Е. Ю. Нестерова, М. В. Воевудский^а, А. В. Самуха, Р. И. Зубатюк⁶, О. В. Шишкин⁶

ИЗУЧЕНИЕ РЕАКЦИИ АЦИЛИРОВАНИЯ ГИДРАЗИДОВ 2,6-ДИМЕТИЛ-3,5-ПИРИДИНДИКАРБОНОВОЙ КИСЛОТЫ

Ацилирование хлорангидридами ароматических кислот гидразида 2,6-диметил-3-этоксикарбонил-5-пиридинкарбоновой кислоты и дигидразида 2,6-диметил-3,5-пиридиндикарбоновой кислоты приводит к соответствующим N-ароилгидразидам. Показано, что гидразинолиз N-ароилгидразидов 2,6-диметил-3-этоксикарбонил-5-пиридиндикарбоновой кислоты протекает не по сложноэфирной группе, а по дигидразидному фрагменту, как реакция перегидразинолиза.

Ключевые слова: галогенангидриды ароматических кислот, гидразид, гидразингидрат, гидразинолиз, РСА.

В работах [1, 2] была показана возможность ступенчатого гидразинолиза сложноэфирных групп диэтилового эфира 2,6-диметил-3,5-пиридиндикарбоновой кислоты с последовательным образованием гидразида 2,6-диметил-3-этоксикарбонил-5-пиридинкарбоновой кислоты (1) и дигидразида 2,6-диметил-3,5-пиридиндикарбоновой кислоты (2), которые дают соответствующие гидразоны в реакциях с ароматическими альдегидами. Оказалось, что в случае гидразонов, полученных из моногидразида 1 свободная сложноэфирная группа не вступает в реакцию гидразинолиза.

С целью дальнейшего исследования химических свойств гидразидов 1, 2 нами была изучена реакция их ацилирования галогенангидридами ароматических кислот 3a-h. Реакция протекает в условиях основного катализа в сухом кипящем ацетонитриле. Выбор растворителя и температурного режима обусловлен ограниченной растворимостью гидразидов 1, 2 в органических растворителях.

Гидрохлориды N-ароилгидразидов 3,5-пиридиндикарбоновой кислоты 4, 5а–h, образующиеся в ходе реакции, нейтрализуют водно-спиртовым раствором гидрокарбоната натрия до соответствующих оснований 6, 7а–h (табл. 1–3). Как видно из таблицы, труднее всего протекает реакция с 2метоксибензоилхлоридом, что, очевидно, связано как с пониженной электрофильностью реагента, так и со стерическими затруднениями, которые создает *орто*-метоксигруппа.

N-Ароилгидразиды **6**, **7а–h** достаточно устойчивы к кислому и щелочному гидролизу, который проходит с образованием 2,6-диметил-3,5-пиридиндикарбоновой кислоты при кипячении 6–10 ч в 15% соляной кислоте и практически столько же времени требуется для полного гидролиза в 2 н. водно-спиртовом растворе гидроксида калия в условиях кипячения.

a R = H; **b** R = 4-*t*-Bu; **c** R = 4-Ph; **d** R = 2-OMe; **e** R = 3-NO₂; **f** R = 4-NO₂; **g** R = 2-Cl, 4-NO₂; **h** R = 2-F

1835

Строение соединения 6d по данным рентгеноструктурного исследования

Сложноэфирная группа моногидразида 1 легко вступает в реакцию гидразинолиза с образованием дигидразида 2 [1]. Нас интересовала возможность гидразинолиза сложноэфирной группы в полученных N-ароилгидразидах 6a-h. Оказалось, что при длительном кипячении как оснований 6a,b,e,f,h, так и гидрохлоридов 4a,b,e,f,h с избытком гидразингидрата в средах различной полярности (метанол, бутанол, 2-пропанол, ацетонитрил), а также в гидразингидрате (98%) без растворителя реакция протекает с образованием гидразида соответствующей бензойной кислоты 9a,b,e,f,h и дигидразида 2, а не соединений 8a,b,e,f,h. Хроматографический контроль за ходом реакции не фиксирует образования промежуточных продуктов.

