В. Д. Дяченко, А. Н. Чернега^а

НЕОЖИДАННОЕ ОБРАЗОВАНИЕ 4-АРИЛ-6-ФЕНИЛ-3-ЦИАНОПИРИДИН-2(1Н)-ТИОНОВ ПРИ ВЗАИМОДЕЙСТВИИ АРИЛМЕТИЛЕНЦИАНОТИОАЦЕТАМИДОВ С БЕНЗОИЛ-1,1,1-ТРИФТОРАЦЕТОНОМ

Конденсацией арилметиленцианотиоацетамидов с бензоил-1,1,1-трифторацетоном синтезированы 4-арил-6-фенил-3-цианопиридин-2(1Н)-тионы, использованные в синтезе замещенных 2-алкилтиопиридинов, тиено[2,3-*b*]пиридинов и 1,4-ди(пиридин-2-илтио)-бутана. Путь реакции включает образование аддуктов Михаэля, претерпевающих ацильное расщепление. Строение 2-метилтио-4-(1-нафтил)-6-фенил-3-цианопиридина изучено мето-дом РСА.

Ключевые слова: аддукты Михаэля, 2-алкилтиопиридины, арилметиленцианотиоацетамиды, 4-арил-6-фенил-3-цианопиридин-2(1Н)-тионы, бензоил-1,1,1-трифторацетон, 1,4-ди(пиридин-2-илтио)бутан, тиено[2,3-*b*]пиридины, алкилирование, ацильное расщепление, РСА.

Бензоил-1,1,1-трифторацетон ранее успешно применялся для синтеза замещенных 6-трифторметилпиридинхалькогенонов по Михаэлю как в качестве донора [1, 2], так и в качестве акцептора – в виде этоксиметиленпроизводного [3]. При этом в качестве растворителя использовался абсолютный этанол, а в качестве катализатора – вторичные и третичные амины. Настоящим исследованием показано, что при проведении реакции Михаэля – взаимодействии бензоил-1,1,1-трифторацетона 1 с арилметиленцианотиоацетамидами 2 в этаноле в присутствии двукратного избытка N-метилморфолина – образуются 4-арил-6-фенил-3цианопиридин-2(1H)-тионы 3 – потенциально биологически активные соединения (метод А). В частности, 4-(1-нафтил)замещенные пиридин-2(1H)-халькогеноны проявляют противоастматическую активность [4].

Путь реакции включает, по-видимому, образование аддуктов Михаэля 4. Последние в результате присоединения воды или этанола претерпевают ацильное расщепление [5], в ходе которого возможно образование продуктов 5 и гетероциклизация их в замещенные пиридин-2(1H)-тионы 3. Отметим, что фторсодержащие β-дикетоны склонны к ацильному расщеплению [6]. Так, 2-теноилтрифторацетон при взаимодействии с арилметиленмалононитрилом в этаноле в присутствии морфолина образует 2-арил-3-(2-теноил)-1,1-дицианопропаны и трифторуксусную кислоту [7]. В то же время ацильное расщепление бензоил-1,1,1-трифторацетона в условиях реакции Михаэля неизвестно.

