Т. В. Кочикян, Э. В. Арутюнян, В. С. Арутюнян, А. А. Аветисян

СИНТЕЗЫ НА ОСНОВЕ 8-ЗАМЕЩЕННЫХ 3-БРОМАЦЕТИЛ-3,8-ДИМЕТИЛ-2,7-ДИОКСАСПИРО-[4,4]НОНАН-1,6-ДИОНОВ

При взаимодействии 8-замещенных 3-бромацетил-3,8-диметил-2,7-диоксаспиро[4,4]нонан-1,6-дионов с тиомочевиной и замещенными тиомочевинами в условиях реакции Ганча получены новые гетероциклы 3-[2'-амино(ариламино)тиазолил-4]-3,8-диметил-2,7диоксаспиро[4,4]нонан-1,6-дионы. При взаимодействии указанных выше бромацетилспиродилактонов с 5-арил-3-меркапто-1,2,4-триазолами с высокими выходами получены 8-замещенные 3-(арил-3,8-диметил-1',2',4'-триазолил-3')тиоацетил-2,7-диоксаспиро[4,4]нонан-1,6-дионы.

Ключевые слова: аминотиазолы, бромацетиллактоны, спиродибутанолиды, триазолы.

В последние годы бурно развивается химия гетероциклов, содержащих бутанолидный фрагмент, что объясняется широким спектром биологического действия соединений этого класса. В частности тиазолил-, бензимидазолил- и триазолилпроизводные 4-бутанолидов проявляют противовоспалительную, противоопухолевую, сердечно-сосудистую активность и мышечно-расслабляющее действие [1]. Особенно интересны гетероциклические соединения, которые содержат спиросочлененный бутанолидный фрагмент и являются структурным звеном различных природных веществ [2–4], поскольку отдельные представители этого класса применяются в медицине при отеках, асцитах, нефротическом синдроме [5, 6]. Из изложенного выше следует, что исследования в области спиросочлененных гетероциклических бутанолидов актуальны.

Ранее [7] нами сообщалось о способе получения 8-замещенных 3-бромацетил-3,8-диметил-2,7-диоксаспиро[4,4]нонан-1,6-дионов 1, 2, содержащих активную бромацетильную группу, что позволяет перейти к различным гетероциклическим соединениям оригинальной структуры. С этой целью нами исследовано взаимодействие соединений 1, 2 с тиомочевиной и арилтиомочевинами в условиях реакции Ганча. Показано, что бромацетилспиролактоны 1, 2 легко реагируют с тиомочевинами с образованием гидробромидов 8-замещенных 3-[2'-амино(или ариламино)тиазолил-4']-3,8-диметил-2,7-диоксаспиро[4,4]нонан-1,6-дионов, обработка которых водным аммиаком приводит к соответствующим свободным основаниям с количественным выходом. Реакцию проводили в среде абсолютного ацетона в течение 30 мин.

1, 4, 6, 8, 10, 11 R = H; 2, 5, 7, 9, 12, 13 R = Me; 3a, 4, 5 R¹ = H; 3b, 6, 7 R¹ = Ph; 3c, 8, 9 R¹ = 2-ClC₆H₄; 3d, 10, 13 R¹ = 2-MeC₆H₄; 3e, 11, 12 R¹ = 4-MeC₆H₄

С целью расширения области применения спиролактонов 1, 2, а также получения гетероциклических соединений нового строения нами изучено взаимодействие исходных бромацетиллактонов 1 и 2 с 5-арил-3-меркапто-1,2,4-триазолами 14a,b, протекающее с образованием продуктов сочетания – 3,8-диметил-8-R-3-(арил-1',2',4'-триазолил-3')тиоацетил-2,7-диоксаспиро[4,4]-нонан-1,6-дионов 15a,b, 16a,b с высокими выходами – 92–98%.

15 a, b R = H; 16 R = Me; 15, 16 a X = Cl, b X = Br

Строение соединений **15**, **16** доказано встречным синтезом, взаимодействием исходных бромацетилспиробутанолидов с натриевыми солями соответствующин триазолов.

