В. И. Теренин, А. С. Иванов

ЦИКЛОТРАНСФОРМАЦИЯ АЗИНИЕВЫХ СОЛЕЙ В ГИДРИРОВАННЫЕ ЦИКЛИЧЕСКИЕ АЛКИЛАМИНОКЕТОНЫ

Изучена нуклеофильная циклотрансформация пирроло[1,2-*a*]пиразиниевых и изохинолиниевых солей, содержащих в α-положении метиновую группу. Предложен метод полу-чения ряда алкиламинотетрагидроиндолизинонов и тетралонов.

Ключевые слова: изохинолин, пирроло[1,2-*а*]пиразин, 5,6,7,8-тетрагидроиндолизинон, α-тетралон, нуклеофильная перегруппировка.

Изомеризационная рециклизация азиниевых солей под действием нуклеофилов, известная под названием перегруппировки Коста-Сагитуллина, предполагает обмен экзоциклического α -атома углерода на атом азота, находящийся в цикле [1]. Известно, что гетероциклы, претерпевающие циклотрансформацию по ANRORC-механизму, образуют продукты либо ароматической, либо сопряженной циклической структуры [2]. Экзоциклический атом углерода должен содержать не менее двух атомов водорода, необходимых для последовательного восстановления ароматичности продуктов трансформации – карбо- и гетероциклов. Ранее было показано, что алкилиодиды пирроло[1,2-а]пиразиния, содержащие в положении 1 метиленовую группу, под действием спиртовых растворов алкиламинов превращаются в 8-алкиламиноиндолизины [3], а алкилиодиды изохинолиния – в 1-алкиламинонафталины [4]. Нуклеофильная трансформация азациклов, содержащих в α-положении метиновый заместитель, по указанным выше причинам, не рассматривалась. Мы впервые обнаружили способность ароматических гетероциклических соединений 2а-f и 5а-с. содержащих в α-положении по отношению к циклическому атому азота метиновый заместитель, к неизвестной ранее циклотрансформации в гидрированные циклические алкиламинокетоны За-д и 6а-d, включая спироциклические соединения.

Сравнительный анализ спектров ЯМР ¹Н азотистых оснований **1а**–с, **4а,b** и продуктов циклотрансформации **3а–g**, **6а–d** выявил определенные структурные особенности полученных соединений. Исчезновение сигналов протонов пиразинового (в случае исходных **1а–с**) и пиридинового (в случае соединений **3а,b**) ядер, а также атома водорода метиновой группы, и появление сигналов диастереотопных протонов в области резонанса протонов алифатических групп говорит о рециклизации исходных азациклов. На примере продуктов рециклизации **3b** и **6b** структуры были также подтверждены данными спектров ЯМР ¹³С. В ИК спектрах полученных соединений обнаружены валентные колебания групп C=O и NH.

Соеди- нение	R	R^1	R^2	Соеди- нение	R	R^1	R ³
1a	Me	Н		3a	Me	Н	Me
1b	Me	Me		3b	Me	Н	Et
1c	$R+R = (CH_2)_4$	Н		3c	Me	Н	<i>i</i> -Pr
2a	Me	Н	Me	3d	Me	Me	Me
2b	Me	Н	Et	3e	Me	Me	Et
2c	Me	Me	Me	3f	$R+R = (CH_2)_4$	Н	Me
2d	Me	Me	Et	3g	$R+R = (CH_2)_4$	Η	Et
2e	$R+R = (CH_2)_4$	Н	Me				
2f	$R+R = (CH_2)_4$	Н	Et				

Соеди- нение	R	R^2	Соеди- нение	R	R ³
4a 4b	Me $\mathbf{P} + \mathbf{P} = (\mathbf{C}\mathbf{H})$		6a 64	Me	Me
40 5a	$\mathbf{R} + \mathbf{R} = (\mathbf{C}\mathbf{H}_2)_5$ Me	Me	60 60	Me	Et <i>i</i> -Pr
5b	Me	Et	6d	$R+R = (CH_2)_5$	Me
5c	$R+R = (CH_2)_5$	Me			

