, 5-OCH ₃), 4.05 (2H, к, $J = 7$, OC <u>H₂</u> -CH ₃), 4.62 (1H, c, H вин.), 6.99 (1H, c, H-4), 7.18 (1H, c, H-7), 10.13 (1H, c, NH)	316 [M] ⁺ (53), 270 (100), 255 (17), 227 (35), 212 (14), 135 (23)	
10	211 222 323	4.49 4.48 4.41	1.94 (3H, c, C=C-CH ₃), 1.97 (3H, c, 3-CH ₃), 2.18 (3H, c, 2-CH ₃), 2.31 (3H, c, O=C-CH ₃), 3.60 (3H, c, 1-CH ₃), 3.80 (3H, c, 5-OCH ₃), 5.20 (1H, c, H вин.), 7.00 (1H, c, H-4), 7.23 (1H, c, H-7), 12.20 (1H, c, NH)	286 [M] ⁺ (100), 271 (9), 256 (13), 243 (19), 229 (29), 228 (55), 214 (40), 213 (41), 212 (40), 202 (44), 189 (23), 160 (12), 143 (30), 135 (18), 127 (14), 115 (16), 114 (20), 107 (22), 43 (91)	
11	225 (пл.) 240 280 357	4.06 4.19 4.28 3.65	2.16 (3H, c, 3-CH ₃), 2.40 (3H, c, 2-CH ₃), 2.54 (3H, c, 5-CH ₃), 6.99 (1H, c, H-8), 7.61 (1H, c, H-4), 9.39 (1H, c, H-6), 10.98 (1H, c, H-1)	294 [M] ⁺ (100), 273 (23), 259 (10)	

Спектральные характеристики соединений 5–11

Как и следовало ожидать, хотя не исключалась возможность повышения электронной плотности на атоме $C_{(7)}$ под влиянием группы NMe, аминоиндол 4 с трифторацетоуксусным эфиром образует амид 8, спектральные характеристики, включая УФ спектры, которого полностью идентичны таковым соединения 7, что подтверждает их одинаковое строение.

В отличие от трифторацетоуксусного эфира его нефторированный 99

аналог с аминоиндолом 4 реагирует по ацетильной группе с образованием енаминокротоната 9.

9 R = Me, $R^1 = OEt$; **10** $R = R^1 = Me$

Образование енаминокротоната **9** подтверждается спектром ЯМР ¹H, в котором содержатся триплет и квадруплет протонов группы OCH₂CH₃, синглетные сигналы протонов пяти метильных групп, винильного протона и протонов H-4, H-7 и N–H. Химические сдвиги протонов этоксигруппы, групп C=C–CH₃ и N–H свидетельствуют о *Z*-строении аминокротоната **9** [5].

Масс-спектр соединения **9** характеризуется малоинтенсивным пиком молекулярного иона и иона [M-46]⁺ (100%), что характерно для массспектрального распада индолиламинокротонатов [6]. Дальнейшая фрагментация, как и для соединений **7**, **8**, обусловлена наличием в молекуле 5метоксигруппы.

При нагревании аминоиндола 4 в ацетилацетоне образуется Z-енаминокетон 10, спектр ЯМР ¹Н которого отличается от спектра соединения 9 дополнительным синглетом протонов метильной группы (вместо квадруплета и триплета протонов группы OCH₂CH₃), а также слабопольными сдвигами сигналов винильного протона и протона группы N–H. Основным направлением масс-спектрального распада является элиминирование из молекулярного иона ацетильного радикала с образованием фрагментного иона [M–43]⁺, что характерно для большинства енаминов, образованных ацетилацетоном [7]. Электронные спектры поглощения соединений 9, 10 хорошо согласуются со спектрами ранее описанных неметилированных аналогов [8].

Полученные нами амиды **5–8** и енамины **9**, **10** были исследованы в реакции образования пирролохинолинов. При этом было найдено, что циклический амид **5** в трифторуксусной кислоте или при нагревании выше 100 °C легко превращается в пирролохинолин **11**.

1.							
Соеди-	Брутто-	<u>Найдено,</u> % Вычислено, %			R_f^*	Т. пл., ^о С**	Выход,
нение	формула	С	Н	Ν	,		/0
5***	$C_{15}H_{15}F_3N_2O_2$	<u>57.79</u> 57.69	<u>4.74</u> 4.84	<u>3.12</u> 3.12	0.44		83
6	$C_{16}H_{17}F_3N_2O_2$	<u>58.98</u> 58.89	<u>5.05</u> 5.25	<u>3.26</u> 3.26	0.50	201–203	76
7	$C_{15}H_{15}F_3N_2O_3$	<u>54.79</u> 54.88	<u>4.73</u> 4.61	<u>3.28</u> 3.28	0.44	169–170	42
8	$C_{16}H_{17}F_3N_2O_3$	<u>56.03</u> 56.14	<u>5.16</u> 5.01	<u>3.42</u> 3.42	0.57	152–153	77
9	$C_{18}H_{24}N_2O_3$	<u>68.22</u> 68.33	<u>7.79</u> 7.65	<u>3.16</u> 3.16	0.81	122–123	73
10	$C_{17}H_{22}N_2O_2$	<u>71.17</u> 71.30	<u>7.92</u> 7.74	<u>2.86</u> 2.86	0.47	92–93	81
11	$C_{15}H_{13}F_3N_2O$	<u>61.18</u> 61.22	<u>4.49</u> 4.45	<u>2.94</u> 2.94	0.44	>300	77