Аналогичное поведение свободной сложноэфирной группы наблюдалось нами ранее [3] при попытке гидразинолиза гидразонов моногидразида 1. Возможно, N-ароилгидразидный фрагмент в соединениях **6а–h** создает стерические препятствия для атаки сложноэфирной группы аналогично заместителю в положении 4 диэтилового эфира 2,6-диметил-3,5пиридиндикарбоновой кислоты, присутствие которого, как было установлено [2], полностью блокирует гидразинолиз 3,5-сложноэфирных групп.

РСА соединения **6d** показал (рисунок, табл. 4, 5), что N-ароилгидразидный фрагмент имеет *ар-ас-ар*-конформацию (торсионные углы $C_{(4)}-C_{(6)}-N_{(2)}-N_{(3)}$ 172.7(2)°, $C_{(6)}-N_{(2)}-N_{(3)}-C_{(7)}$ 99.8(3)° и $N_{(2)}-N_{(3)}-C_{(7)}-C_{(8)}$ –179.5(2)°), которая, по всей видимости, является типичной для N,N'-бис(2-арилкарбонил)гидразинов. Об этом свидетельствуют результаты РСА 1,2-дибензоилгидразина [4] и N,N'-бис(2-пиридинокарбонил)гидразина [5], в которых наблюдается аналогичная конформация фрагмента С-C(=O)–NH–NH–C(=O)–С. Карбонильная группа $C_{(7)}-O_{(2)}$ лежит

практически в плоскости бензольного кольца (торсионный угол 1836

 $O_{(2)}-C_{(7)}-C_{(8)}-C_{(13)}$ –6.1(4)°). Такая ориентация, вероятно, обусловлена образованием внутримолекулярной водородной связи $N_{(3)}$ –H... $O_{(5)}$ (H...O 1.91 Å, N–H...O 135°). Поворот карбонильной группы $C_{(6)}$ – $O_{(1)}$ относительно пиридинового цикла (торсионный угол $C_{(5)}$ – $C_{(4)}$ – $C_{(6)}$ – $O_{(1)}$ –64.4(3)°), по всей видимости, вызван неблагоприятными невалентными взаимодействиями между атомами $O_{(1)}$ и $C_{(15)}$, о чем свидетельствует деформация торсионного угла $C_{(6)}$ – $C_{(4)}$ – $C_{(5)}$ – $C_{(15)}$ до –7.3(4)°. Метоксигруппа лежит в плоскости цикла $C_{(8)}$ – $C_{(13)}$ (торсионный угол $C_{(7)}$ – $C_{(8)}$ – $C_{(9)}$ – $O_{(5)}$ 0.3(4)°).

Атомы сложноэфирного заместителя, за исключением C₍₁₆₎, разупорядочены по двум конформациям A и B с заселенностью 0.35:0.65 вследствие свободного вращения вокруг связей C₍₂₎–C₍₁₆₎ и O₍₄₎–C₍₁₇₎ (торсионные углы C₍₁₎–C₍₂₎–C₍₁₆₎–O₍₃₎ 39.8(5)° (A), -18.2(4)° (B) и C₍₁₆₎–O₍₄₎–C₍₁₇₎–C₍₁₈₎