Варьирования температуры реакции и времени нагревания при взаимодействии спиртовых растворов алкиламинов с пирроло[1,2-*a*]пиразиниевыми солями 2 незначительно влияет на выходы продуктов рециклизации. Несколько иначе протекают реакции с изохинолиниевыми солями 5. Соотношение продуктов дезалкилирования 4а и рециклизации 6а в случае реакции 2-метилиодида 1-изопропилизохинолиния (5а) со спиртовым раствором метиламина при температурах 140 и 160 °C составляет 1:2 и 5:1 соответственно. Вероятно, при более низкой температуре скорости циклотрансформации и дезалкилирования близки. При повышении температуры скорость реакции, приводящей к 1-изопропилизохинолину (4a), становится больше скорости конкурирующего процесса рециклизации. При взаимодействии 2-метилиодида 1-циклогексилизохинолиния (5c) со спиртовым раствором метиламина приемлемым оказалось проведение реакции при более низкой температуре (120 °C), что, видимо, связано с дополнительными стерическими затруднениями (по сравнению с изопропильной группой), создаваемыми циклогексильным кольцом. Тем не менее, выход спироциклического соединения 5c остается низким.

Исследование реакций переаминирования исходных алкилиодидов пирроло[1,2-*a*]пиразиния **2** и изохинолиния **5** показало возможность полного обмена алкиламинового фрагмента в положении 6 полученных производных тетрагидроиндолизинонов **3** и в положении 3 производных тетралонов **6**. В случае, когда в исходной азиниевой соли при атоме азота $R^2 \neq Me$ и в алкиламине $R^3 \neq Me$, выходы соответствующих продуктов рециклизации заметно снижаются, а продуктов дезалкилирования исходных солей до азотистых оснований возрастают. Вероятно, это связано со стерическими затруднениями, создаваемыми объемными алкильными заместителями в исходных солях и в реагенте при атаке нуклеофила по положению 1 исходного гетероцикла.

Обнаруженная реакция протекает по следующей схеме. Атака нуклеофила по α -атому C₍₃₎ (путь A) или C₍₁₎ (путь B) при четвертичном атоме азота приводит к раскрытию гетероциклического ядра и образованию интермедиатов А1,3. В результате атаки енаминового фрагмента на иминный атом углерода интермедиатов В1,2,3, образуются циклические имины С1,2,3, которые затем гидролизуются с образованием гидрированных циклических алкиламинокетонов D1,2. В силу того, что α-метиновая группа содержит только один атом водорода, ароматизация невозможна и рециклизация завершается образованием гидрированного соединения. Следует отметить, что в случае реакции 1-изопропилпирроло[1,2-а]пиразиниевой соли и спиртового раствора изопропиламина, помимо 6-изопропиламиноиндолизинона (3с), обнаружено образование в следовых количествах кетона строения D2, как следствие прохождения реакции по пути В. В подтверждение предложенной ниже схемы необходимо добавить, что при взаимодействии метилиодида 1-изопропилпирроло[1,2-а]пиразиния (2а) со спиртовым раствором этиламина удалось выделить в небольшом количестве и зарегистрировать спектр ЯМР ¹Н смеси иминов строения С2 и С1 (минорный продукт). Помимо сигналов протонов пиррольного кольца наблюдаются сигналы протонов двух этильных групп имина строения С2, для минорного продукта – метилиминной и этиламинной групп (см. экспериментальную часть). По всей вероятности, начальная атака нуклеофила осуществляется в положение 3, наряду с атакой по α-атому С₍₁₎. Но по соотношению интегральных интенсивностей сигналов протонов в упомянутом выше спектре иминов строения С1 и С2 нельзя судить о предпочтительности нуклеофильной атаки по положению 1 или 3 азинового кольца, поскольку образующиеся интермедиаты А1, В3 и имин С1 при большом избытке алкиламина должны подвергаться переаминированию.

