Д. Д. Некрасов, С. Н. Шуров

ИССЛЕДОВАНИЕ ВЗАИМОДЕЙСТВИЯ 5-АРИЛ-2,3-ДИГИДРО-2,3-ФУРАНДИОНОВ С СОЕДИНЕНИЯМИ, СОДЕРЖАЩИМИ ОДНОВРЕМЕННО СВЯЗИ С=N И С=N

Ароилкетены, генерируемые термолизом 5-арил-2,3-дигидро-2,3-фурандионов, реагируют с S-метил-N'-фенил-N-цианоизотиомочевиной, N',N'-диметил-N-цианоформамидином и N,N-бис(β-цианоэтил)цианамидом с образованием, соответственно, 6-арил-2-[(метилтио)(фениламино)метилен]амино-, 6-арил-2-диметиламинометиленамино- и 6-арил-2-[N,N-бис(β-цианоэтил)амино]-4H-1,3-оксазин-4-онов. Проведено моделирование взаимодействия бензоилкетена с указанными цианосоединениями полуэмпирическим методом ССП МО ЛКАО в приближении MNDO-PM3. Предложен механизм образования замещенных 4H-1,3-оксазин-4-онов.

Ключевые слова: 5-арил-2,3-дигидро-2,3-фурандионы, ароилкетены, N,N-бис(β-цианоэтил)цианамид, N',N'-диметил-N-цианоформамидин, 2-замещенные 6-арил-4H-1,3-оксазин-4-оны, S-метил-N'-фенил-N-цианоизотиомочевина, циано[ди(метилтио)]имидокарбонат, полуэмпирический метод ССП МО ЛКАО в приближении MNDO-PM3, [4+2]циклоприсоединение.

Известно, что термолиз 5-арил-2,3-дигидро-2,3-фурандионов (бензол, 80 °С) сопровождается элиминированием монооксида углерода и приводит к 6-арил-3-ароил-4-гидрокси-2H-пиран-2-онам [1]. Образование замещенных пиранов в этой реакции объясняется димеризацией ароилкетенов, первичных продуктов термолиза. Факт образования ароилкетенов в результате термического декарбонилирования фурандионов был надежно подтвержден в работе [2].

Ранее было показано, что ароилкетены, генерируемые подобным образом, реагируют с соединениями, содержащими связи C=N и активированные связи C≡N, с образованием продуктов [4+2]-циклоприсоединения – 6-замещенных 3,4-дигидро-2H-1,3-оксазин-4-онов [3–5] или 4H-1,3-оксазин-4-онов [6–8] соответственно. Многие из полученных таким образом 1,3-оксазинов проявляют биологическую активность [9], что делает целесообразным дальнейшее изучение этих реакций.

В присутствии соединений с неактивированной цианогруппой (MeCN, PhCN) ароилкетены димеризуются [7].

Взаимодействие 5-арил-2,3-дигидро-2,3-фурандионов с соединениями, содержащими одновременно связи С=N и С≡N, а также активированные и неактивированные связи С≡N практически не изучено. Известно только, что в результате реакции 5-арил-2,3-дигидро-2,3-фурандионов с метиленами-ноацетонитрилом, соединением, содержащим изолированные связи С=N и С≡N и С≡N (толуол, 110 °C, 1.5 ч), последний участвует в реакции [4+2]-циклопри-

соединения с образующимися ароилкетенами как азометин. В ходе этой реакции получены 6-арил-3-цианометил-3,4-дигидро-2H-1,3-оксазин-4-оны [6]. 2-(Цианоимино)-1,3-дитиолан в аналогичных условиях реагирует своей связью С=N, давая соответствующие 4H-1,3-оксазин-4-оны [7].

Целью настоящей работы являются исследование взаимодействия 5-арил-2,3-дигидрофуран-2,3-дионов 1 с S-метил-N'-фенил-N-цианоизотиомочевиной 3 ($R^2 = SMe$, $R^3 = NHPh$), N-циано[ди(метилтио)]имидокарбонатом 4 ($R^2 = R^3 = SMe$), N',N'-диметил-N-цианоформамидином 5 ($R^2 = H$, $R^3 = NMe_2$), содержащими фрагмент N=C–N=C, и N,N-бис(β -цианоэтил)цианамидом 6, имеющим неравноценные связи C=N, а также моделирование их реакций с ароилкетенами методами квантовой химии.