Таблица 1

Соеди-	Брутто- Найдено, % Вычислено, %				Т. пл., °С	Выход. %
нение	формула	С	Н	Ν		
6a	$C_{18}H_{19}N_3O_4$	<u>63.14</u> 63.33	<u>5.47</u> 5.61	<u>12.09</u> 12.31	183–184	55
7a	$C_{23}H_{21}N_5O_4$	<u>64.35</u> 64.03	<u>4.72</u> 4.91	<u>16.33</u> 16.23	282-283	60
6b	$C_{22}H_{27}N_3O_4$	<u>66.67</u> 66.48	<u>6.57</u> 6.85	<u>10.41</u> 10.57	175–176	82
7b	$C_{31}H_{37}N_5O_4$	<u>68.72</u> 68.49	<u>6.49</u> 6.86	<u>12.93</u> 12.88	244–245	55
6c	$C_{24}H_{23}N_3O_4$	<u>69.23</u> 69.05	<u>5.32</u> 5.55	$\frac{10.28}{10.07}$	214–215	94
7c	C35H29N5O4	<u>72.36</u> 72.03	$\frac{5.28}{5.01}$	$\frac{12.26}{12.00}$	351-352	70
6d	$C_{19}H_{21}N_3O_5$	<u>61.74</u> 61.45	$\frac{5.51}{5.70}$	<u>11.57</u> 11.31	170–171	14
7 d	$C_{25}H_{25}N_5O_6$	<u>61.28</u> 61.09	<u>5.46</u> 5.13	<u>14.61</u> 14.25	264–265	20
6e	$C_{18}H_{18}N_4O_6$	<u>56.21</u> 55.96	$\frac{4.53}{4.70}$	<u>14.27</u> 14.50	230–231	77
7e	$C_{23}H_{19}N_7O_8$	<u>52.83</u> 52.98	$\frac{3.83}{3.67}$	$\frac{18.55}{18.80}$	318-320	80
6f	$C_{18}H_{18}N_4O_6$	<u>55.65</u> 55.96	$\frac{4.91}{4.70}$	<u>14.72</u> 14.50	225 (разл.)	95
7f	$C_{23}H_{19}N_7O_8$	<u>52.61</u> 52.98	<u>3.74</u> 3.67	<u>18.49</u> 18.80	275 (разл.)	81
6g	$C_{18}H_{17}ClN_4O_6$	<u>51.59</u> 51.38	$\frac{4.22}{4.07}$	<u>13.38</u> 13.31	204–205	94
7g	$C_{23}H_{17}Cl_2N_7O_8\\$	$\frac{46.62}{46.80}$	$\frac{2.67}{2.90}$	$\frac{12.42}{12.01}$	281-282	96
6h	$C_{18}H_{18}FN_3O_4$	<u>60.34</u> 60.16	$\frac{5.32}{5.05}$	<u>11.61</u> 11.69	253–254	72
7h	$C_{23}H_{19}F_2N_5O_4$	<u>59.46</u> 59.10	$\frac{4.23}{4.10}$	<u>14.74</u> 14.98	292–293	60

Характеристики соединений 6а-h, 7а-h

Таблица 2

Химические сдвиги, δ, м. д. (J, Гц) Соеди-OCH₂CH₃ NH 4-H-Py CH₃ OCH₂CH₃ нение Н аром R (1H, c) (c, 1H) (3H, c) (3Н, т) (2Н, к) 7.92 (2Н, д, J=7.4); 6a 8.20 2.72, 2.87 1.35 4.32 10.44, 10.55 (J = 6.9)7.51 (3Н, м) (J = 6.9)7a 8.00 2.65 10.39, 10.55 7.96 (4Н, д); 7.49 (6Н, м) _ _ 7.48 (2Н, д, J = 9.8); 2.62, 2.73 6b 8.16 1.37 4.31 10.33, 10.41 1.35 7.85 (2Н, д, J = 9.8) (J = 6.9)(J = 6.9) $(9H, c, (CH_3)_3)$ 7.48 (4Н, д, J=6.0); 1.34 7b 7.92 2.64 10.31, 10.48 _ _ $(18H, c, (CH_3)_3)$ 7.88 (4Н, д, J = 6.0) 8.23 1.38 4.34 10.44, 10.59 7.37–7.47(3Н, м); 6c 2.67, 2.76 7.61 (2Н, д, J=8.0); (J = 6.9)(J = 6.9)7.68 (2Н, д, J = 8.0); 8.02 (2Н, д, J = 8.0) 7c 7.98 2.69 10.37, 10.67 7.39–7.49 (6Н, м); _ _ 7.71 (4Н, д, J = 10.0); 7.80 (4Н, д, J = 10.0); 8.15 (4Н, д, J=10.0) 6d 8.22 2.67, 2.80 1.40 4.34 10.05, 10.69 7.08 (1H, T, J = 4.0); 3.98 (J = 6.0)(J = 6.0)7.17 (1Н, д, J=8.0); $(3H, c, OCH_3)$ 7.52 (1H, T, J = 4.0); 7.83 (1Н, д, J = 8.0) 7d 8.12 2.73 10.12, 10.70 7.11 (2Н, т, J=5.0); 3.40 _ _ 7.19 (2Н, д, J=7.0); (6H, c, OCH₃) 7.54 (2H, T, J = 5.0); 7.90 (2Н, д, J=7.0)