X = N или C

Подобная трансформация цикла, несомненно, имеет общий характер, поскольку была продемонстрирована нами на примере пирроло[1,2-*a*]пиразинового и изохинолинового ядер и является новым методом получения ряда тетрагидроиндолизинонов и тетралонов (включая спироциклические соединения **3f**,**e**, **6c**), содержащих алкиламинную группу.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Спектры ЯМР ¹Н зарегистрированы на спектрометре Varian VXR-400 и Bruker Ultra Shield (400 МГц) в CDCl₃ при температуре 28 °C, внутренний стандарт ТМС. Массспектры записаны на приборе Kratos MS-90 при энергии ионизации электронным ударом 70 эВ. ИК спектры получены на спектрометре UR-20, пленка в CCl₄. Контроль за прохождением реакций и чистотой синтезированных соединений осуществлялся TCX на пластинках Alufol в системах бензол, бензол–этилацетат, 1:1, проявление в парах иода, спиртовым раствором нингидрина. Исходные пирроло[1,2-*a*]пиразины **1а-с** были получены по известной методике [5], а изохинолины **4а,b** по классическому методу Бишлера–Напиральского [6] с последующей ароматизацией над палладиевой чернью.

Получение солей 2а–f, 5а–c (общая методика). Смесь 3 ммоль азотистого основания 1а–с или 4а,b и 3.5-4 мл иодистого метила или иодистого этила нагревают 2–3 ч в запаянной ампуле при 70–80 °C до расслоения реакционной смеси. Верхний маслообразный слой отделяют и закристаллизовывают при охлаждении на льду. Кристаллы несколько раз промывают охлажденным ацетоном. Приведены: соль, выход, %, т. пл. °C: 2a, 76, 160–161; 2b, 65, 82–84; 2c, 72, 163–165; 2d, 62, 84–86; 2e, 68, 160–162; 2f, 52, 123–124; 5a, 80, 240–241; 5b, 75, 80–82; 5c, 45, 171–172.

Получение продуктов рециклизации 3а–f, 6а–с (общая методика). Смесь 1 ммоль четвертичной соли **2а–f** или **5а–с** и 4–5 мл 40% спиртового раствора алкиламина нагревают в запаянной стеклянной ампуле 6–8 ч при 140 °С, растворитель отгоняют в вакууме, продукт рециклизации выделяют колоночной хроматографией на нейтральном Al₂O₃ II ст. акт. по Брокману, элюируя бензолом с последующим увеличением полярности до системы бензол–этилацетат, 1 : 1.

Спектр ЯМР ¹Н смеси иминов. А. Строения **С2** (**7,7-диметил-6-этиламино-8-этил-имино-5,6,7,8-тетрагидроиндолизин**), δ , м. д. (J, Гц): 1.08 (3H, т, J = 7.6, 6-NHCH₂<u>CH</u>₃); 1.21, 1.23 (по 3H, оба с, 7-(CH₃)_a, 7-(CH₃)_b); 1.35 (3H, т, J = 7.4, 8-NCH₂<u>CH</u>₃); 2.62, 2.79 (по 1H, оба д. к, J = 7.4, J = 11.5, 6-NHCH<u>4</u><u>H</u>_bCH₃); 2.88 (1H, д. д, $J_{65b} = 4.2$, $J_{65a} = 5.7$, H-6); 3.61 (2H, м, 8-NC<u>H4</u><u>H</u>_bCH₃); 3.97 (1H, д. д, $J_{5a5b} = 12.0$, $J_{5a6} = 5.7$, H_a-5); 4.20 (1H, д. д, $J_{5b5a} = 12.0$, $J_{5b6} = 4.2$, H_b-5); 6.27 (1H, д. д, J = 3.7, $J_{21} = 2.4$, H-2); 6.60 (1H, д. д, $J_{12} = 2.4$, J = 1.1, H-1); 6.69 (1H, м, H-3).

Б. Строения **С1** (минорная компонента) (**7,7-диметил-6-этиламино-8-метилимино-5,6,7,8-тетрагидроиндолизин**), δ , м. д. (*J*, Гц): 1.09 (3H, т, *J* = 7.4, 6-NHCH₂<u>CH₃</u>); 1.21, 1.23 (по 3H, оба с, 7-(CH₃)_a, 7-(CH₃)_b); 2.63, 2.79 (по 1H, оба д. к, *J* = 7.4, *J* = 11.4, 6-NHC<u>H_aH_b</u>CH₃); 2.87 (1H, д. д, *J*_{65b} = 4.2, *J*_{65a} = 5.7, H-6); 3.45 (3H, с, 8-NCH₃); 4.03 (1H, д. д, *J*_{5a5b} = 12.0, *J*_{5a6} = 5.7, H_a-5); 4.22 (1H, д. д, *J*_{5b5a} = 12.0, *J*_{5b6} = 4.2, H_b-5); 6.30 (1H, д. д, *J* = 3.7, *J* = 2.4, H-2); 6.72 (2H, м, H-1,3).