Синтезированные соединения охарактеризованы физико-химическими константами и аналитическими данными, а их структура доказана данными ИК и ЯМР ¹Н спектров. Чистота контролировалась методом TCX.

Таблица 1

Со- еди	Брутто-	<u>Найдено, %</u> Вычислено, %					Т. пл.,	R .	Вы-	
не- ние	формула	С	Н	Ν	S	Cl	°C	K_{f}	лод, %*	
4	$C_{12}H_{14}N_2O_4S$	<u>51.16</u> 51.06	<u>5.08</u> 4.96	<u>10.0</u> 0 9.92	<u>11.12</u> 11.34	-	147–148	0.37	92	
5	$C_{13}H_{16}N_2O_4S$	<u>52.60</u> 52.70	<u>4.54</u> 4.44	<u>9.22</u> 9.46	<u>10.63</u> 10.81	-	242–244	0.38		
6	$C_{18}H_{18}N_{2}O_{4}S$	<u>60.30</u> 60.34	$\frac{5.13}{5.03}$	<u>7.64</u> 7.82	<u>8.72</u> 8.94	-	166–168	0.42		
7	$C_{19}H_{20}N_{2}O_{4}S$	<u>61.35</u> 61.29	<u>5.28</u> 5.38	<u>7.28</u> 7.53	<u>8.41</u> 8.60	-	156–158	0.52		
8	$C_{18}H_{17}ClN_2O_4S$	<u>55.20</u> 55.03	<u>4.50</u> 4.33	<u>7.00</u> 7.13	<u>7.96</u> 8.15	<u>8.87</u> 9.04	153–155	0.69	95	
9	$C_{19}H_{19}ClN_2O_4S$	<u>56.19</u> 56.09	<u>4.78</u> 4.67	<u>6.75</u> 6.89	<u>7.68</u> 7.87	<u>8.62</u> 8.73	141–142.5	0.66	96	
10	$C_{19}H_{20}N_2O_4S$	<u>61.39</u> 61.29	<u>5.50</u> 5.38	<u>7.38</u> 7.52	<u>8.42</u> 8.60	-	146–147.5	0.56		
11	$C_{19}H_{20}N_2O_4S$	<u>61.35</u> 61.29	<u>5.45</u> 5.38	<u>7.35</u> 7.52	<u>8.42</u> 8.60	-	209–210	0.46		
12	C ₂₀ H ₂₂ N ₂ O ₄ S	<u>62.30</u> 62.18	<u>5.78</u> 5.70	7.32 7.25	8.00 8.29	-	165–167	0.56		
13	$C_{20}H_{22}N_2O_4S$	<u>62.28</u> 62.18	<u>5.82</u> 5.70	7.25	<u>8.06</u> 8.29	-	163-164.5	0.51	02	
15a	$C_{19}H_{18}CIN_3O_5S$	<u>52.51</u> 52.35	<u>4.27</u> 4.13	<u>9.80</u> 9.80	<u>7.15</u> 7.15	<u>8.25</u> 8.25	213-215	0.55	92	
15b	$C_{19}H_{18}BrN_3O_5S$	<u>47.38</u> 47.50	3.63 3.75	<u>8.85</u> 8.85	<u>6.80</u> 6.80	-	201-203	0.51	98	
16a	C ₂₀ H ₂₀ CIN ₃ O ₅ S	<u>53.50</u> 53.39	<u>4.65</u> 4.50	<u>9.05</u> 9.05	<u>7.00</u> 7.00	<u>7.68</u> 7.68	214-215.5	0.54	93	
16b	$\mathrm{C_{20}H_{20}BrN_{3}O_{5}S}$	<u>48.71</u> 48.58	$\frac{4.05}{4.05}$	<u>8.65</u> 8.65	<u>6.35</u> 6.35	_	207–209	0.50	96	

Свойства соединений 4–13, 15а,b, 16а,b

* Выход соединений 5–7 и 10–13 количественный.