 $\begin{array}{l} R = H \ \text{или Et. 2,3,6 a } Ar = \text{нафт-1-ил, b } Ar = 4-FC_6H_4, c \ Ar = 4-ClC_6H_4, d \ Ar = 4-MeOC_6H_4; \\ \textbf{8 a } Hal = Cl, \textbf{b-l } Hal = Cl, \textbf{m-r } Hal = Br; \textbf{a } Z = H, \textbf{b } Z = COOCH_2Ph, c \ Z = COOEt, \\ \textbf{d } Z = COOPr, \textbf{e } Z = Ph, \textbf{f } Z = COOMe, \textbf{g } Z = COO(CH_2)_8Me, \textbf{h } Z = \text{тиазол-2-илкарбамоил,} \\ \textbf{i } Z = COO(CH_2)_7Me, \textbf{j } Z = CONH_2, \textbf{k } Z = 4-BrC_6H_4NHCO, \textbf{l } Z = CN, \textbf{m } Z = \text{нафт-2-илкарбанил,} \\ \textbf{n } Z = 4-EtOC_6H_4CO, \textbf{o } Z = 2-MeC_6H_4, \textbf{p } Z = 4-BrC_6H_4CO, \textbf{g } Z = CH=CH_2, \\ \textbf{r } Z = \kappaymapuH-3-илкарбонил; \textbf{10, 11 } \textbf{a } Ar = 4-ClC_6H_4, Z = COOEt, \textbf{b } Ar = 4-MeOC_6H_4, \\ Z = COOCH_2Ph, \textbf{c } Ar = 4-MeOC_6H_4, Z = COOMe; \textbf{10 } \textbf{d-g } Ar = \text{нафт-1-ил, } \textbf{h-j } Ar = 4-ClC_6H_4, \\ \textbf{k-w } Ar = 4-MeOC_6H_4; \textbf{d, } \textbf{k } Z = H, \textbf{e, h } Z = COOCH_2Ph, \textbf{f } Z = \text{нафт-2-илкарбонил,} \\ \textbf{g } Z = 4-EtOC_6H_4CO, \textbf{i } Z = COOPr, \textbf{j, n } Z = Ph, \textbf{l } Z = 2-MeC_6H_4, \textbf{m } Z = CONH_2, \\ \textbf{o } Z = 4-BrC_6H_4NHCO, \textbf{p } Z = 4-BrC_6H_4CO, \textbf{q } Z = CN, \textbf{r } Z = COH_2, \\ \textbf{s } Z = \kappaymapuH-3-илкарбонил, \textbf{t } Z = COOEt, \textbf{u } Z = COO(CH_2)_8Me, \\ \textbf{v } Z = \text{тиазол-2-илкарбамоил, } \textbf{w } Z = COO(CH_2)_7Me \end{aligned}$

Строение соединений **3а–d** доказано физико-химическими и спектральными методами (табл. 1, 2), встречным синтезом при взаимодействии δ -кетодинитрилов **6** с элементной серой (метод Б) [8], а также химическими превращениями. В частности, пиридинтионы **3** при взаимодействии с алкилгалогенидами **7** и **8** в основной среде легко образуют соответствующие органические сульфиды **9** и **10**. Производные **10а–с** под действием раствора КОН внутримолекулярно циклизуются по Торпу–Циглеру в замещенные тиено[2,3-*b*]пиридины **11**, что подтверждает наличие вицинальной цианогруппы [9]. Эти соединения представляются перспективными полупродуктами для создания лекарственных средств [10, 11].

Алкилирование пиридинтиона **3d** 1,4-дихлорбутаном при соотношении реагентов 2:1 приводит к образованию 1,4-ди(пиридин-2-илтио)бутана **12**.

Для однозначного установления строения продуктов взаимодействия бензоил-1,1,1-трифторацетона с арилметиленцианотиоацетамидами в условиях реакции Михаэля и региоселективности их алкилирования соединение **10d** (рисунок) было изучено с помощью PCA. С цент- ральным пиридиновым циклом $N_{(1)}C_{(1-5)}$ бензольное кольцо $C_{(7-12)}$ и группировка $C_{(13-22)}$ образуют двугранные углы 25.5 и 60.0° соответ- ственно. Заместитель S-Ме расположен практически в плоскости пиридинового цикла – торсионный угол $N_{(1)}-C_{(5)}-S_{(1)}-C_{(6)}$ составляет лишь 11.6°.

Общий вид молекулы **10d** с нумерацией атомов (атомы H не показаны). Основные длины связей и валентные углы: S₍₁₎–C₍₅₎ 1.754(5), S₍₁₎–C₍₆₎ 1.781(6), N₍₁₎–C₍₁₎ 1.349(6), N₍₁₎–C₍₅₎ 1.331(5) Å; C₍₅₎–S₍₁₎–C₍₆₎ 101.3(3), C₍₁₎–N₍₁₎–C₍₅₎ 118.4(4) град. Остальные длины связей и валентные углы сравнимы со стандартным значением [12].