7,7-Диметил-6-метиламино-5,6,7,8-тетрагидроиндолизинон (3а). ИК спектр, v, см⁻¹: 3340 (NH), 1653 (С=О). Спектр ЯМР ¹Н, δ , м. д. (*J*, Гц): 1.21, 1.31 (по 3H, оба с, 7-(СН₃)_a, 7-(СН₃)_b); 2.51 (3H, с, 6-NH<u>CH₃</u>); 2.96 (1H, д. д, $J_{65a} = 6.9$, $J_{65b} = 3.8$, H-6); 4.05 (1H, д. д, $J_{5a5b} = 12.9$, $J_{5a6} = 6.9$, H_a -5); 4.32 (1H, д. д, $J_{5a5b} = 12.9$, $J_{5b6} = 3.8$, H_b-5); 6.26 (1H, д. д, $J_{21} = 4.1$, $J_{23} = 2.2$, H-2); 6.81 (1H, д. д, $J_{32} = 2.2$, $J_{31} = 1.5$, H-3); 6.98 (1H, д. д, $J_{12} = 4.1$, $J_{13} = 1.5$, H-1). Масс-спектр, $m/z (I_{отн}, %)$: 192 [M]⁺ (18), 149 [M–CH(CH₃)₂]⁺ (27), 107 [M–C(CH₃)₂CHNHCH₃]⁺ (53), 98 [M–C₅H₃NO]⁺ (100). Найдено, %: С 68.68; H 8.11; N 14.40. С₁₁H₁₆N₂O. Вычислено, %: С 68.72; H 8.3; N 14.57.

7,7-Диметил-6-этиламино-5,6,7,8-тетрагидроиндолизинон (3b). ИК спектр, v, см⁻¹: 3340 (NH), 1660 (С=О). Спектр ЯМР ¹H, δ, м. д. (*J*, Гц): 1.08 (3H, т, *J* = 7.1, 6-NHCH₂<u>CH</u>₃); 1.17, 1.28 (по 3H, оба с, 7-(CH₃)_a, 7-(CH₃)_b); 2.62, 2.81 (по 1H, оба д. к. *J* = 7.1, *J* = 11.2, 6-NHC<u>H₄H_b</u>CH₃); 3.03 (1H, д. д. *J*_{65b} = 4.1, *J*_{65a} = 7.5, H-6); 3.96 (1H, д. д. *J*_{5a6} = 7.5, *J*_{5a5b} = 12.7, H_a-5); 4.27 (1H, д. д. *J*_{5b6} = 4.1, *J*_{5b5a} = 12.7, H_b-5); 6.24 (1H, д. д. *J* = 2.2, *J*₂₁ = 4.0, H-2); 6.79 (1H, т. *J* = 2.2, H-3); 6.96 (1H, д. д. *J* = 2.2, *J*₁₂ = 4.0, H-1). Спектр ЯМР ¹³С без развязки от протонов, δ, м. д. (*J*, Гц): 15.5 (к. *J* = 125.8, 6-NHCH₂<u>C</u>H₃); 19.1 (к. *J* = 130.2, 7-(<u>C</u>H₃)_a); 22.5 (к. *J* = 111.2, 7-(CH₃)_b); 42.9 (т. *J* = 130.2, 6-<u>C</u>H₂CH₃); 45.6 (т. *J* = 142.0, C₍₅₎); 45.7 (с. С₍₇₎); 61.9 (д. *J* = 133.2, C₍₆₎); 110.8 (д. д. д. д. *J* = 172.7, *J* = 7.3, *J* = 3.6, C₍₁₎); 114.4 (д. д. д. *J* = 174.2, *J* = 7.3, *J* = 4.4, C₍₂₎); 125.4 (д. м. *J* = 184.4, C₍₃₎); 128.7 (м. C_{(8a})); 191.6 (с. С₍₈₎). Масс-спектр, *m/z* (*I*_{отн}, %): 206 [M]⁺ (12), 163 [M–CH(CH₃)₂]⁺ (11), 112 [M–C₅H₃NO]⁺ (100). Найдено, %: C 68.68; H 8.81; N 13.53. C₁₂H₁₈N₂O. Вычислено, %: C 68.87; H 8.79; N 13.56.