Таблица 2

Соеди- нение	Химические сдвиги, б, м. д. (Ј, Гц)										
	8-CH ₃	3-CH ₃ , c	Ar–CH ₃ , c	СН _{тиаз.} , с	4- и 9-CH ₂	NH	H-8	H _{Ar}	S-CH ₂		
4	1.60 (д, <i>J</i> = 6.3)	1.86	-	6.68	2.60 д и 3.18 д (<i>J</i> = 14.3); 2.67 (д. д, <i>J</i> = 13.6, <i>J</i> = 7.7); 2.75 (д, <i>J</i> = 13.5)	11.36 c	4.88 м	_	_		
5	1.49 (с) и 1.62 (с)	1.75	-	6.55	2.24 д и 2.85 д (<i>J</i> = 13.3); 2.41 д и 3.33 д (<i>J</i> = 13.5)	4.97 c	_	-	_		
6	1.56 (д, <i>J</i> = 6.3)	1.81	-	6.65	2.43 д и 3.29 д (<i>J</i> = 13.5); 2.62 (д. д, <i>J</i> = 13.1, <i>J</i> = 7.9); 2.53 (д. д, <i>J</i> = 13.1, <i>J</i> = 6.6)	7.15 ш	4.69 (д. кв, J = 8.0, J = 6.3)	7.08 м и 7.25 м	-		
7	1.50 (с) и 1.63 (с)	1.80	-	6.65	2.27 ди 2.87 д (<i>J</i> = 13.3); 2.45 ди 3.40 д (<i>J</i> = 13.5)	7.65 ш	_	7.09 м и 7.36 м	-		
8	1.50 (д, <i>J</i> = 6.3)	1.78	_	6.71	2.40 (д, <i>J</i> = 13.3); 2.70 (д. д, <i>J</i> = 13.1, <i>J</i> = 6.7); 2.57, 3.16 д, (<i>J</i> = 13.5)	9.38 c	4.72 м	6.95 (T. π , $J = 7.7$, $J = 1.5$); 7.25 (T. π , J = 7.9, $J = 1.5$); 7.34 (π . π , $J = 7.9$, $J = 1.5$); 8.36 (π . π , J = 8.2, $J = 1.5$)	_		

Спектры ЯМР ¹Н соединений 4–13 и 15, 16

9	1.49 (с) и 1.58 (с)	1.77	_	6.71	2.44 ди 3.29 д (<i>J</i> = 13.5); 2.56 ди 2.76 д (<i>J</i> = 13.4)	9.38 c	_	6.95 (T. μ , $J = 7.6$, $J = 1.7$); 7.25 (μ , μ , μ , J = 8.6, $J = 7.2$, $J = 1.6$); 7.34 (μ , μ , J = 7.8, $J = 1.6$); 8.36 (μ , μ , $J = 8.3$, J = 1.6)	-
10	1.60 (д, <i>J</i> = 6.4)	1.79	2.35 c	6.58	2.23 д и 2.81 д (<i>J</i> = 13.3); 2.39 д и 3.15 д (<i>J</i> = 13.5)	7.57 c	4.68 (д. кв, J = 7.9, J = 6.3)	7.13-7.28 м	_
11	1.56 (д, <i>J</i> = 6.2)	1.80	2.34 c	6.61	2.42 д и 3.28 д. (<i>J</i> = 13.6); 2.61 (д. д, <i>J</i> = 13.1, <i>J</i> = 7.7); 2.53 (д. д, <i>J</i> = 13.1, <i>J</i> = 6.7)	7.07 ш	4.68 (д. кв, J = 7.9, J = 6.3)	7.16 ди 7.23 д (J = 8.7)	-
12	1.49 (с) и 1.63 (с)	1.79	2.34 c	6.60	2.27 д и 2.87 д (<i>J</i> = 13.3); 2.44 д и 3.39 д (<i>J</i> = 13.5)	7.11 ш	-	7.16 ди 7.23 д (J = 8.5)	-
13	1.50 и 1.63 (с)	1.79	2.33 c	6.61	2.26 д и 2.87 д (<i>J</i> = 13.4); 2.44 д и 3.39 д (<i>J</i> = 13.5)	6.92 ш	_	7.09 (т, <i>J</i> = 7.3); 7.25 (т, <i>J</i> = 7.6); 7.62 (д, <i>J</i> = 8.2)	_
15a	1.56 (д, <i>J</i> = 6.3)	1.81	_	_	2.48 д и 3.29 д (<i>J</i> = 13.5); 2.53 д и 2.62 д (<i>J</i> = 13.1)	13.95 c	4.69 (д. кв, J = 8.0, J = 6.3)	7.27–7.55 (3Н, м); 7.85 (1Н, м)	4.35 ди 4.65 д (J = 18.0)
15b	1.51 (д, <i>J</i> = 6.3)	1.83	_	_	2.44 ди 3.31 д (<i>J</i> = 13.5); 2.56 ди 2.63 д (<i>J</i> = 13.1)	14.01 c	4.70 (д. кв, J = 8.0, J = 6.3)	7.29–7.59 (3Н, м); 7.86 (1Н, м)	4.37 ди 4.68 д (J = 18.0)
16a	1.47 (c), 1.56 (c)	1.63	_	_	2.27 ди 3.23 д (<i>J</i> = 13.8); 2.45 ди 2.68 д (<i>J</i> = 13.5)	14.03 c	_	7.30–7.53 (3Н, м); 7.83 (1Н, м)	4.38 ди 4.70 д (J = 18.0)
16b	1.49 (c), 1.59 (c)	1.65	-	-	2.25 ди 3.20 д (<i>J</i> = 13.8); 2.31 ди 2.55 д (<i>J</i> = 13.5)	14.13 c	_	7.33–7.57 (3Н, м); 7.85 (1Н, м)	4.28 д и 4.60 д (J = 18.0)