Спектры ЯМР ¹Н синтезированных соединений

1838

6e	8.20	2.58, 2.70	1.35 (<i>J</i> =7.8)	4.31 (<i>J</i> = 7.8)	10.55, 10.98	7.80 (1H, т, <i>J</i> = 8.2); 8.35 (1H, д, <i>J</i> = 8.2); 8.42 (1H, д, <i>J</i> = 8.2); 8.75 (1H, с)
7e	8.09	2.78	_	_	10.65, 11.08	7.91 (2H, т, <i>J</i> = 5.2); 8.50 (2H, д, <i>J</i> = 5.2); 8.58 (2H, д, <i>J</i> = 5.2); 8.88 (2H, с)
6f	8.19	2.62, 2.72	1.32 (J=7.9)	4.31 (<i>J</i> = 7.9)	10.71*	8.11 (2H, д, <i>J</i> = 9.8); 8.33 (2H, д, <i>J</i> = 9.8)
7f	7.82	2.67	_	_	10.55, 10.91	8.14 (4Н, д, <i>J</i> = 8.0); 8.36 (4Н, д, <i>J</i> = 8.0)
6g	8.18	2.61, 2.71	1.32 (<i>J</i> = 7.9)	4.28 (<i>J</i> = 7.9)	10.46*	7.79 (1H, c); 8.24 (1H, д, <i>J</i> = 9.8); 8.31 (1H, д, <i>J</i> = 9.8)
7g	7.91	2.62	_	_	10.65*	7.82 (2H, д, <i>J</i> = 8.5); 8.31 (2H, д, <i>J</i> = 8.5); 8.4 (2H, c)
6h	8.19	2.69, 2.75	1.32 (<i>J</i> = 7.9)	4.31 (<i>J</i> = 7.9)	10.45*	7.30 (2Н, т, <i>J</i> = 8.0); 7.51 –7.79 (2Н, м)
7h	8.15	2.75	_	_	10.45, 10.65	7.34 (4H, т, <i>J</i> = 7.8); 7.60 –7.79 (4H, м)

* Уширенный синглет с интенсивностью 2Н.

	v, cm ⁻¹					
Соеди- нение	v _{NH} своб.	v _{NH} accoц.	v _{C=O}	I амидная полоса (v _{C=O})	II амидная полоса (б _{NH})	
6a	3420	3230	1740, 1720	1660	1570, 1550	
7a	3450*	3200		1670*, 1610	1565	
6b		3340, 3205	1720, 1700	1655, 1610	1555	
7b	3450	3280		1700, 1670, 1640, 1610	1565, 1545	
6c	3450*	3190	1710	1665	1525	
7c	3540	3270		1660, 1650	1540	
6d	3380, 3340	3250	1710	1680, 1650–1630	1570	
7d	3430	3340, 3270		1675–1650	1550	
6e	3420	3210	1720	1650	1540	
7e		3190		1610	1540	
6f	3400	3200	1710*	1690–1660	1530	
7f	3510*, 3410	3280, 3230		1650, 1610	1540–1530	
6g	3410	3210	1725, 1700	1650, 1610	1540	
7g	3400			1630	1540	
6h	3450	3220	1740, 1720*	1660, 1630	1570–1550	
7h	3450	3250*		1670–1650	1560-1510	

ИК спектры синтезированных соединений

* Плечо на основной полосе.

77.0(6)° (А), $-170.7(2)^{\circ}$ (В)). При этом в обоих конформациях атомы C₍₂₎, O₍₄₎, C₍₁₆₎ и C₍₁₇₎ компланарны (торсионный угол C₍₁₇₎–O₍₄₎–C₍₁₆₎–C₍₂₎ –179.2(2)° (А), 180.0(2)° (В)). Атомы кислорода O₍₁₎, O₍₃₎ и O₍₄₎ образуют аттрактивные

укороченные контакты $O_{(1)}$... $H_{(15B)}$ 2.70 (С–H...O 116°), $O_{(3)}$... $H_{(17B)}$ 2.09 (А), 2.39 Å (В) (С–H...O 125 (А), 110° (В)), $O_{(4A)}$... $H_{(3)}$ 2.37 (А), 2.44 Å (В) (С–H...O 99°) (сумма ван-дер-ваальсовых радиусов 2.46 Å [4]).