7,7-Диметил-6-изопропиламино-5,6,7,8-тетрагидроиндолизинон (**3**с). ИК спектр, v, см⁻¹: 3330 (NH), 1640 (С=О). Спектр ЯМР ¹Н, δ , м. д. (J, Гц): 1.03, 1.05 (по 3H, оба д, J = 6.2, 6-NHCH(CH₃)₂); 1.18, 1.31 (по 3H, оба с, 7-(CH₃)_a, 7-(CH₃)_b); 2.92 (1H, м. 6-NHC<u>H</u>(CH₃)₂); 3.08 (1H, д. д. $J_{65b} = 4.2$, $J_{65a} = 8.2$, H-6); 3.92, (1H, д. д. $J_{5a6} = 8.2$, $J_{5a5b} = 12.6$, H_a-5); 4.28 (1H, д. д. $J_{5b6} = 4.2$, $J_{5b5a} = 12.6$, H_b-5); 6.28 (1H, д. д. J = 2.3, $J_{21} = 4.1$, H-2); 6.84 (1H, т. J = 2.3, H-3); 7.03 (1H, д. д. J = 2.3, $J_{12} = 4.1$, H-1). Масс-спектр, m/z (I_{0TH} , %): 220 [M]⁺ (21), 177 [M–CH(CH₃)₂]⁺ (12), 126 [M–C₅H₃NO]⁺ (100). Найдено, %: С 70.80; H 9.07; N 12.69. С₁₃H₂₀N₂O. Вычислено, %: С 70.90; H 9.09; N 12.72. Выход соединений в реакции соли **2a** с изопропиламином, %: **3c** – 20, **1a** – 12, **3a** – 3.

3,7,7-Триметил-6-метиламино-5,6,7,8-тетрагидроиндолизинон (3d). ИК спектр, v, см⁻¹: 3350 (NH), 1675 (С=О). Спектр ЯМР ¹H, δ , м. д. (*J*, Гц): 1.18, 1.29 (по 3H, оба с, 7-(СH₃)_a, 7-(СH₃)_b); 2.28 (3H, с, 3-СH₃); 2.51 (3H, с, 6-NH<u>CH₃</u>); 2.93 (1H, д. д, *J*_{65a} = 6.8, *J*_{65b} = 3.8, H-6); 3.80 (1H, д. д, *J*_{5a5b} = 13.1, *J*_{5a6} = 6.8, H_a-5); 4.12 (1H, д. д, *J*_{5b5a} = 13.1, *J*_{5b6} = 3.8, H_b-5); 6.04 (1H, д, *J*₂₁ = 3.7, H-2); 6.95 (1H, д, *J*₁₂ = 3.7, H-1). Масс-спектр, *m/z* (*I*_{отн}, %): 206 [M]⁺ (42), 121 [M–C(CH₃)₂CHNHCH₃]⁺ (33), 98 [M–C₆H₅NO]⁺ (100). Найдено, %: С 69.77; H 8.89; N 13.35. С₁₂H₁₈N₂O. Вычислено, %: С 69.87; H 8.79; N 13.58.

3,7,7-Триметил-6-этиламино-5,6,7,8-тетрагидроиндолизинон (3e). ИК спектр, v, см⁻¹: 3340 (NH), 1650 (С=О). Спектр ЯМР ¹H, δ, м. д. (*J*, Гц): 1.12 (3H, т, *J* = 7.1, 6-NHCH₂<u>CH</u>₃); 1.19, 1.29 (по 3H, оба с, 7-(CH₃)_a, 7-(CH₃)_b); 2.27 (3H, с, 3-CH₃); 2.65, 2.82 (по 1H, оба д. к, *J* = 7.1, *J* = 10.4, 6-NHC<u>H₄H_b</u>CH₃); 3.03 (1H, д. д, *J*_{65a} = 7.3, *J*_{65b} = 4.5, H-6); 3.74 (1H, д. д, *J*_{5a6} = 7.3, *J*_{5a5b} = 12.5, H_a-5); 4.11 (1H, д. д, *J*_{5b6} = 4.5, *J*_{5b5a} = 12.5, H_b-5); 6.05 (1H, д, *J*₂₁ = 3.9, H-2); 6.95 (1H, д, *J*₁₂ = 3.9, H-1). Масс-спектр, *m/z* (*I*_{отн}, %): 220 [M]⁺ (11), 177 [M–CH(CH₃)₂]⁺ (26), 112 [M–C₆H₅NO]⁺ (100). Найдено, %: С 70.80; H 9.25; N 12.79. С₁₃H₂₀N₂O. Вычислено, %: С 70.87; H 9.15; N 12.72.