						<i>.</i>
Сое- ди-	Брутто-формула	<u>Найдено, %</u> Вычислено, %			Т. пл., °С*	Выход, %
нение		С	Н	Ν		
9	C27H21N2O2S	71 70	4 58	9.20	303-305	84
,	02/112/143020	$\frac{71.70}{71.82}$	4.69	9.31	(ДМФА)	01
10a	C22H17CIN2O2S	64.50	3.95	6.74	191–193	71
	22 17 2 2	64.62	4.19	6.85	(BuOH)	
10b	$C_{28}H_{22}N_2O_3S$	71.86	4.60	6.14	132–134	69
		72.08	4.75	6.00	(EtOH)	
10c	$C_{28}H_{18}N_2O_3S$	67.73	4.51	7.02	148-151	78
		67.68	4.65	7.17	(MeOH)	
10d	$C_{23}H_{16}N_2S$	78.21	4.40	8.11	150-152	77
		78.38	4.58	7.95	(AcOH)	
10e	$C_{31}H_{22}N_2O_2S$	<u>76.39</u>	<u>4.42</u>	<u>5.68</u>	176–177	87
		76.52	4.56	5.76	(AcOH)	
10f	$C_{34}H_{22}N_2OS$	<u>80.79</u>	4.21	<u>5.42</u>	114–116	84
	G 11 11 0 G	80.61	4.38	5.53	(AcOH)	-
10g	$C_{32}H_{24}N_2O_2S$	76.63	$\frac{4.70}{4.22}$	5.52	165-166	/8
101	a u an a	76.78	4.83	5.60	(AcOH)	65
IUh	$C_{27}H_{19}CIN_2O_2S$	<u>68.91</u>	<u>3.84</u>	<u>6.14</u>	195-198	65
10:	C II CIN O S	68.86	4.07	5.95	(EtOH)	70
101	$C_{23}H_{19}CIN_2O_2S$	<u>65.19</u>	$\frac{4.01}{4.52}$	<u>6.50</u>	1/3-1/8 (; PrO II)	/0
10:	C H CIN S	72 50	4.33	6.02	(<i>l</i> -PIOH)	62
10j	C251117C11425	72.30	4.02	6.78	(AcOH)	05
101/2	CaeHy NaOS	72.72	4.15	8 55	144-146	66
IUK	02011610200	$\frac{72.11}{72.26}$	4.76	8.43	(BuOH)	00
101	C27H22N2OS	76.60	5 32	6 54	163–165	71
101	02/112211200	76.75	5.25	6.63	(BuOH)	, 1
10m	C21H17N2O2S	66.95	4.62	11.02	251-253	78
	-211/32	67.18	4.56	11.19	(BuOH)	, .
10n	$C_{26}H_{20}N_2OS$	76.32	5.11	6.70	169-172	69
		76.44	4.93	6.86	(AcOH)	
100	$C_{27}H_{20}BrN_3O_2S$	60.96	3.75	8.07	227-228	70
		61.14	3.80	7.92	(BuOH)	
10p	$C_{27}H_{19}BrN_2O_2S$	<u>63.02</u>	<u>3.60</u>	5.29	229-231	82
		62.92	3.72	5.44	(BuOH)	
10q	$C_{21}H_{15}N_3OS$	<u>70.42</u>	<u>4.11</u>	<u>11.85</u>	161–163	85
	a w w ac	70.57	4.23	11.76	(BuOH)	
10r	$C_{22}H_{18}N_2OS$	73.58	<u>4.92</u>	<u>7.90</u>	110–111 (D. OU)	67
10	C II N O S	73.72	5.06	7.81	(BuOH)	70
105	$C_{30}H_{20}N_2O_4S$	$\frac{71.20}{71.41}$	$\frac{4.12}{2.00}$	<u>5.38</u>	255-237 (IIM (A)	/3
104	C.H.N.O.S	/1.41 68 17	5.99 1 00	5.55	(<u>μ</u> ΜΨΑ) 101 102	00
101	C2311201N2O35	68 30	4.00	6.03	(BuOH)	80
101	CasHatNaOaS	71 50	674	5 40	122-124	64
100	C3011341 12O30	71.68	6.82	5.57	(EtOH)	04
10v	C24H18N4O2S2	62 71	4.12	12.05	239-241	77
	-2410- 14 - 26 2	62.86	3.96	12.22	(AcOH)	
10w	C29H32N2O3S	71.12	6.72	5.59	133–134	68
	2, 32 2-3-	71.28	6.60	5.73	(i-PrOH)	
11a	C22H17CIN2O2S	64.40	3.95	7.02	274-276	69
		64.62	4.19	6.85	(BuOH)	
11b	$C_{28}H_{22}N_2O_3S$	71.85	4.60	5.84	248-250	75
		72.08	4.75	6.00	(AcOH)	
11c	$C_{22}H_{18}N_2O_3S$	<u>67.74</u>	4.42	7.02	215-217	66
		67.68	4.65	7.17	(AcOH)	
12	$C_{42}H_{34}N_4O_2S_2 \\$	73.18	<u>5.15</u>	7.90	118-124	67
		73.02	4.96	8.11	(BuOH)	

Характеристики синтезированных соединений 9, 10а-w, 11а-с, 12

* В скобках указан растворитель для кристаллизации.