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

ИК спектры суспензий соединений **4–16** в вазелиновом масле получали на приборе Nicolet FTIR NEXUS или UR-20. Спектры ЯМР ¹Н получали на спектрометре Varian Model Mercury-300 (300 МГц) в CDCl₃, внутренний стандарт ТМС. Для ТСХ применяли пластины Silufol UV-254, элюент спирт–бензол, 1:1. Проявление парами иода. Температуры плавления определяли на микронагревательном столике марки Boetius.

Исходные бромацетилпроизводные 1 и 2 синтезированы по [7], а замещенные тиомочевины **3b-e** – по [8].

Гидробромид 3,8-диметил-3-(2'-*n*-толиламинотиазолил-4')-2,7-диоксаспиро[4,4]нонан-1,6-диона (11'HBr). Смесь 3.2 г (0.01 моль) 3-бромацетилпроизводного 1 и 1.7 г (0.01 моль) *n*-толилтиомочевины (3e) в 15 мл абсолютного ацетона перемешивают 15 мин при комнатной температуре и 30 мин при слабом кипении растворителя, после чего отгоняют ацетон. К охлажденному остатку добавляют 50 мл абсолютного диэтилового эфира, осадок отфильтровывают, промывают на фильтре эфиром и сушат. Выход 4.4 г (97%). Т. пл. 164–166 °С. ИК спектр, v, см⁻¹: 1760, 1770 (С=О лактон); 1190, 1230 (С–О–С); 1610 (С=С ар.); 1720 (С=О кетон); 1580 (С=N); 3050 (=CH); 2700 (=N⁺); 3200–3400 (NH₂). Найдено, %: С 50.50; Н 4.45; Br 17.42; N 6.05; S 7.00. $C_{19}H_{21}BrN_2O_4S$. Вычислено, %: С 50.33; H 4.64; Br 17.66 N 6.18; S 7.06.

3,8-Диметил-3-(2'-*п*-толиламинотиазолил-4')-2,7-диоксаспиро[4,4]нонан-1,6-дион (11). А. Опыт проведен аналогично предыдущему и в тех же количествах, с той лишь разницей, что после отгонки ацетона остаток охлаждают, добавляют воду и подщелачивают водным аммиаком до рН 9–10. Выпавшие кристаллы основания **11** отфильтровывают, промывают водой и сушат. Выход 3.5 г (95%). Т. пл. 209–210 °C. R_f 0.46. Найдено, %: С 61.40; Н 5.45; N 7.65; S 8.75. $C_{19}H_{20}N_2O_4S$. Вычислено, %: С 61.29; H 5.38; N 7.53; S 8.60.