Физико-химические характеристики соединений 5-11

* Системы: бензол-этилацетат, 3:1 (соединения 5, 11) и 1:1 (соединения 6-10).

** Кристаллизовали из этанола (соединения 5, 11) и петролейного эфира (соединения 6–10).

*** При нагревании превращается в пирролохинолин.

1

Об этом свидетельствует спектр ЯМР ¹Н, в котором проявляются синглетные сигналы протонов трех метильных групп (2-, 3-, 5-CH₃) и протонов H-1, H-4, H-6, H-8.

Мы также установили, что соединения **6–10** ни термически, ни под действием кислот не образуют соответствующих пирролохинолинов. При этом происходит осмоление и в реакционной смеси обнаруживаются либо исходные соединения, либо продукты их распада.

Итак, аминоиндолы 1–4 довольно гладко вступают в первичную реакцию с трифторацетоуксусным эфиром с образованием соответствующих амидов, с ацетоуксусным эфиром с образованием енаминокротоната, с ацетилацетоном с образованием енаминокетона. Сравнение реакционной способности аминов свидетельствует, что аминоиндолы 1, 2 активнее в этих превращениях, чем их метоксизамещенные аналоги 3, 4, что следует из времени протекания реакций и выходов образующихся продуктов реакции. Полученные экспериментальные данные косвенно подтверждаются результатами квантово-химических расчетов, которые показывают, что заряд на аминном азоте соединений 3, 4 выше (0.078, 0.079), чем 5-метилзамещенных аналогов 1, 2 (0.063, 0.064). Расчетные данные также согласуются с результатами эксперимента относительно отсутствия влияния группы 1-Ме на активность аминов 2, 4 в обсуждаемых реакциях.

В процессе циклообразования дезактивирующее действие метоксигруппы (расчетные заряды на атоме $C_{(7)}$ для соединений **1**, **2** –0.154, -0.157, для соединений **3**, **4** –0.130, -0,138) проявляется настолько, что амид **7** не способен циклизоваться даже в жестких условиях. Метильная группа у пиррольного атома азота дополнительно создает стерические препятствия для замыкания цикла, которые, по-видимому, и определяют невозможность образования циклического амида в случае амина **2**. Таким образом, для получения пирроло[2,3-*f*]хинолиновой системы из всех изученных аминов оказалось возможным использование лишь амино-индола **1**.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Спектры ЯМР ¹Н записывали на приборе Bruker DRX-500 (500 МГц) для соединений **5**, **9–11** в ДМСО-d₆, а для соединений **6–8** – в CDCl₃, внутренний стандарт ТМС. Массспектры получали на масс-спектрометре Finnigan MAT INCOS-50 с прямым вводом образца в ионный источник при энергии ионизации 70 эВ. Электронные спектры поглощения регистрировали на спектрофотометре Specord UV-vis в этаноле. Очистку продуктов реакции проводили методом колоночной хроматографии. В качестве сорбента использовали Al₂O₃ (нейтральная, I и II ст. акт. по Брокману). Контроль за ходом реакциии, чистотой полученных соединений, определение R_f осуществляли с помощью TCX на пластинках Silufol UV-254 в системах бензол–этилацетат, 3:1 (A), 1:1 (Б). Квантовохимический полуэмпирический расчет молекул аминоиндолов **1–4** проводили методом PM3 с использованием пакета программ *Hyper Chem 5.0*.

Спектральные и физико-химические характеристики полученных соединений приведены в табл. 1, 2.

Получение амидов и аминокротонатов (общая методика). Смесь эквимолярных количеств аминоиндола и этилового эфира 4,4,4-трифторацетоуксусной или ацетоуксусной кислоты в 300 мл абсолютного бензола кипятят с насадкой Дина–Старка в присутствии каталитического количества ледяной АсОН. После того, как весь аминоиндол вступил в реакцию (хроматографический контроль), реакционную смесь упаривают до 20 мл. Амид или аминокротонат осаждают добавлением петролейного эфира и отфильтровывают.