Таблица 2

_	ИК	Спектр ЯМР ¹ Н, б, м. д. (<i>J</i> , Гц)			
Co-	спектр,	C ₍₅₎ H, c,			
еди-	ν, cm ⁻¹	SCH ₂ , c,			
не-	(C≡N,	или	другие сигналы		
ние	C=O)	NH ₂ , уш. с			
1	2	3	4		
9	2218,	7.86,	3.86 (3H, с, CH ₃ O), 7.07 и 8.32 (по 2H, оба д, <i>J</i> = 8.0, C ₆ H ₄), 7.37–		
	1664	5.84	7.72 [11H, м, (C ₆ H ₅) ₂ и NH ₂], 8.06 (1H, уш. с, NH ₂)		
10a	2224,	7.95,	1.18 (3H, т, <i>J</i> = 6.7, CH ₂ CH ₃), 4.10 (2H, к, <u>CH</u> ₂ CH ₃), 7.58 (3H, м,		
	1714	4.27	C_6H_5), 7.65 и 7.81 (по 2H, оба д, $J = 8.7$, C_6H_4), 8.22 (2H, м, C_6H_5)		
106	2221	7.80	2 82 (211 a CH O) 5 15 (211 a OCH) 7 15 y 7 75 (ya 211 afa y L		
100	1705	7.69, A 37	$= 8.1 \text{ CH}_{2}$, $7.29 (5H \text{ c} \text{ CH}_{2})$, $7.49 (3H \text{ m} \text{ CH}_{2})$, $8.21 (2H \text{ m})$		
	1705	H .37	$C_{4}H_{5}$		
10.5	2214	7.00	$267(2H_{0}, COOCH)$ 286(2H_{0}, OCH) 715 H 777(H0 2H_{0}50)		
100	1709	4 27	π $I = 7.8$ C(H ₂) 7.53 (3H M C(H ₂) 8.21 (2H M C(H ₂))		
	1707	7.27	$A, V = V.0, C_{0}(14), V.00 (011, M, C_{0}(15), 0.21 (211, M, C_{0}(15)))$		
10d	2224	7.99,	7.35–7.78 (8Н, м, Наром), 8.10 (2Н, м, Наром), 8.33 (2Н, м, Наром)		
		3.35	() drawy) () , drawy) () , drawy		
10e	2225	7.82	5.16 (2H. c. OCH ₂), 7.25–7.69 (13H. M. Harray), 8.05 (4H. M. Harray)		
	1716	4.32			
10f	2234	_*	$6.99(2H + J = 7.9 H_{\odot})$ 7.21(1H + H_{\odot}) 7.51-8.14(16H +		
101	1700	5.13	H_{apow} *, 8.88 (1H, с, С ₍₁)Н нафтил)		
10σ	2210	7.76	$1.46(3H \pm I = 6.7 \text{ CH}) 4.17(2H \pm \text{CH}) 7.04 \pm 7.87(10.2H \text{ of})$		
IUg	1675	4 95	$\pi J = 81$ C.H.) 7.22 (2H M H) 7.35 (1H M H) 7.59 (5H		
	1075	1.95	M , H_{apow}), 8.09 (4H, M, H_{apow})		
106	2225	7.95	5 1/ (2H с CH) 7/8-760 (8H м H) 7.6/ и 7.80 (по 2H оба		