6-Метиламино-5,6,7,8-тетрагидроспиро[циклопентан-1,7'-индолизинон] (**3f**). ИК спектр, v, см⁻¹: 3350 (NH), 1660 (С=О). Спектр ЯМР ¹H, δ, м. д. (*J*, Гц): 1.59 (1H, м, из 7'-(CH₂)₄); 1.72 (4H, м, из 7'-(CH₂)₄); 1.94 (2H, м, из 7'-(CH₂)₄); 2.33 (1H, м, из 7'-(CH₂)₄); 2.44 (3H, с, 6-NH<u>CH₃</u>); 2.95 (1H, т, *J* = 3.4, H-6); 4.21 (2H, д, *J* = 3.4, 5-CH₂); 6.26 (1H, д. д, *J* = 2.2, *J*₂₁ = 4.0, H-2); 6.78 (1H, т, *J* = 2.2, H-3); 6.96 (1H, д. д, *J* = 2.2, *J*₁₂ = 4.0, H-1). Масс-спектр, *m*/*z* (*I*_{0тн}, %): 218 [M]⁺ (36), 162 [M–C₄H₈]⁺ (20), 149 [M–C₅H₉]⁺ (16), 124 [M–C₅H₃NO]⁺ (100). Найдено, %: С 69.88; H 8.50; N 12.40. C₁₃H₁₈N₂O. Вычислено, %: С 71.52; H 8.31; N 12.83.

6-Этиламино-5,6,7,8-тетрагидроспиро[циклопентан-1,7'-индолизинон] (3g). ИК спектр, v, см⁻¹: 3360 (NH), 1660 (С=О). Спектр ЯМР ¹H, δ , м. д. (*J*, Гц): 1.06 (3H, т, *J* = 7.2, 6-NHCH₂<u>CH</u>₃); 1.70 (5H, м, из 7'-(CH₂)₄); 1.89, 1.98, 2.29 (по 1H, три м, из 7'-(CH₂)₄); 2.58, 2.78 (по 1H, оба д. к, *J* = 7.2, *J* = 11.3, 6-NHC<u>H₄H_b</u>CH₃); 3.16 (1H, т, *J* = 4.1, H-6); 4.12, 4.20 (по 1H, оба д. д. *J* = 4.1, *J* = 12.9, H_a-5, H_b-5); 6.26 (1H, д. д. *J* = 2.2, *J*₂₁ = 4.1, H-2); 6.78 (1H, т, *J* = 2.2, H-3); 6.96 (1H, д. д. *J* = 2.2, *J*₁₂ = 4.1, H-1). Масс-спектр, *m/z* (*I*_{0TH}, %): 232 [M]⁺ (20), 138 [M-C₃H₃NO]⁺ (100). Найдено, %: С 72.39; H 8.70; N 11.89. C₁₄H₂₀N₂O. Вычислено, %: С 72.37; H 8.67; N 12.05.