Мы установили, что в результате непродолжительного кипячения эквимолярных количеств соединений **1**а,**b** и **3** в толуоле образуются 6-арил-2-[(метилтио)(фениламино)метилен]амино-4H-1,3-оксазин-4-оны **7**а,**b**. Температуры плавления, выходы и данные элементного анализа синтезированных соединений приведены в табл. 1, а спектральные характеристики – в табл. 2.

Схема образования оксазинов 7 включает термическое декарбонилирование фурандионов 1 и реакцию [4+2]-циклоприсоединения ароилкетенов 2 по связи С≡N соединения 3. Продуктов присоединения ароилкетенов по связи С=N изомочевины 3, замещенных 3,4-дигидро-2H-1,3-оксазин-4-онов 8 в реакционной массе обнаружено не было.

Таблица 1

Соеди-	Брутто- формула	<u>Найдено, %</u> Вычислено, %			Т. пл., °С	Выход,
нение		С	Н	Ν		/0
7a	$C_{18}H_{15}N_3O_2S$	<u>64.0</u> 64.1	$\frac{4.3}{4.5}$	<u>12.4</u> 12.5	190–191	68
7b	$C_{19}H_{17}N_3O_2S$	<u>64.8</u> 65.0	$\frac{4.7}{4.8}$	<u>11.7</u> 12.0	184–185	62
12a	$C_{13}H_{13}N_3O_2$	$\frac{64.0}{64.2}$	<u>5.2</u> 5.3	$\frac{17.1}{17.3}$	204–205	67
12b	$C_{14}H_{15}N_3O_2$	<u>65.4</u> 65.2	<u>5.8</u> 5.7	<u>16.3</u> 16.2	195–197	70
14a	$C_{16}H_{14}N_4O_2$	<u>65.3</u> 65.3	$\frac{4.6}{4.7}$	<u>19.1</u> 19.1	145–147	98
14b	$C_{17}H_{16}N_4O_2$	<u>66.3</u> 66.2	$\frac{5.4}{5.2}$	$\frac{18.2}{18.2}$	179–180	85
14c	$C_{17}H_{16}N_4O_3$	<u>63.2</u> 63.0	<u>4.9</u> 4.9	<u>17.5</u> 17.3	220–221	83
14d	$C_{16}H_{13}ClN_4O_2*$	<u>58.4</u> 58.5	$\frac{4.2}{4.0}$	<u>17.2</u> 17.1	195–196	80

Физико-химические свойства соединений 7, 12, 14

* Найдено, %: Cl 10.9; вычислено, %: Cl 10.8.

Схема

Таблица 2

Соеди- нение	ИК спектр, v, см ⁻¹	Спектр ЯМР ¹ Н, б, м. д. (<i>J</i> , Гц)		
7a	1640, 1670, 3060	2.5 (1H, c, SCH ₃); 6.4 (1H, c, CH=C); 7.0–7.9 (10H, м, 2C ₆ H ₅); 12.7 (1H, c, NH)		
7b	1650, 1675, 3090	2.4 (1H, c, CH ₃); 2.5 (1H, c, SCH ₃); 6.4 (1H, c, CH=C); 7.0–7.8 (9H, м, C ₆ H ₄ , C ₆ H ₅); 12.8 (1H, c, NH)		
12a	1620–1660, 3060	3.06 (3H, c, CH ₃); 3.20 (3H, c, CH ₃); 6.5 (1H, c, CH=C); 7.35–7.95 (5H, м, C ₆ H ₅); 8.68 (1H, c, N=CH)		
12b	1610–1630, 1670, 3060	2.29 (3H, с, CH ₃); 3.04 (3H, с, CH ₃); 3.18 (3H, с, CH ₃); 6.49 (1H, с, CH=C); 7.28 (2H, д, <i>J</i> _o = 8.3, H-3 аром.); 7.73 (2H, д, <i>J</i> _o = 8.3, H-2 аром.); 8.66 (1H, с, N=CH)		
14a	1650–1670, 2280, 3090	2.9 (2H, T, J_{HH} = 6.8, CH ₂); 3.8 (2H, T, J_{HH} = 6.8, CH ₂); 6.55 (1H, c, CH=C); 7.4–7.8 (5H, M, C ₆ H ₅)		
14b	1655, 2275, 3080	2.3 (3H, c, CH ₃); 2.9 (2H, т, $J_{\rm HH}$ = 6.8, CH ₂); 3.8 (2H, т, $J_{\rm HH}$ = 6.8, CH ₂); 6.45 (1H, c, CH=C); 7.25 (2H, д, J_o = 8.0, H-3 аром.); 7.70 (2H, д, J_o = 8.0, H-2 аром.)		
14c	1630–1660, 2267, 3080	2.9 (2H, T, J_{HH} = 6.8, CH ₂); 3.8 (2H, T, J_{HH} = 6.8, CH ₂); 3.85 (3H, c, OCH ₃); 6.4 (1H, c, CH=C); 7.25 (2H, д, J_o = 9.0, H-3 аром.); 7.60 (2H, д, J_o = 9.0, H-2 аром.)		
14d	1655–1675, 2275, 3080	2.9 (2H, T, $J_{HH} = 6.8$, CH ₂); 3.8 (2H, T, $J_{HH} = 6.8$, CH ₂); 6.5 (1H, c, CH=C); 7.25 (2H, $J_o = 9.0$, H-3 apon.); 7.70 (2H, $J_o = 9.0$, H-2 apon.)		