Б. При перемешивании подщелачивают 2.7 г (0.006 моль) полученного выше гидробромида **11**•НВг в 50 мл воды водным аммиаком до рН 9–10. Оставляют на 2 ч, выпавшие кристаллы отфильтровывают, промывают водой до нейтральной реакции и сушат. Выход количественный, т. пл. 209–210 °С. *R*_f 0.46.

Полученные по обоим способам соединения идентичны и не дают депрессии температур плавлений.

Аналогично способу А получены остальные соединения 4–10, 12, 13, данные которых приведены в табл. 1 и 2.

ИК спектры соединений **4–13**, v, см⁻¹: 1760, 1770 (С=О лактон); 1190, 1230 (С–О–С); 1610 (С=С ар.); 1580 (С=N); 3050 (=СН); 3200–3400 (NH₂). Данные спектров ЯМР ¹Н соединений **4–13** приведены в табл. 2.

8-R-3,8-Диметил-3-(арил-1',2',4'-триазолил-3')тиоацетил-2,7-диоксаспиро[4,4]нонан-1,6-дионы (15а,b, 16а,b). А. Смесь 0.1 моль соединений 1 или 2 и 0.1моль 3меркапто-5-арил-1,2,4-триазола 14 в 15 мл абсолютного ацетона перемешивают 15 мин без нагре-вания и 30 мин на водяной бане при слабом кипении смеси, отгоняют ацетон, к охлажден-ному остатку добавляют воду и подщелачивают водным аммиаком до рН 9–10. Образовав-шиеся кристаллы отфильтровывают, промывают водой, сушат и перекристаллизовывают из водного спирта (табл. 1).

Б. К алкоголяту натрия, полученного из 0.23 г (0.01 моль) металлического Na и 20 мл абс. ЕtOH при перемешивании добавляют 0.01 моль соответствующего соединения 14 и через 30 мин 0.01 моль 3-бромацетилзамещенного 1 или 2. Перемешивание продолжают 30 мин при кипении этанола, отгоняют растворитель, охлаждают и добавляют воду. Отфильтровывают, промывают водой до нейтральной реакции, сушат и перекристаллизовывают.

Полученные по способам А и Б соединения идентичны и не дают депрессии температур плавлений.

ИК спектр, v, см⁻¹: 1760, 1770 (С=О лактон); 1190, 1230 (С-О-С); 1610 (С=С, ар.); 1580 (С=N); 1720 (С=О кетон); 3050 (=СН ар.); 3200–3400 (NH). Данные спектров ЯМР ¹Н соединений **15**, **16** приведены в табл. 2.

- 1. В. С. Арутюнян, Дис. докт. хим. наук, Ереван, 1985.
- 2. H. Avchibasi, H. Anil, M. Toprak, Phytochemistry, 26, 2852 (1987).
- 3. H. Itakava, H. Morita, K. Osawa, K. Watanabo, Y. Itaka, Chem. Pharm. Bull., 35, 2849 (1987).
- 4. M. Yamazaki, E. Okuyama, Y. Macbagashi, Chem. Pharm. Bull., 36, 1611 (1988).
- 5. И. М. Гелла, Л. Ю. Сернинко, А. Н. Черевко, *Хим.-фарм. журн.*, **24**, № 12, 29 (1990).
- 6. H. Ferai, M. Craire, A. Rondot, A. Aumelas, G. Auzou, J. Chem. Soc., Perkin. Trans, Pt. 1, 3045 (1990); *P*XXum., 14E97 (1991).
- 7. Т. В. Кочикян, Э. В. Арутюнян, В. С. Арутюнян, А. А. Аветисян, *Хим. журн. Армении* **56**, № 4, 51 (2003).
- 8. В. С. Арутюнян, Т. В. Кочикян, Т. В. Глотова, М. Г. Залинян, Н. М. Морлян, Межвуз. сб. *Химия и хим. технология*, Ереван, № 2, 138 (1983).

Ереванский государственный университет, химический факультет, Ереван 375025, Республика Армения e-mail: edgarhar2002@mail.ru e-mail: edgarhar@web.am Поступило в редакцию 21.07.2003