2,2-Диметил-3-метиламино-*α*-тетралон (6а). ИК спектр, v, см⁻¹: 3370 (NH), 1680 (C=O). Спектр ЯМР ¹H, δ , м. д. (*J*, Гц): 1.17, 1.28 (по 3H, оба с, 2-(CH₃)_a, 2-(CH₃)_b); 2.47 (3H, с, 3-NH<u>CH₃</u>); 2.85 (1H, д. д. $J_{34b} = 3.7$, $J_{34a} = 7.2$, H-3); 2.90 (1H, д. д. $J_{4a3} = 7.2$, $J_{4a4b} = 16.8$, H_a-4); 3.24 (1H, д. д. $J_{4b3} = 3.7$, $J_{4b4a} = 16.8$, H_b-4); 7.23 (1H, д. J = 7.8, H-6); 7.30 (1H, т. J = 7.8, H-8); 7.46 (1H, д. т. J = 7.8, $J_{79} = 1.2$, H-7); 8.02 (1H, д. д. J = 7.8, $J_{97} = 1.2$, H-9). Массспектр, *m/z* ($I_{0тн}$, %): 203 [M]⁺ (55), 160 [М–СН(CH₃)₂]⁺ (100), 118 [М–С(CH₃)₂CHNHCH₃]⁺ (33). Найдено, %: С 76.64; H 8.53; N 6.83. C₁₃H₁₇NO. Вычислено, %: С 76.81; H 8.43; N 6.89.

2,2-Диметил-3-этиламино-*α*-тетралон (6b). ИК спектр, v, см⁻¹: 3360 (NH), 1670 (С=О). Спектр ЯМР ¹H, δ , м. д. (*J*, Гц): 1.08 (3H, т, *J* = 7.1, 3-NHCH₂CH₃); 1.16, 1.28 (по 3H, оба с, 2-(CH₃)_a, 2-(CH₃)_b); 2.59, 2.83 (по 1H, оба д. к, *J* = 7.1, *J* = 11.4, 3-NHC<u>H₄H_b</u>CH₃); 2.90 (1H, д. д, *J*_{4b3} = 7.9, *J*_{4a4b} = 15.5, H_a-4); 2.95 (1H, д. д, *J*_{34b} = 2.9, *J*_{34a} = 7.9, H-3); 3.22 (1H, д. д, *J* = 7.6, J-6; 8 = 1.5, H-6); 8.02 (1H, д. д, *J* = 7.6, H-5); 7.30 (1H, т, *J* = 7.6, H-7); 7.47 (1H, д. т, *J* = 7.6, *J*₆₈ = 1.5, H-6); 8.02 (1H, д. д, *J* = 7.6, *J*₈₆ = 1.5, H-8). Спектр ЯМР ¹³С без развязки от протонов, δ , м. д. (*J*, Гц): 15.4 (к, *J* = 125.2, 3-NHCH₂CH₃); 19.0 (к, *J* = 123.1, 2-(CH₃)_a); 22.5 (к, *J* = 127.4, 2-(CH₃)_b); 31.6 (т, *J* = 127.8, 3-NHCH₂CH₃); 42.6 (т, *J* = 129.5, C₍₄₎); 47.0 (с, C₍₂₎); 62.0 (д, *J* = 131.3, C₍₃₎); 126.7 (д. д, *J* = 163.2, *J* = 8.0, C₍₅₎); 127.8 (д. д, *J* = 161.0, *J* = 7.6, C₍₆₎); 129.1 (д. м, *J* = 157.0, C₍₇₎); 131.2 (м, C_(4a)); 133.3 (д. д, *J* = 159.6, *J* = 8.8, C₍₈₎); 140.3 (м, C_(8a)); 202.4 (с, C₍₁₎). Масс-спектр, *m*/*z* (*I*_{отн}, %): 217 [M]⁺ (100), 174 [M–CH₂]⁺ (41). Найдено, %: C 77.45; H 8.42; N 6.52. C₁₄H₁₉NO. Вычислено, %: C 77.38; H 8.75; N 6.44.

3-Метиламиноспиро[циклогексан-1,2'-*α*-**тетралон] (6d)**. ИК спектр, v, см⁻¹: 3380 (NH), 1680 (С=О). Спектр ЯМР ¹H, δ , м. д. (*J*, Гц): 1.55 (7H, м. из 2'-(CH₂)₅); 1.75, 1.84, 2.17 (по 1H, три м, из 2'-(CH₂)₅); 2.42 (3H, с, 3-NH<u>CH₃</u>); 3.10 (1H, д. д, *J*_{4а3} = 2.9, *J*_{4а4b} = 17.3, H_a-4); 3.18 (1H, т, *J* = 2.9, H-3); 3.25 (1H, д. д, *J* = 2.9, *J*_{4b4a} = 17.3, H_b-4); 7.23 (1H, д, *J* = 7.7, H-5); 7.31 (1H, т, *J* = 7.7, H-7); 7.47 (1H, д. т, *J*₆₈ = 1.4, *J* = 7.7, H-6); 8.00 (1H, д. д, *J*₈₆ = 1.4, *J* = 7.7, H-8). Масс-спектр, *m/z* (*I*_{0тн}, %): 243 [M]⁺ (34), 160 [M–C₆H₁₁]⁺ (55), 124 [M–C₈H₇O]⁺ (100). Найдено, %: С 78.82; H 8.75; N 5.67. С₁₆H₂₁NO. Вычислено, %: С 78.97; H 8.69; N 5.75.