101	1698	4 27	$\pi J = 8.10 \text{ C}_{s}\text{H}_{a}$ 8.24 (2H M H _{apon}), 7.04 W 7.00 (10.211, 000		
	1070	,	μ, σ στο, σστο, στο, τ.		
10i	2217,	7.98,	0.81 (3H, т, J = 8.4, CH ₃), 1.55 (2H, м, CH ₂), 4.08 (2H, т, J = 7.9,		
	1695	4.25	ОСН ₂), 7.54 (3H, м, C ₆ H ₅), 7.67 и 7.79 (по 2H, оба д, J = 8.5,		
			С ₆ H ₄), 8.24 (2Н, м, С ₆ H ₅)		
10j	2220	7.93,	7.30–7.54 (8Н, м, Н _{аром}), 7.65 и 7.80 (по 2Н, оба д, <i>J</i> = 8.5, С ₆ Н ₄),		
		4.72	8.28 (2H, м, H _{аром})		
10k	2218	7.78,	3.84 (3H, с, ОСН ₃), 7.70 и 8.25 (по 2H, оба д, <i>J</i> = 8.4, С ₆ Н ₄), 7.60		
		2.73	(5Н, м, С ₆ Н ₅)		
10l	2215	7.81,	2.42 (3H, c, CH ₃), 3.85 (3H, м, OCH ₃), 7.08 и 8.27 (по 2H, оба д,		
		4.72	$J = 8.5, C_6H_4), 7.20$ (2H, м, H_{apom}), 7.38–7.74 (7H, м, H_{apom})		
10	2224	7.00	2.95 (211 - OCU.) 7.05 - 9.20 (211 -5 1- 9.5 C.U.) 7.25		
IUm	2224, 1670	/.88,	5.85 (5H, C, OCH ₃), 7.05 II 8.29 (110 2H, 00a II , $J = 8.5$, C ₆ H ₄), 7.25 (1H vm c NH) 7.52, 7.79 (6H v C H u NH)		
	1070	4.00	(111, ym, c, 1112), 7.52 - 7.77 (011, M, C6115 H 1112)		
10n	2221	7.85,	3.31 (3H, с, ОСН ₃), 7.11 и 7.71 (по 2H, оба д, <i>J</i> = 8.5, С ₆ H ₄), 7.29		
		4.70	(2Н, м, Н _{аром}), 7.56 (6Н, м, Н _{аром}), 8.25 (2Н, м, Н _{аром})		
100	2218,	7.82,	3.78 (3H, с, OCH ₃), 6.81 и 8.19 (по 2H, оба д, <i>J</i> = 8.0, C ₆ H ₄), 7.46–		
	1674	4.31	/./0 (9H, м, Н _{аром}), 10.61 (1H, уш. с, NH)		
10p	2227,	7.90,	3.81 (3H, с, ОСН ₃), 6.75 и 8.05 (по 2H, оба д, <i>J</i> = 8.5, С ₆ Н ₄), 7.52-		
•	1705	5.00	7.80 (9Н, м, Н _{аром})		
10q	2252,	7.93,	3.84 (3H, с, OCH ₃), 7.08 и 8.34 (по 2H, оба д, <i>J</i> = 8.5, C ₆ H ₄), 7.50–		
	2217	4.50	/./8 (ЭН, м, С ₆ Н ₅)		
	I	I			