В кристалле молекулы связаны в бесконечные цепочки за счет водородных связей $N_{(3)}$ -H...O₍₁' (1-*x*,*y*, 1.5-*z*) (H...O 1.83 Å, N-H...O 129°) и $N_{(2)}$ -H...O₍₂' (0.5-*x*, 0.5-*y*, 1-*z*) (H...O 2.00 Å, N-H...O 162°), образование которых приводит к удлинению связей $C_{(6)}$ -O₍₁₎ и $C_{(7)}$ -O₍₂₎ до 1.226(3) и 1.233(3) Å соответственно (среднее значение 1.210 Å [5]). При этом необходимо отметить, что атом H(N₍₃₎) участвует одновременно в образо-

1840

вании двух водородных связей.

Длины связей (*l*) в структуре 6d

Таблица 4

		1			1
Связь	l, Å	Связь	l, Å	Связь	l, Å
O(1)-C(6)	1.226(3)	N(1)-C(5)	1.331(4)	C(5)-C(15)	1.520(5)
O ₍₂₎ -C ₍₇₎	1.233(3)	N(2)-C(6)	1.330(3)	C ₍₇₎ -C ₍₈₎	1.491(3)
O _(3A) -C ₍₁₆₎	1.218(4)	N ₍₂₎ -N ₍₃₎	1.390(3)	C(8)-C(9)	1.385(4)
O _(3B) -C ₍₁₆₎	1.225(3)	N ₍₃₎ -C ₍₇₎	1.333(3)	C ₍₈₎ -C ₍₁₃₎	1.386(4)
O(4A)-C(16)	1.347(4)	C(1)-C(2)	1.395(4)	C(9)-C(10)	1.389(4)
O(4A)-C(17A)	1.460(4)	C(1)-C(14)	1.515(4)	C(10)-C(11)	1.371(5)
O _(4B) -C ₍₁₆₎	1.317(3)	C ₍₂₎ -C ₍₃₎	1.396(3)	C ₍₁₁₎ -C ₍₁₂₎	1.368(6)
O _(4B) -C _(17B)	1.458(4)	C ₍₂₎ -C ₍₁₆₎	1.448(4)	C(12)-C(13)	1.389(4)
O(5)-C(9)	1.369(3)	C(3)-C(4)	1.369(4)	C _(17A) -C _(18A)	1.528(4)
O(5)-C(19)	1.431(3)	C ₍₄₎ -C ₍₅₎	1.377(4)	C _(17B) -C _(18B)	1.519(4)
N ₍₁₎ -C ₍₁₎	1.329(4)	C ₍₄₎ -C ₍₆₎	1.502(3)		

Таблица 5

Валентные углы (ω) в структуре 6d

Угол	ω, град	Угол	ω, град
$C_{(16)} - O_{(4A)} - C_{(17A)}$	124.7(4)	$O_{(2)} - C_{(7)} - N_{(3)}$	121.6(2)
$C_{(16)}$ - $O_{(4B)}$ - $C_{(17B)}$	112.4(3)	$O_{(2)} - C_{(7)} - C_{(8)}$	120.4(2)
$C_{(9)} - O_{(5)} - C_{(19)}$	120.6(2)	$N_{(3)}$ - $C_{(7)}$ - $C_{(8)}$	118.0(2)
$C_{(1)} - N_{(1)} - C_{(5)}$	119.6(3)	$C_{(9)}$ - $C_{(8)}$ - $C_{(13)}$	118.4(3)
C ₍₆₎ -N ₍₂₎ -N ₍₃₎	121.0(2)	$C_{(9)}$ - $C_{(8)}$ - $C_{(7)}$	125.7(2)
C(7)-N(3)-N(2)	119.8(2)	$C_{(13)}$ - $C_{(8)}$ - $C_{(7)}$	116.0(3)
$N_{(1)} - C_{(1)} - C_{(2)}$	121.8(2)	O(5)-C(9)-C(8)	117.3(2)
$N_{(1)}$ - $C_{(1)}$ - $C_{(14)}$	114.8(3)	O(5)-C(9)-C(10)	121.8(3)
$C_{(2)}$ - $C_{(1)}$ - $C_{(14)}$	123.4(3)	$C_{(8)}$ - $C_{(9)}$ - $C_{(10)}$	120.9(3)
$C_{(1)}$ - $C_{(2)}$ - $C_{(3)}$	117.2(3)	$C_{(11)}$ - $C_{(10)}$ - $C_{(9)}$	119.3(3)
$C_{(1)}$ - $C_{(2)}$ - $C_{(16)}$	122.7(2)	$C_{(12)}$ - $C_{(11)}$ - $C_{(10)}$	121.2(3)
$C_{(3)}$ - $C_{(2)}$ - $C_{(16)}$	120.0(3)	$C_{(11)}$ - $C_{(12)}$ - $C_{(13)}$	119.2(3)
$C_{(4)}$ - $C_{(3)}$ - $C_{(2)}$	120.8(3)	$C_{(8)}$ – $C_{(13)}$ – $C_{(12)}$	121.0(3)
C(3)-C(4)-C(5)	117.6(2)	$O_{(3B)}$ - $C_{(16)}$ - $O_{(4B)}$	117.4(3)
C(3)-C(4)-C(6)	119.8(3)	O(3A)-C(16)-O(4A)	130.3(5)
$C_{(5)}$ - $C_{(4)}$ - $C_{(6)}$	122.6(3)	$O_{(3A)}$ - $C_{(16)}$ - $C_{(2)}$	113.6(5)
$N_{(1)}$ - $C_{(5)}$ - $C_{(4)}$	122.9(3)	$O_{(3B)}$ – $C_{(16)}$ – $C_{(2)}$	126.4(3)
$N_{(1)}$ - $C_{(5)}$ - $C_{(15)}$	116.0(3)	$O_{(4B)}$ – $C_{(16)}$ – $C_{(2)}$	116.1(2)
$C_{(4)}$ - $C_{(5)}$ - $C_{(15)}$	121.0(3)	$O_{(4A)}$ – $C_{(16)}$ – $C_{(2)}$	112.3(2)
O(1)-C(6)-N(2)	123.7(2)	$O_{(4A)}$ - $C_{(17A)}$ - $C_{(18A)}$	113.2(6)
$O_{(1)}$ - $C_{(6)}$ - $C_{(4)}$	122.4(2)	$O_{(4B)}$ - $C_{(17B)}$ - $C_{(18B)}$	102.0(3)
$N_{(2)} - C_{(6)} - C_{(4)}$	113.8(2)		