9-Гидрокси-2,3,5-триметил-9-трифторметил-6,7,8,9-тетрагидро-1Н-пирроло[2,3-f]хинолин-7-он (5) получают из 1.00 г (5.70 ммоль) аминоиндола **1** и 1.03 г (5.70 ммоль) этилового эфира 4,4,4-трифторацетоуксусной кислоты. Нагревание ведут 20 ч. Очищают перекристаллизацией из спирта. Выход 1.5 г.

N-(1,2,3,5-Тетраметил-1Н-6-индолил)-4,4,4-трифтор-3-оксобутанамид (6) получают аналогично из 0.20 г (1.06 ммоль) аминоиндола 2 и 0.20 г (1.08 ммоль) трифторацетоуксусного эфира, нагревают 18 ч. Очищают перекристаллизацией из петролейного эфира. Выход 0.26 г.

N-(2,3-Диметил-5-метокси-1Н-6-индолил)-4,4,4-трифтор-3-оксобутанамид (7) получают аналогично из 0.65 г (3.42 ммоль) аминоиндола **3** и 0.63 г (3.42 ммоль) этилового эфира 4,4,4-трифторацетоуксусной кислоты, нагревают 30 ч. Очищают перекристаллизацией из петролейного эфира. Выход 0.4 г.

N-(5-Метокси-1,2,3-триметил-1Н-6-индолил)-4,4,4-трифтор-3-оксобутанамид (8) получают аналогично из 0.67 г (3.28 ммоль) аминоиндола 4 и 0.61 г (3.30 ммоль) этилового эфира 4,4,4-трифторацетоуксусной кислоты, нагревают 26 ч. Очищают многократной перекристаллизацией из петролейного эфира. Выход 0.87 г.

Этиловый эфир (*Z*)-3-(6-амино-5-метокси-1,2,3-триметил-1H-индолил)-2-бутеновой кислоты (9) получают аналогично из 1.00 г (4.90 ммоль) аминоиндола **4** и 0.64 г (4.90 ммоль) ацетоуксусного эфира. Нагревание ведут 35 ч. Очищают перекристаллизацией из петролейного эфира. Выход 1.12 г.

(Z)-4-(6-Амино-5-метокси-1,2,3-триметил-1Н-индолил)-3-пентен-2-он (10). Смесь 0.40 г (1.96 ммоль) аминоиндола 4 и 3 мл ацетилацетона кипятят 2 ч 30 мин. По окончании реакции (хроматографический контроль) избыток ацетилацетона отгоняют в вакууме. Выпавший осадок очищают пропусканием через слой (2 см) оксида алюминия в петролейном эфире, перекристаллизовывают из петролейного эфира. Выход 0.34 г.

2,3,5-Триметил-9-трифторметил-6,7-дигидро-1Н-пирроло[2,3-f]хинолин-7-он (11). Смесь 0.10 г (0.58 ммоль) амида **5** и десятикратного избытка трифторуксусной кислоты нагревают 30 мин. Охлажденную смесь выливают в разбавленный (10–12%) водный аммиак со льдом, выпавший осадок отфильтровывают, промывают многократно водой, сушат на воздухе. Очищают перекристаллизацией из спирта. Выход 0.073 г.

- 1. С. А. Ямашкин, Г. А. Романова, М. А. Юровская, *Вестн. МГУ, сер. 2, Химия*, **45**, 12 (2004).
- 2. С. А. Ямашкин, Г. А. Романова, И. С. Романова, М. А. Юровская, ХГС, 1202 (2003).
- П. Б. Терентьев, Р. А. Хмельницкий, О. А. Соловьев, Л. Г. Юдин, А. Н. Кост, Е. Я. Зинченко, XTC, 1070 (1978).
- 4. С. А. Ямашкин, И. В. Трушков, О. Б. Томилин, И. И. Терехин, М. А. Юровская, *XГС*, 1223 (1998).
- 5. С. А. Ямашкин, М. А. Юровская, ХГС, 1336 (1999).
- 6. С. А. Ямашкин, П. Б. Терентьев, в кн. *1-я Всероссийская конференция по химии гетероциклов памяти А. Н. Коста*, Суздаль, 2000, с. 431.
- 7. П. А. Шарбатян, С. А. Ямашкин, А. Н. Кост, Л. Г. Юдин, ХГС, 73 (1977).
- 8. С. А. Ямашкин, Н. Я. Кучеренко, М. А. Юровская, *ХГС*, 941 (1997).

Мордовский государственный университет им. Н. П. Огорева, Саранск 430000, Россия e-mail:biotech@moris.ru Поступило в редакцию 24.05.2004

^аМордовский государственный педагогический институт им. М. Е. Евсевьева, Саранск 430007, Россия e-mail: mgpi@si.moris.ru

⁶Московский государственный университет им. М. В. Ломоносова, Москва 119992, Россия e-mail: yumar@org.chem.msu.ru