Спектральные характеристики соединений 9, 10а–w, 11а–с, 12

Окончание таблицы 2

1825

1	2	3	4
10r	2218	7.82, 4.08 (д, <i>J</i> = 6.9),	3.83 (3H, с, ОСН ₃), 5.16 (1H, д, <i>J</i> _{µµc} = 9.1, =CH ₂), 5.37 (1H, д, <i>J</i> _{пранс} = 16.9, =CH ₂), 6.05 (1H, м, CH=), 7.04 и 8.25 (по 2H, оба д, <i>J</i> = 8.0, C ₆ H ₄), 7.61 (5H, м, C ₆ H ₅)
10s	2220, 1698	7.95, 4.98	3.69 (3H, с, OCH ₃), 6.77 и 8.04 (по 2H, оба д, $J = 8.0$, C ₆ H ₄), 7.32-7.78 (9H, м, H _{аром}), 8.61 (1H, с, H ₍₃₎ кумаринил)
10t	2214, 1717	7.84, 4.24	1.19 (3H, c, <i>J</i> = 6.9, CH ₂ <u>CH</u> ₃), 3.85 (3H, c, OCH ₃), 4.13 (2H, к, OCH ₂), 7.07 и 8.20 (по 2H, оба д, <i>J</i> = 8.2, C ₆ H ₄), 6.61 (5H, м, C ₆ H ₅)
10u	2206, 1690	7.75, 4.14	0.82 (3H, т, <i>J</i> = 4.02, CH ₃), 1.19 [12H, м, (CH ₂) ₆], 1.55 (2H, м, CH ₂), 3.88 (3H, с, OCH ₃), 4.06 (2H, т, <i>J</i> = 6.66, OCH ₂), 7.08 и 7.69 (по 2H, оба д, <i>J</i> = 8.7, C ₆ H ₄), 7.50 (3H, м,C ₆ H ₅), 8.13 (2H, м, C ₆ H ₅)
10v	2216, 1660	7.70, 4.33	3.89 (3H, с, OCH ₃), 7.02 и 7.39 (по 1H, оба д, <i>J</i> = 3.54, H ₍₅₎ и H ₍₄₎ тиазолил), 7.10 и 7.69 (по 2H, оба д, <i>J</i> = 8.0, C ₆ H ₄), 7.32 (3H, м, C ₆ H ₅), 8.05 (2H, д, <i>J</i> = 7.04, C ₆ H ₅), 12.51 (1H, уш. с, NH)
10w	2220, 1704	7.75, 4.12	0.83 (3H, т, <i>J</i> = 4.02, CH ₃), 1.20 [10H, м, (CH ₂) ₅], 1.56 (2H, м, CH ₂), 3.89 (3H, с, OCH ₃), 4.05 (2H, т, <i>J</i> = 4.98, OCH ₂), 7.08 и 7.65 (по 2H, оба д, <i>J</i> = 6.76, C ₆ H ₄), 7.46 (3H, м, C ₆ H ₅), 8.14 (2H, м, C ₆ H ₅)
11a	1713	7.80, 5.86	1.30 (3H, т, <i>J</i> = 6.7, CH ₂ CH ₃), 4.27 (2H, к, <u>CH</u> ₂ CH ₃), 7.53 (3H, м, C ₆ H ₅), 7.66 (4H, с, C ₆ H ₄), 8.21 (2H, м, C ₆ H ₅)
11b	1705	7.72, 5.84	3.82 (3H, c, OCH ₃), 5.31 (2H, c, CH ₂), 7.04 и 8.18 (по 2H, оба д, J = 8.1, C ₆ H ₄), 7.40 (5H, c, C ₆ H ₅), 7.59 (5H, c, C ₆ H ₅)
11c	1714	7.74, 5.79	3.78 (3H, с, СООСН ₃), 3.83 (3H, с, ОСН ₃), 7.04 и 8.18 (по 2H, оба д, <i>J</i> = 8.0, C ₆ H ₄), 7.60 (5H, с, C ₆ H ₅)
12	2219	7.70, 3.45 (м)	2.00 [4H, м, (CH ₂) ₂], 3.75 [6H, с, (OCH ₃) ₂], 6.94 и 8.13 [по 4H, оба д, <i>J</i> = 8.0, (C ₆ H ₄) ₂], 7.59 [10H, м, (C ₆ H ₅) ₂]

*Сигналы накладываются.

Таблица З

Масс-спектры соединений 10d–g, 10u–w

Соеди- нение	<i>m/z (I</i> _{отн} , %)
10d	352 [M] ⁺ (58), 351 [M–1] ⁺ (100), 305 (6), 277 (8), 77 (4)
10e	486 [M] ⁺ (65), 485 [M–1] ⁺ (45), 441 (12), 351 (52), 337 (28), 318 (13), 277 (14), 239 (6), 91 (100), 77 (8), 65 (7)
10f	506 [M] ⁺ (10), 351 (18), 296 (7), 155 (100), 127 (64), 77 (3)
10g	500 [M] ⁺ (8), 351 (7), 149 (100), 121 (39), 77 (4), 65 (6)
10u	502 [M] ⁺ (47), 501 [M–1] ⁺ (88), 487 (21), 469 (13), 331 (100), 317 (16), 300 (8), 288 (12), 242 (15), 77 (6), 69 (14), 55 (26), 43 (65), 41 (39)
10v	458 [M] ⁺ (14), 457 [M–1] ⁺ (6), 385 (10), 359 (52), 331 (100), 317 (24), 303 (7), 288 (17), 242 (23), 214 (13), 127 (76), 100 (19), 77 (18), 55 (16), 45 (18)
10w	488 [M] ⁺ (49), 487 [M–1] ⁺ (77), 473 (18), 331 (100), 317 (16), 300 (10), 288 (14), 242 (15), 214 (10), 77 (8), 69 (12), 55 (22), 43 (57)

Таким образом, конденсация бензоил-1,1,1-трифторацетона с арилметиленцианотиоацетамидами включает ацильное расщепление аддуктов Михаэля, заканчивающееся образованием замещенных 4-арил-6-фенил-3-

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Монокристалл соединения **10d** был предварительно обкатан до сферической формы диаметром 0.19 мм.