ИК спектры полученных соединений 6а-h, 7а-h (табл. 3) подтверждают наличие ассоциированных и свободных групп NH. Согласно данным работ [6, 7] полосы поглощения в области 3210-3170 см⁻¹ относятся к колебаниям ассоциированной группы NH, а неассоциированная группа NH поглощает при 3540-3310 см⁻¹. В случае N-бензоилдигидразида 7а наблюдается одна широкая интенсивная полоса поглощения фрагмента NH-NH (табл. 3), что свидетельствует о сильной ассоциации групп NH, однако, наличие заместителей в бензоильном фрагменте приводит к уменьшению ассоциации, а в спектре соединения 7g имеется только узкая полоса валентных колебаний свободной группы NH. Присутствие в ИК спектрах соединений 6а-h, как правило, двух полос поглощения сложноэфирной группы согласуется с данными РСА (см. рисунок) о наличии двух конформаций A и B, в то же время для соединений 6b-f наблюдается сильный батохромный сдвиг полосы сложноэфирной группы по сравнению с аналогичной в моногидразиде 1 (1740 см⁻¹) [1]. Замена сложноэфирной группы в соединениях 6а-h на гидразидный фрагмент приводит к увеличению электронной плотности на пиридиновом ядре, о чем свидетельствует в спектрах ЯМР ¹Н сдвиг в сильное поле сигнала протона Н-4 пиридинового кольца (табл. 3) при переходе от гидразидов **6а-h** к **7а-h**, причем, для соединений содержащих группы о-F и о-OMe этот сдвиг минимален и составляет 0.04 и 0.10 м. д., соответственно, а при переходе от моногидразида 1 (8.12 м. д.) к дигидразиду 2 (7.65 м. д.) достигает 0.47 м. д. Сигналы протонов фрагмента NH-NH в большинстве случаев присутствуют в виде четких синглетов, однако, для соединений 6, 7f-h с сильными электроноакцепторными заместителями в ароильном фрагменте они проявляются в виде уширенного синглета, очевидно, вследствие близких значений химических сдвигов.