Спектральные характеристики соединений 7, 12, 14

Кипячение эквимолярных количеств соединений 1 и 4 в толуоле не привело ни к ожидаемым 6-арил-2-[ди(метилтио)метилен]амино-4H-1,3-оксазин-4онам 10, ни к альтернативным 3,4-дигидро-2H-1,3-оксазин-4-онам 11. Из реак-ционной смеси выделены лишь димеры ароилкетенов 9, идентифициро-ванные сравнением с заведомо известными образцами [1]. Дело в том, что 2-(цианоимино)-1,3-дитиолан, электронный аналог соединения 4, взаимо-действует с фурандионами 1 в аналогичных условиях по связи С≡N с об-разованием [4+2]-циклоаддуктов [7].

N-Цианоамидин 5 реагирует с кетенами 2, генерируемыми термолизом фурандионов 1 также своей связью С≡N. Строение продуктов реакции – 6-арил-2-диметиламинометиленамино-4H-1,3-оксазин-4-онов 12a,b – установлено методом РСА [10]. Как и в рассмотренных ранее случаях образование замещенных 3,4-дигидро-2H-1,3-оксазин-4-онов 13 не наблюдалось.

Ароилкетены 2, генерируемые термолизом фурандионов 1, присоединяются исключительно к связи N–<u>C≡N</u> N,N-бис(β-цианоэтил)цианамида 6 с образованием 6-арил-2-[N,N-бис(β-цианоэтил)амино]-4H-1,3-оксазин-4-онов 14а–d. Иных [4+2]-циклоаддуктов (например, типа 15) в реакционной массе обнаружено не было.

С целью объяснения результатов данного исследования и ранее полученных данных [6, 7] нами были проведены расчеты электронного строения молекул цианосоединений **3–6**, а также упомянутых выше метиленаминоацетонитрила **16** и 2-(цианоимино)-1,3-дитиолана **17** полуэмпирическим методом ССП МО ЛКАО в приближении MNDO-PM3 [11].

Однако распределение электронной плотности в молекулах цианосоединений, как оказалось, не позволяет объяснить их поведение в реакциях с кетенами 2. Среди статических индексов реакционной способности цианосоединений 3–6, 16, 17 (полные и π -электронные заряды атомов азота и заселенности его АО) не удалось найти такие, анализ которых позволил 1494 бы расположить эти цианосоединения в ряд по увеличению (уменьшению) активности по отношению к ароилкетенам.

Так, по данным расчета, отрицательный заряд атома углерода цианогруппы больше, чем атома азота, что представляется маловероятным, если принять во внимание электроотрицательности этих атомов. В цианосоединениях **3–5** *sp*²-гибридизованный атом азота оказывается, согласно расчетам, более электроноизбыточным, чем *sp*-гибридизованный, хотя молекула ароилкетена атакуется именно последним. Величины зарядов атомов существенно зависят и от использованного для расчета приближения. Так, заряды атомов фрагмента N=C–N молекулы соединения **5**, по данным полуэмпирических расчетов, в различных приближениях равны: CNDO/2 (–0.212, +0.152, –0.199 а. е.), MNDO (–0.128, +0.002, –0.269 а. е.), AM1 (–0.084, –0.068, –0.212 а. е.), MNDO-PM3 (–0.099, –0.107, –0.050 а. е.).