Рентгеноструктурное исследование проведено при комнатной температуре на автоматическом четырехкружном дифрактометре Enraf-Nonius CAD-4 (СиКа-излучение, $\lambda = 1.54178$ Å, отношение скоростей сканирования $2\theta/\omega = 1.2$, $\theta_{max} = 60^{\circ}$, сегмент сферы $0 \le h \le 9$, $0 \le k \le 15$, $0 \le l \le 16$). Всего было собрано 1592 отражения. Кристаллы соединения **10d** ромбические, a = 8.849(2), b = 14.795(3), c = 14.004(5) Å, V = 1833.5(9) Å³, M = 352.45, Z = 4, $d_{\text{выч}}$ = 1.28 г/см³, μ = 15.72 см⁻¹, F(000) = 739.0, пространственная группа Pna21 (N 33). Структура расшифрована прямым методом и уточнена МНК в полноматричном анизотропном приближении с использованием комплекса программ CRYSTALS [13]. В уточнении использовано 1415 отражений с $I > 1.5\sigma(I)$ (235 уточняемых параметров, число отражений на параметр 6.0). Около половины атомов водорода было выявлено из разностного синтеза электронной плотности, положения остальных атомов Н были рассчитаны геометрически. Все атомы водорода были включены в уточнение с фиксированными позиционными и тепловыми параметрами. Учет поглощения в кристалле был выполнен с помощью метода азимутального сканирования [14]. При уточнении использована весовая схема Чебышева [15] с пятью параметрами: 0.92, 0.12, 0.80, 0.01 и 0.25. Окончательные значения факторов расходимости R = 0.038 и $R_W = 0.036$, GOF = 1.217. Координаты неводородных атомов могут быть получены у авторов.

ИК спектры синтезированных соединений записывали на приборе ИКС-29 в вазелиновом масле. Спектры ЯМР ¹Н регистрировали на приборах: Bruker WP-100 SY (100 МГц) (для соединений **9, 10а-с, h-t**), Gemini-200 (200 МГц) (для соединений **10е-g, v**), Bruker WM-250 (250 МГц) (для соединения **3а**), Varian Mercury-400 (400 МГц) (для соединения **10d**) и Bruker DR 500 (500 МГц) (для соединений **10u,w**) в ДМСО-d₆, внутренний стандарт Me₄Si. Масс-спектры снимали на спектрометре Kratos MS-890 с прямым вводом образца в ионный источник (70 эВ). Температуры плавления определяли на блоке Кофлера. Контроль за ходом реакции и чистотой полученных соединений осуществляли методом TCX (Silufol UV-254, ацетон–гексан, 3:5, проявитель пары иода).

4-Арил-6-фенил-3-цианопиридин-2(1Н)-тионы За-d. А. К раствору 2.16 г (10 ммоль) бензоил-1,1,1-трифторацетона **1** в 25 мл этанола прибавляют 10 ммоль соответствующего арилметиленцианотиоацетамида **2** и 2.2 мл (10 ммоль) N-метилморфолина и перемешивают 4 ч. Затем реакционную смесь оставляют на 1 сут, после чего разбавляют 10% соляной кислотой до рН 5 и оставляют на 48 ч. Образовавшийся осадок отделяют, промывают водой и гексаном. Получают соединения **За-d**, которые перекристаллизовывают из ледяной уксусной кислоты.

4-(1-Нафтил)-6-фенил-3-цианопиридин-2(1Н)-тион (3а). Выход 2.37 г (70%), т. пл. 228–230 °С. ИК спектр (вазелиновое масло), v, см⁻¹: 2212 (С≡N). Спектр ЯМР ¹Н, δ, м. д.: 7.14 (1H, с, С₍₅₎Н); 7.49–8.18 (12H, м, Н_{аром}); 14.23 (1H, уш. с, NH). Масс-спектр, *m/z* (*I*_{отн}, %): 338 [М]⁺ (47), 337 [М-1]⁺ (100), 277 (9), 177 (18), 175 (25), 169 (47), 77 (20). Найдено, %: С 77.89; Н 4.02; N 8.36. С₂₂Н₁₄N₂S. Вычислено, %: С 78.08; Н 4.17; N 8.28.

6-Фенил-4-(4-фторфенил)-3-цианопиридин-2(1Н)-тион (3b). Выход 68%, т. пл. 199–204 °С (200–202 °С [16]). Спектральные характеристики соответствуют опубликованным [16].

6-Фенил-4-(4-хлорфенил)-3-цианопиридин-2(1Н)-тион (3с). Выход 74%, т. пл. 233–236 °С (232–234 °С [8]). Спектральные характеристики соответствуют опубликованным [8].