2,2-Диметил-3-изопропиламино-а-тетралон (6с). ИК спектр, v, см⁻¹: 3380 (NH), 1680 (C=O). Спектр ЯМР ¹Н, δ , м. д. (*J*, Γ ц): 1.04, 1.06 (по 3Н, два д, *J* = 6.2,

3-NHCH<u>(CH₃)_a(CH₃)_b);</u> 1.17, 1.31 (по 3H, оба с, 2-(CH₃)_a, 2-(CH₃)_b); 2.93 (3H, м, 3-NHC<u>H_aH_b</u>CH₃); 3.12 (1H, д. д, $J_{4a3} = 3.0, J_{4a4b} = 16.1, H_a-4$); 3.18 (1H, д. д, $J_{34b} = 3.7, J_{34a} = 3.0, H-3$); 3.22 (1H, д. д, $J_{4b3} = 3.7, J_{4b4a} = 16.1, H_b-4$); 7.24 (1H, д, J = 7.7, H-5); 7.32 (1H, т, J = 7.7, H-7); 7.48 (1H, д. т, $J = 7.7, J_{68} = 1.5, H-6$); 8.02 (1H, д. д, $J = 7.7, J_{86} = 1.5, H-8$). Масс-спектр, m/z (I_{0TH} , %): 231 [M]⁺ (68), 188 [M–CH(CH₃)₂]⁺ (25). Найдено, %: С 77.89; Н 9.07; N 6.04. С₁₅H₂₁NO. Вычислено, %: С 77.92; Н 9.09; N 6.06. Выход продуктов рециклизации **6с** 25%, дезалкилирования **4а** 30%.

	Выход продуктов, %						
Исходная соль	Мет	иламин	Этиламин				
	рециклизации	дезалкили- рования	рециклизации	дезалкили- рования			
2a	34 35*	15 19*	23	17			
2b	30	15	25	18			
2c	43 44* 43**	10 12* 10**	30	14			
2d	40	15	26	24			
2e	29	33	20	43			
2f	27	37	24	37			
5a	40 35* 8**	20 35* 51**	25	33			
5b	18	50	20	25			
5c	7*	62*	_	_			

Выходы продуктов рециклизации и дезалкилирования

* Реакция проведена при 120 °С.

** Реакция проведена при 160 °С.

СПИСОК ЛИТЕРАТУРЫ

- 1. A. N. Kost, S. P. Gromov, R. S. Sagitullin, Tetrahedron, 37, 3423 (1981).
- 2. C. H. van der Plas, Tetrahedron, 41, 237 (1985).
- 3. В. И. Теренин, Е. В. Кабанова, Е. С. Феоктистова, Ю. Г. Бундель, ХГС, 424 (1989).
- 4. А. Н. Кост, В. И. Теренин, Л. Г. Юдин, Р. С. Сагитуллин, А. А. Ивкина, *XГС*, 1386 (1979).
- 5. В. И. Теренин, Е. В. Кабанова, Ю. Г. Бундель, *ХГС*, 763 (1991).
- В. М. Уэли, Т. Р. Гвиндачари, Органические реакции, под ред. Р. Адамса, Г. Адкинса, А. Блэйта, А. Копа, Ф. Мак-Грюна, К. Нимана, Г. Снайдера, Изд-во иностр. лит., Москва, 1953, 6, с. 86.

Московский государственный университет им. М. В. Ломоносова, Москва 119899, Россия e-mail: vter@org.chem.msu.ru Поступило в редакцию 16.03.2005

1557