В молекуле бензоилкетена **2а** полные/ π -электронные заряды атомов имеют следующие значения: $C_{(1)}=O$ (-0.144/+0.303), $C_{(1)}$ (+0.417/+0.163), $C_{(2)}$ (-0.488/ -0.382), $C_{(3)}$ (+0.426/+0.276), $C_{(3)}=O$ (-0.364/-0.391). Полные/ π -электронные порядки связей равны: 2.119/0.592 [$C_{(1)}=O$], 1.591/0.764 [$C_{(1)}=C_{(2)}$], 0.987/0.317 [$C_{(2)}-C_{(3)}$], 1.835/0.864 [$C_{(3)}=O$]. (Расчетные данные по соединению **2а**, опубликованные в работе [12], не содержат значений зарядов атомов и порядков связей.)

Поскольку статические индексы реакционной способности цианосоединений не позволили объяснить наблюдаемые результаты, нами были локализованы переходные состояния реакций [4+2]-циклоприсоеди-нения кетена **2a** с цианосоединениями **3–6** и оценены энергии активации (E_a) как разность энтальпий образования активированных комплексов [$\Delta H_f(\mathbf{AK})$] и исходных реагентов: бензоилкетена **2a** и цианосоединения (ЦС)

$$[\Delta H_f(\mathbf{2a})] - [\Delta H_f(\mathrm{LIC})].$$

$$N \equiv C - C - N = CH_2$$

$$H_2$$

$$\mathbf{16}$$

1a

С целью выяснения пригодности приближения MNDO-PM3 для реше-

ния поставленной задачи нами были локализованы переходные состояния модельных реакций кетена **2a** с метиленаминоацетонитрилом **16**, приводящих, соответственно, к 6-фенил-3-цианометил-3,4-дигидро-2H-1,3-оксазин-4-ону **18** и 2-метиленаминометил-6-фенил-4H-1,3-оксазин-4-ону **19**.

Корректность локализации переходных состояний подтверждена одним отрицательным значением матрицы Гессе. Согласно расчетам, активационный барьер реакции образования оксазина **18** (56.0 кДж/моль) ниже, чем оксазина **19** (72.3 кДж/моль), что не противоречит полученным экспериментальным данным [6]. Рассчитанная энергия активации реакции образования циклоаддукта **20** ($R^2 + R^3 = -SCH_2CH_2S-$) из кетена **2а** и цианосоединения **17** (73.3 кДж/моль) оказалась не только ниже таковой для альтернативного циклоаддукта **21** ($R^2 + R^3 = -SCH_2CH_2S-$) (135.4 кДж/моль), но и ниже энергии активации реакции димеризации кетена **2а** (94.6 кДж/моль) [13], что объясняет преимущественное образование циклоаддукта, а не димера.

Рассчитанные энергии активации реакций, исследованных в настоящей работе приведены в табл. 3.

Как следует из расчетов, значения E_a всех реакций ниже значения E_a реакции димеризации кетена **2a**. Это указывает также на предпочтительность образования циклоаддуктов **7**, **10**, **12**, **14**. Причины пассивности цианосоединения **4** в реакции с соединением **2a** до конца не ясны, поскольку взаимодействие соединений **2a** и **17**, характеризующееся более высокой расчетной энергией активации приводит к образованию 1,3-оксазина.

Ранее высказывалось предположение, что взаимодействие ароилкетенов с цианосоединениями, приводящее к замещенным 4H-1,3-оксазин-4-онам, является реакцией согласованного $[4_{\pi}+2_{\pi}]$ -циклоприсоединения [6]. Реализация такого механизма требует сближения реагентов в параллельных плоскостях [14] и образования новых связей за счет π -электронных систем диена (ароилкетена) и диенофила (цианосоединения). Однако локализовать переходное состояние при таком характере сближения реагентов не удалось. Оказалось, что активированные комплексы, соответствующие переходным состояниям реакций кетена **2a** с перечисленными цианосоединениями, имеют совершенно другую геометрию. Их основные геометрические параметры (длины связей и валентные углы) приведены в табл. 4.