Таким образом, невозможность гидразинолиза сложноэфирной группы соединений **6а–h** трудно объяснить недоступностью электрофильного центра из-за стерических факторов, а также электронным влиянием гидразидного фрагмента в *мета*-положении пиридинового кольца. Очевидно причину нужно искать в особенностях механизма реакции гидразинолиза.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Кристаллы 6d моноклинные, $C_{19}H_{21}N_3O_5$, при 20 °С a = 18.676(4), b = 15.851(4), c = 15.825(3) Å, $\beta = 124.35(1)^{\circ}$, V = 3868(2) Å³, $M_r = 371.39$, Z = 8, пространственная группа C2/c, $d_{\rm выч} = 1.276$ г/см³, μ (МоК α) = 0.094 мм⁻¹, F(000) = 1568. Параметры элементарной ячейки и интенсивности 3627 отражений (3386 независимых, $R_{\rm int} = 0.026$) измерены на автоматическом четырехкружном дифрактометре Siemens P3/PC (МоК α , графитовый монохроматор, 20/ θ -сканирование, $2\theta_{\rm max} = 50^{\circ}$).

Структура расшифрована прямым методом по комплексу программ SHELXTL [8]. Положения атомов водорода выявлены из разностного синтеза электронной плотности и уточнены по модели "наездника" с $U_{iso} = nU_{eq}$ неводородного атома, связанного с данным атомом водорода (n = 1.5 для метильных групп и n = 1.2 для остальных атомов водорода). При уточнении структуры налагались ограничения на длины связей в разупорядоченном фрагменте: $C_{(16)}$ – $O_{(3)}$ 1.202(5), $C_{(16)}$ – $O_{(4)}$ 1.337(5), $O_{(4)}$ – $C_{(17)}$ 1.452(5) и $C_{(17)}$ – $C_{(18)}$ 1.530(5) Å. Структура уточнена по F^2 полноматричным МНК в анизотропном приближении для неводородных атомов, за исключением разупорядоченных атомов, которые уточнялись изотропно. Окончательные параметры расходимости: $wR_2 = 0.222$ по 3356 отражениям

 $(R_1 = 0.068$ по 1327 отражениям с $F > 4\sigma(F)$, S = 0.933). Длины связей и валентные углы приведены в табл. 4 и 5 соответственно.

ИК спектры регистрировали на приборе UR-20 в таблетках КВг (0.25%), спектры ЯМР ¹Н – на спектрометре Varian 300VXR (300 МГц) в ДМСО-d₆, внутренний стандарт ТМС. Контроль за ходом реакций и чистотой веществ осуществляли методом ТСХ на пластинках Silufol UV-254, в системе бензол–этилацетат–метанол, 10:7:1, проявление – парами иода.

Реакции ацилирования гидразидов 1, 2 (общая методика). К раствору 0.001 моль соответствующего гидразида (1 или 2) в 25 мл ацетонитрила, прибавляют по 0.001 моль хлорангидрида карбоновой кислоты на каждую гидразидную группу. Реакционную смесь кипятят 1 ч. Выпавший осадок соответствующего гидрохлорида 4, 5а-h отфильтровывают, растворяют в метаноле и прибавляют двукратный избыток насыщенного водного раствора гидрокарбоната натрия. Полученный осадок перекристаллизовывают из ацетонитрила или смеси ацетонитрил–вода.

Гидразинолиз 2-бензоилгидразида 2,6-диметил-3-этоксикарбонилпиридин-5-карбоновой кислоты (6а). К раствору 0.34 г (0.001 моль) 6а в 10 мл метанола приливают 2 мл гидразингидрата (98%) и кипятят 6 ч, выпавший осадок дигидразида 2 отфильтровывают, раствор упаривают в вакууме досуха. Полученный гидразид бензойной кислоты 9а кристаллизуют из этанола. Выход 48%, т. пл. 116–117 °С (из этанола) (т. пл. 116.5–117.5 °С [9]). Выделенное соединение не дает депрессии температуры плавления с образцом, полученным по методике [9] из этилового эфира бензойной кислоты и гидразингидрата.

Гидразинолиз 2-(*п-трет*-бутилбензоил)гидразида 2,6-диметил-3-этоксикарбонилпиридин-5-карбоновой кислоты (6b). К 0.39 г (0.001 моль) гидразида 6b приливают 6 мл гидразингидрата (85%) и 2 мл этанола и кипятят смесь 10 ч, раствор упаривают в вакууме досуха, полученный осадок экстрагируют кипящим метанолом. Метанольный раствор упаривают, остаток перекристаллизовывают из 2-пропанола. Выход *п-трет*-бутилбензоилгидразида (9b) 43%, т. пл. 117–118 °C (из 2-пропанола) (т. пл. 118–120 °C [10]). Выделенное соединение не дает депрессии температуры плавления с образцом, полученным согласно методу [10] из этилового эфира *п-трет*-бутилбензойной кислоты и гидразингидрата (85%). Не растворившийся в метаноле осадок представляет собой дигидразид 2.