4-(4-Метоксифенил)-6-фенил-3-цианопиридин-2(1Н)-тион (3d). Выход 65%, т. пл. 219–224 °С (223–225 °С [8]). Спектральные характеристики соответствуют опубликованным [8].

Метод Б описан в работах [8, 17]. Выход соединений **За-d** 75, 60, 79 и 66 % соответственно.

2-(1-Карбамоил-1-фенилметилтио)-4-(4-метоксифенил)-6-фенил-3-цианопиридин (9), 4-арил-6-фенил-3-циано-2-*Z*-метилтиопиридины 10а-w, 6-амино-4-арил-6-фенил-2-*Z*-тиено[2,3-*b*]пиридины 11а-с и 1,4-ди[4-(4-метоксифенил)-6-фенил-3-цианопиридин-2-илтио]бутан (12) получают по методике [18] (см. табл. 1, 2).

СПИСОК ЛИТЕРАТУРЫ

- 1. Ю. А. Шаранин, А. М. Шестопалов, Л. А. Родиновская, В. Н. Нестеров, В. Е. Шкловер, Ю. Т. Стручков, В. К. Промоненков, В. П. Литвинов, *ЖОрХ*, **22**, 2600 (1986).
- 2. В. П. Литвинов, В. Д. Дяченко, *ДАН*, **352**, 636 (1997).
- 3. Я. Ю. Якунин, В. Д. Дяченко, Э. Б. Русанов, В. П. Литвинов, ХГС, 224 (2001).
- M. Sugahara, Y. Moritani, T. Kuroda, K. Kondo, H. Shimadzu, T. Ukita, *Chem. Pharm. Bull.*, 48, 589 (2000).
- 5. Дж. Марч, Органическая химия. Реакции, механизмы и структура, Мир, Москва, 1987, **2**, 473.
- 6. К. И. Пашкевич, В. И. Солоутин, И. Я. Постовский, Успехи химии, 50, 325 (1981).
- 7. Ю. А. Шаранин, В. К. Промоненков, А. М. Шестопалов, *ЖОрХ*, **18**, 630 (1982).
- А. А. Краузе, З. А. Бомика, А. М. Шестопалов, Л. А. Родиновская, Ю. Э. Пелчер, Г. Я. Дубур, Ю. А. Шаранин, В. К. Промоненков, *XTC*, 377 (1981).
- Внутримолекулярное взаимодействие нитрильной и С-Н-, О-Н- и S-H-групп, под ред. Ф. С. Бабичева, Наукова думка, Киев, 1985, с. 33.
- Е. А. Кайгородова, В. К. Василин, Г. Д. Крапивин, в кн. Аминотиено[2,3-b]пиридины в синтезе конденсированных гетероциклов, Кубанский гос. технол. ун-т, Краснодар, 2001, 140.
- 11. Ю. А. Шаранин, В. К. Промоненков, *Итоги науки и техники. Органическая химия*, ВИНИТИ, Москва, **16**, 232 (1990).
- F. H. Allen, O. Kennard, D. G. Watson, L. Brammer, A. G. Orpen, R. J. Tailor, J. Chem. Soc., Perkin Trans. 2, 1 (1987).
- D. J. Watkin, C. K. Prout, J. R. Carruthers, P. W. Betteridge, *CRYSTALS*. Issue 10, Chemical Crystallography Laboratory, Univ. of Oxford., 1996.
- 14. A. C. T. North, D. C. Phillips, F. Scott, F. S. Mathews, Acta Crystallogr., A24, 351 (1968).
- 15. J. R. Carruthers, D. J. Watkin, Acta Crystallogr., A35, 698 (1979).
- А. А. Краузе, З. А. Калме, Ю. Э. Пелчер, Э. Э. Лиепиньш, И. В. Дипан, Г. Я. Дубурс, XIC, 1515 (1983).
- 17. Ю. А. Шаранин, А. М. Шестопалов, Л. А. Родиновская, В. Д. Дяченко, в кн. *Химические средства защиты растений. Тез. Всесоюз. конф.*, Уфа, 1982, с. 155.
- 18. В. Д. Дяченко, А. Е. Митрошин, В. П. Литвинов, ХГС, 1235 (1996).

Луганский государственный педагогический университет им. Тараса Шевченко, Луганск 91011, Украина e-mail:dvd lug@online.lg.ua

^аИнститут органической химии НАН Украины, Киев 02094 Поступило в редакцию 15.07.2003