Как следует из расчетов активированные комплексы реакций бензоилкетена **2a** с цианосоединениями **3–6** практически планарны. Диэдрические углы имеют следующие значения:

Таблица З

Энтальпии образования (
$$\Delta H_{f}$$
), энергии активации ($E_{
m a}$), длина связи ($l,$ Å)

1496

Параметр	АК (7)	АК (10)	АК (20)	АК (12)	AK (14)
ΔH_{f} , кДж/моль	304.4	230.9	289.0	176.9	385.6
$E_{\rm a,}$ кДж/моль	21.3	65.2	73.3	42.9	61.1
$O_{(1)}C_{(2)}$	2.046	2.087	2.084	2.068	2.111
C(2)-N(3)	1.209	1.195	1.192	1.201	1.191
$N_{(3)} \ldots C_{(4)}$	1.488	1.520	1.527	1.502	1.535
C ₍₄₎ -C ₍₅₎	1.422	1.406	1.403	1.413	1.402
C ₍₅₎ -C ₍₆₎	1.371	1.411	1.415	1.405	1.415
C ₍₆₎ –O ₍₁₎	1.280	1.265	1.262	1.268	1.262
$C_{(4)} = O$	1.212	1.210	1.209	1.212	1.209
$O_{(1)}C_{(2)}\!-\!N_{(3)}$	100.9	98.4	98.3	100.0	98.6
$C_{(2)}\!\!-\!\!N_{(3)}\!\ldots C_{(4)}$	139.0	142.5	142.8	140.6	141.7
$N_{(3)}C_{(4)}-C_{(5)}$	115.0	112.9	112.3	114.0	113.3
$C_{(4)} - C_{(5)} - C_{(6)}$	125.1	125.7	125.9	125.2	126.3
$C_{(5)} - C_{(6)} - O_{(1)}$	123.4	123.8	123.8	123.7	123.4
$C_{(6)} - O_{(1)} \dots C_{(2)}$	117.1	116.7	116.7	116.5	116.8
$N_{(3)}C_{(4)}=O$	113.2	112.4	112.4	112.8	111.3
C ₍₅₎ -C ₍₄₎ =O	131.9	134.8	134.4	133.3	135.4
$\Delta lO_{(1)}-C_{(2)}$	0.67	0.66	0.66	0.66	0.64
$\Delta l C_{(2)} = N_{(3)}$	1.09	1.09	1.10	1.09	1.10
$\Delta l N_{(3)} - C_{(4)}$	0.97	0.95	0.94	0.96	0.94
$\Delta l C_{(4)} - C_{(5)}$	1.03	1.05	1.05	1.04	1.05
$\Delta l C_{(5)} = C_{(6)}$	0.99	0.96	0.96	0.96	0.96
$\Delta l C_{(6)} - O_{(1)}$	1.08	1.09	1.10	1.10	1.10
$\Delta l C_{(4)} = O$	1.00	1.00	1.00	1.00	1.00

валентные углы (ω, град)в активированных комплексах (АК) реакций бензоилкетена с цианосоединениями 2–5

Межатомные расстояния $O_{(1)}...C_{(2)}$ и $N_{(3)}...C_{(4)}$ в активированных комплексах, равные, соответственно, 2.079±0.032 и 1.512±0.024 Å, свидетельствуют об асинхронности образования соответствующих связей, но в рамках согласованного процесса. Попытки отыскания цвиттер-ионного интермедиата типа **22** на поверхности потенциальной энергии реакции кетена **2a** с цианосоединениями **3–6** оказались безрезультатными.

По-видимому, на стадии образования активированных комплексов связь $N_{(3)}-C_{(4)}$ формируется опережающими темпами, тогда как на стадии их превращения в продукты реакции уже с большей скоростью образуется связь $O_{(1)}-C_{(2)}$. В образовании связи $N_{(3)}-C_{(4)}$ участвует $2p_y$ -орбиталь атома $C_{(1)}$ молекулы бензоилкетена **2а** и 2*s*-орбиталь атома азота молекулы

Таблица 4

Полные/π-электронные заряды атомов, полные/π-электронные порядки связей Δ*p* в активированных комплексах (АК) реакций бензоилкетена 2a с