Гидразинолиз (2-*м*-нитробензоил)гидразида 2,6-диметил-3-этоксикарбонилпиридин-5-карбоновой кислоты (6е) проводят аналогично гидразинолизу гидразида 6b в течение 5 ч. Выход *м*-нитробензоилгидразида 9е 52%, т. пл. 152–154 °C (из этанола) (т. пл. 154 °C [9]).

Гидразинолиз 2-(*n*-нитробензоил)гидразида 2,6-диметил-3-этоксикарбонилпиридин-5-карбоновой кислоты (6f) проводят аналогично гидразинолизу 6b в течение 3 ч. Выход *n*-нитробензгидразида 9f 67%, т. пл. 209–210 °C (из воды) (т. пл. 210 °C [11]). Выделенное соединение не дает депрессии температуры плавления с образцом, полученным по методу [11] из этилового эфира *n*-нитробензойной кислоты и гидразингидрата (98%).

Гидразинолиз (2-о-фторбензоил)гидразида 2,6-диметил-3-этоксикарбонилпиридин-5-карбоновой кислоты (6h) проводят аналогично гидразинолизу 6а в течение 13 ч. Выход *о*-фторбензоилгидразида 9h 27%, т. пл. 71–73 °С (из циклогексана) (т. пл. 72–73 °С [12]). Выделенное соединение не дает депрессии температуры плавления с образцом, полученным по методу [12] из этилового эфира *о*-фторбензойной кислоты и гидразингидрата (85%).

СПИСОК ЛИТЕРАТУРЫ

- 1. Е. Ю. Нестерова, А. В. Самуха, М. В. Воевудский, *Вест. Днепропетр. ун-та*, № 6, 83 (2001).
- 2. Е. Ю. Нестерова, А. В. Самуха, М. В. Воевудский, В. Н. Гончарук, *Вопросы химии и химической технологии*, № 6, 47 (2003).
- 3. Е. Ю. Нестерова, М. В. Воевудский, А. В. Самуха, *Вест. Днепропетр. ун-та*, №. 7, 75 (2002).
- 4. S. S. S. Raj, B. M. Yamin, A. M. A. Boshaala, M. T. H. Tarafder, K. A. Crouse, H.-K. Fun, 1844

Acta Crystallogr., C56, 1011 (2000).

- 5. S. Shao, D. Zhu, Y. Song, X. Z. You, S. S. S.Raj, H.-K. Fun, *Acta Crystallogr.*, C55, 1841 (1999).
- 6. Е. В. Титов, А. П. Греков, В. И. Рыбальченко, В. В. Шевченко, *Teop. эксперим. химия*, 4, 742 (1968).
- 7. Е. В. Титов, В. И. Рыбальченко, Теор. эксперим. химия, 7, 212 (1971).
- 8. G. M. Sheldrick, SHELXTL PLUS. PC Version. A System of Computer Programs for the Determination of Crystal Structure from X-ray Diffraction Data, Rev. 5.1, 1998.
- 9. А. П. Греков, М. С. Соловьева, Укр. хим. журн., 27, 384 (1961).
- H. L. Yale, K. Losee, J. Martins, M. Holsing, F. Perry, J. Bernstein, J. Am. Chem. Soc., 75, 1933 (1953).
- 11. А. П. Греков, О. П. Швайка, Л. М. Егупова, *ЖОХ*, **29**, 2027(1959).
- 12. E. L. Bennett, C. Niemann, J. Am. Chem. Soc., 72, 1800 (1950).

Днепропетровский национальный университет, Днепропетровск 49050, Украина e-mail: len@nesterov.in.dp.ua e-mail: nesterova-05@mail.ru Поступило в редакцию 22.03.2004

^аУкраинский государственный химикотехнологический университет, Днепропетровск 49005, Украина e-mail: voevudskiy@ukr.net

⁶Институт сцинтилляционных материалов НАН Украины, Харьков 61001 e-mail: shishkin@xray.isc.kharkov.com