Параметр*	АК (7)	АК (10)	АК (20)	АК (12)	АК (14)
$qO_{(1)}$	$\frac{-0.565}{-0.672}$	$\frac{-0.517}{-0.609}$	$\frac{-0.497}{-0.595}$	$\frac{-0.541}{-0.632}$	$\frac{-0.531}{-0.601}$
$qC_{(2)}$	$\frac{+0.217}{+0.134}$	$\frac{+0.149}{+0.101}$	<u>+0.138</u> +0.106	+0.196 +0.123	$\frac{+0.071}{+0.064}$
$qN_{(3)}$	$\frac{-0.020}{+0.226}$	$\frac{+0.037}{-0.185}$	$\frac{+0.057}{-0.173}$	<u>+0.009</u> -0.199	$\frac{+0.074}{-0.085}$
$qC_{(4)}$	$\frac{+0.444}{+0.239}$	+0.448 +0.226	+0.448 +0.223	+0.447 +0.231	$\frac{+0.440}{+0.212}$
$qC_{(5)}$	$\frac{-0.558}{-0.403}$	<u>-0.586</u> -0.433	<u>-0.587</u> -0.436	<u>-0.582</u> -0.427	$\frac{-0.589}{-0.432}$
$qC_{(6)}$	$\frac{+0.401}{+0.267}$	+0.414 + 0.287	+0.420 +0.291	+0.412 +0.280	+0.429 +0.297
<i>q</i> C ₍₄₎ = <u>O</u>	$\frac{-0.346}{-0.455}$	$\frac{-0.346}{-0.509}$	$\frac{-0.350}{-0.509}$	$\frac{-0.355}{-0.483}$	$\frac{-0.342}{-0.506}$
$pO_{(1)}C_{(2)}$	<u>0.154</u> 0.092	<u>0.136</u> 0.092	<u>0.140</u> 0.094	<u>0.145</u> 0.096	<u>0.118</u> 0.092
<i>p</i> C ₍₂₎ –N ₍₃₎	<u>2.293</u> 0.894	<u>2.424</u> 0.918	<u>2.456</u> 0.925	<u>2.369</u> 0.909	<u>2.469</u> 0.963
$pN_{(3)}C_{(4)}$	$\frac{0.774}{0.206}$	<u>0.701</u> 0.183	<u>0.687</u> 0.178	<u>0.741</u> 0.196	<u>0.676</u> 0.169
<i>p</i> C ₍₄₎ –C ₍₅₎	<u>1.140</u> 0.451	$\frac{1.214}{0.522}$	$\frac{1.233}{0.537}$	<u>1.186</u> 0.496	<u>1.239</u> 0.542
<i>p</i> C ₍₅₎ –C ₍₆₎	<u>1.389</u> 0.661	$\frac{1.278}{0.580}$	<u>1.255</u> 0.560	<u>1.315</u> 0.608	<u>1.254</u> 0.560
<i>p</i> C ₍₆₎ –O ₍₁₎	<u>1.399</u> 0.615	$\frac{1.514}{0.692}$	<u>1.538</u> 0.706	<u>1.481</u> 0.671	<u>1.529</u> 0.703
<i>p</i> C ₍₄₎ =O	$\frac{1.827}{0.807}$	<u>1.820</u> 0.775	<u>1.815</u> 0.762	<u>1.813</u> 0.789	<u>1.821</u> 0.767
$\Delta p O_{(1)} - C_{(2)}$	0.15	0.13	0.14	0.14	0.12
$\Delta p C_{(2)} - N_{(2)}$	1.46	1.40	1.41	1.41	1.58
$\Delta p N_{(3)} - C_{(4)}$	0.75	0.73	0.72	0.76	0.70
$\Delta pC_{(4)} - C_{(5)}$	1.17	1.25	1.27	1.22	1.27
$\Delta pC_{(5)} - C_{(6)}$	0.79	0.73	0.71	0.75	0.71
$\Delta p C_{(6)} - O_{(1)}$	1.34	1.46	1.48	1.46	1.47
$\Delta pC_{(4)}=O$	0.99	0.97	0.97	0.98	0.99

цианосоединениями 3-6, 16

* π -Электронные заряды атомов кислорода определены как разность между рассчитанной заселенностью его $2p_z$ -AO и 1.

цианосоединения. Это подтверждается незначительным изменением длины связи C=N в активированных комплексах по сравнению с изолированной молекулой соединений **3–6** (увеличение не более, чем на 1498

4%). Полный порядок связи C₍₂₎=N₍₃₎ в активированных комплексах составляет в среднем 86% от полного порядка связи N=C в молекулах цианосоединений. Участие в образовании связи N₍₃₎-C₍₄₎ 2p_z- или 2p_y-орбитали атома азота должно было бы привести к большему увеличению длины и уменьшению порядка связи C=N в цианофрагменте активированных комплексов. Связь О(1)-С(2) образуется за счет перекрывания орбитали, на которой находится одна из неподеленных электронных пар атома кислорода и $2p_{v}$ -орбитали атома углерода, о чем свидетельствует значение валентного угла С₍₆₎-О₍₁₎...С₍₂₎ в активированных комплексах, равное 116.8±0.3°. Изменение геометрии фрагмента диенофила по сравнению с изолированной молекулой незначительно. Так, длина связи $C_{(1)}-C_{(2)}$ в молекуле **2а** [связь $C_{(4)}-C_{(5)}$ в активированном комплексе] увеличивается на 6.5±0.5%, связь C₍₂₎-C₍₃₎ становится короче на 4.5±1.5%, от 3 до 5% увеличиваются длины связей С=О. Наибольшее изменение претерпевает валентный угол C₍₂₎=C₍₁₎=O: он уменьшается со 179.1 до 133.7±1.8°, валентные углы $C_{(1)}=C_{(2)}-C_{(3)}$ и $C_{(2)}-C_{(3)}=O$ увеличиваются незначительно, не более, чем на 2.6°. О степени образования связей в активированных комплексах можно судить по значениям Δl – отношению длины связи в циклоаддукте к аналогичной длине связи (межатомному расстоянию) в активированном комплексе (табл. 3). Как показывают расчеты, межатомное расстояние О(1)...С(2) в активированных комплексах составляет 64-67% от длины аналогичных связей в циклоаддукте, а N₍₃₎...C₍₄₎ -94-97%. Длины остальных связей также не претерпевают существенных изменений, что следует из сравнения значениий Δl . Параллельно с Δl нами рассчитаны Δp – отношение порядка связи в активированном комплексе к порядку аналогичной связи в циклоаддукте (табл. 4). Анализ этих значений, а также значений зарядов атомов показывает, что распределение электронной плотности в активированных комплексах существенно отличается от такового в циклоаддуктах. Так, например, Δp связи $O_{(1)}-C_{(2)}$ составляет в среднем 14%, а Δp связи N₍₃₎–C₍₄₎ – 73%.

На стадии образования активированных комплексов происходит перенос от 0.450 элементарного заряда от молекулы цианосоединения к молекуле кетена **2a** в активированном комплексе **AK** (**14**) до 0.503 элементарного заряда в активированном комплексе **AK** (**7**). Как показали расчеты, большую часть заряда (в среднем -0.203 а. е.) принимает кетенный атом кислорода и меньшую – кетонный (-0.174 а. е.). Заряд атома C₍₂₎ увеличивается незначительно (-0.092 а. е.), *sp*-гибридизованный атом азота во всех активированных комплексах, за исключением **AK** (**6**), становится электронодефицитным.

По данным расчетов, энергия активации реакции образования окса-зина 7 оказалась на 63.1 кДж/моль ниже, чем гипотетического оксазина 8.

Согласно расчетам, образование оксазинов 8 и 11 в случае реализации соответствующих процессов также может протекать согласованно. Однако

энергия активации реакции $2a + 3 \rightarrow 7a$ на 63.1 кДж/моль ниже, чем реакции $2a + 3 \rightarrow 8a$, и оксазин 8a не образуется. Разность в энергиях активации реакций образования оксазинов 14a и 15a состав-ляет 15.8 кДж/моль.

Согласно расчетам, образование оксазина 13а из кетена 2а и циано-

амидина 5 должно протекать ступенчато через цвиттер-ион 23.

Но энергетический профиль этой реакции лежит выше по шкале ΔH_{f_5} чем профиль согласованного процесса образования оксазина 12, и оксазин 13 не образуется. Таким образом, квантово-химическое моделирование реакций бензоилкетена 2а с цианосоединениями 3, 5, 6, 16 дает качественное совпадение с экспериментом, а реакции фурандионов 1 с цианосоединениями 4 и 17 заслуживают более глубокого изучения.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

ИК спектры синтезированных соединений записаны на спектрометре UR-20 в вазелиновом масле. Спектры ЯМР ¹Н получены на приборе Tesla BS-487 (80 МГц) в CDCl₃, внутренний стандарт ГМДС (δ 0.05 м. д.). Ход реакций и чистоту полученных соединений контролировали методом TCX на пластинках Silufol в системе бензол–эфир, 3:2, проявление парами иода.

Квантово-химические расчеты выполнены с помощью пакета программ МОРАС 7.0 [15] на ПЭВМ Pentium 200-ММХ. Переходные состояния локализованы с помощью процедуры TS и уточнены с помощью процедуры NLLSQ.

6-Арил-2-[(метилтио)(фениламино)метилен]амино-4H-1,3-оксазин-4-оны 7а,b. Смесь 0.01 моль фурандиона 1 и 0.01 моль S-метил-N'-фенил-N-цианоизотиомочевины 3 в 15–20 мл безводного толуола кипятят 30 мин. Реакционную массу охлаждают до комнатной температуры, выпавший осадок отфильтровывают, промывают эфиром и перекристаллизовывают из толуола.

Взаимодействие 5-арил-2,3-дигидро-2,3-фурандионов с N-циано[ди(метилтио)]имидокарбонатом. Смесь 0.01 моль фурандиона 1 и 0.01 моль цианосоединения 4 в 20–25 мл толуола кипятят 30 мин. После охлаждения реакционной массы до комнатной температуры отфильтровывают пиранон 9. Фильтрат упаривают, остаток перекристаллизовывают из гексана и выделяют исходное цианосоединение 4.

6-Арил-2-диметиламинометиленамино-4H-1,3-оксазин-4-оны 12a,b получают аналогично соединениям 7a,b из фурандионов 1 и N',N'-диметил-N-цианоформамидина (5).

6-Арил-2-[N,N-бис(β-цианоэтил)амино]-4H-1,3-оксазин-4-оны 14а-d. К раствору 0.01 моль фурандиона 1 в 20–25 мл безводного диоксана прибавляют 0.01 моль N,N-бис-(β-цианоэтил)цианамида 6 и кипятят 1 ч. Осадок, выпавший после охлаждения реакционной массы до комнатной температуры, отфильтровывают и перекристаллизовывают из этанола.

СПИСОК ЛИТЕРАТУРЫ

1. Ю. С. Андрейчиков, Ю. А. Налимова, А. П. Козлов, И. А. Русаков, *ЖОрХ*, **14**, 2436 (1978).

2. Yu. S. Andreichikov, G. Kollenz, C. P. Kappe, R. Lueng-Toung, C. Wentrup, *Acta Chem.* 1500

Scand., 46, 683 (1992).

- 3. Ю. С. Андрейчиков, В. О. Козьминых, Ю. В. Ионов, Р. Ф. Сараева, ХГС, 271 (1978).
- 4. Ю. С. Андрейчиков, Ю. В. Ионов, *ЖОрХ*, **18**, 2430 (1982).
- 5. Л. Н. Карпова, Н. В. Колотова, С. Н. Шуров, Ю. С. Андрейчиков, *ЖОрХ*, **28**, 779 (1992).
- 6. Ю. С. Андрейчиков, Д. Д. Некрасов, М. А. Руденко, А. Ю. Коновалов, *XTC*, 740 (1987).
- 7. Ю. С. Андрейчиков, Д. Д. Некрасов, *ЖОрХ*, **20**, 1755 (1984).
- 8. Ю. С. Андрейчиков, Д. Д. Некрасов, *XГС*, 166 (1985).
- 9. Д. Д. Некрасов, ХГС, 291 (2001).
- 10. З. Г. Алиев, Д. Д. Некрасов, Л. О. Атовмян, Журн. структур. химии, 41, 1293 (2000).
- 11. J. J. P. Stewart, J. Comp. Chem., 10, 202 (1989).
- 12. T. Saitoh, T. Oyama, K. Sakurai, Y. Niimura, M. Hinata, Y. Horiguchi, J. Toda, T. Sato, *Chem. Pharm. Bull.*, 44, 956 (1996).
- 13. С. Н. Шуров, в кн. Перспективы развития естественных наук в высшей школе, Пермь, 2001, 1, 50.
- 14. Р. Вудворд, Р. Хоффман, *Сохранение орбитальной симметрии*, Мир, Москва, 1971, с. 30.
- J. J. P. Stewart, MOPAC 7.0 Frank J. Seiler Res. Lab. U. S. Air Force Laboratory QCMP 175.

Пермский государственный университет, Пермь 614990, Россия e-mail: cheminst@mpm.ru Поступило в редакцию 07.05.2003 После переработки 10.12.2004