Л. А. Свиридова, А. Н. Тавторкин^а, П. Б. Терентьев, И. Ф. Лещева, Н. Г. Колотыркина⁶, К. А. Кочетков^а

РЕГИОСЕЛЕКТИВНЫЙ СИНТЕЗ 3- И 5-ФУНКЦИОНАЛЬНЫХ ПРОИЗВОДНЫХ ПИРАЗОЛИДИНА

1. СИНТЕЗ КЕТОНОВ ПИРАЗОЛИДИНОВОГО РЯДА

При взаимодействии 5-гидроксипиразолидинов с кетонами на поверхности основных адсорбентов наряду с ожидаемыми 5-оксоалкилпиразолидинами получены их 3-региоизомеры. Найдены условия регионаправленного проведения процесса.

Ключевые слова: кетоны, 3- и 5-оксоалкилпиразолидины, диастереоселективность, изомеризация, масс-спектральный анализ изомеров, реакции на поверхности адсорбентов.

Ранее нами было показано [1], что 5-гидроксипиразолидины **1а,b** взаимодействуют с CH-кислотами на поверхности оксида алюминия без растворителя при 60 °C с образованием соответствующих 5-функциональных производных ряда пиразолидина; в частности, гидроксисоединение **1a** реагирует с некоторыми кетонами. Гидроксипиразолидин **1b**, имеющий *транс*-расположенную метильную группу в положении 3, в этих условиях с кетонами не реагирует по стерическим причинам – замещение гидроксильной группы в соединении **1b** требует более жестких условий, чем для соединения **1a** [1]. Недавно мы сообщали [2], что гидроксипиразолидины **1a,b** взаимодействуют с ацетофеноном на поверхности фторида калия, нанесенного на оксид алюминия (при 80 °C), или гидроксида бария (при комнатной температуре) с образованием смеси региоизомеров **3a,b** и **5a,b** (табл. 1).

Можно полагать, что причиной образования региоизомеров **3** является участие в реакции линейного таутомера гидроксипиразолидина **1**, легко претерпевающего "ретромихаэлевский" распад до гидразида и кротонового альдегида и последующее "обратное" присоединение гидразида по двойной связи в условиях основного катализа.

Региоизомерный гидразиноальдегид **1b'** существует, по-видимому, только в линейной форме (как и его аналог, полученный из гидразобензола [3]) и реагирует непосредственно с ацетофеноном. В модельном опыте на поверхность KF/Al_2O_3 были нанесены 1-ацетил-2-фенилгидразин, кротоновый альдегид и ацетофенон и соблюдены условия реакции с гидроксипиразолидином [2]. В результате получено близкое к обычной реакции соотношение региоизомеров **3** и **5**, что служит доводом в пользу предложенной схемы процесса.

1 a $R^1 = H$, **b** $R^1 = Me$; **2 a** $R^2 = H$, $R^3 = Ph$; **b** $R^2 = H$, $R^3 = C_6H_4OMe$ -*p*; **c** $R^2 = H$, $R^3 = C_6H_4Br$ -*p*; **d** $R^2 = H$, $R^3 = Me$; **e** $R^2 + R^3 = (CH_2)_4$; **3–5 a** $R^1 = Me$, $R^2 = H$, $R^3 = Ph$; **b** $R^1 = R^2 = H$, $R^3 = Ph$; **c** $R^1 = Me$, $R^2 = H$, $R^3 = C_6H_4OMe$ -*p*; **d** $R^1 = Me$, $R^2 = H$, $R^3 = C_6H_4Br$ -*p*; **e** $R^1 = R^3 = Me$, $R^2 = H$; **f** $R^1 = Me$, $R^2 + R^3 = (CH_2)_4$

Взаимодействие гидроксипиразолидина **1b** с другими кетонами – *n*-бромацетофеноном, *n*-метоксиацетофеноном, ацетоном и циклогексаноном – в найденных условиях также приводит к смеси 3- и 5-изомеров соответствующих кетонов. Соотношение изомеров в реакционных смесях определяется природой исходного кетона и используемого основания (табл. 1).

Взаимодействие кетонов с пиразолидином **1b** на поверхности KF/Al₂O₃ мало зависит от природы кетона и приводит к преимущественному образованию 3-функциональных производных, что, вероятно, объясняется

Изомеры 3 и 5	KF (A)		Ва(OH) ₂ (Б)		
	3 : 5	Время реакции, ч	3:5	Время реакции, сут	Конверсия 1а,b, %
a	2:1	4	1:2.5	4	60
b	1:2	2	—	-	-
c	2:1	4	1:4	4	80
d	2:1	4	10:11	9	40
e	2.5:1	3	1:2.5	4	_
f	3:1	3	1:5.5	3	70

Соотношение региоизомеров в реакциях кетонов с гидроксипиразолидинами на поверхности основных адсорбентов

не только характером адсорбента, но и более высокой температурой реакции (80 °C), которая повышает количество линейного таутомера **1b** и ускоряет его распад. На поверхности гидроксида бария при комнатной температуре соотношение изомеров иное – преимущественно получены производные **5** и природа кетона оказывает существенное влияние. Так, в реакции пиразолидина **1b** с *n*-метоксиацетофеноном на гидроксиде бария вследствие замедления процесса, приводящего к изомеру **5d**, повышается содержание линейной формы исходного гидроксипиразоли- дина и возрастает количество изомера **3d**.

Спектры ИК и ЯМР 3- и 5-изомеров не противоречат ожидаемым структурам, но, несмотря на заметные различия, не позволяют окончательно идентифицировать полученные соединения. Строение соединений **За,е** и **5а** дополнительно изучено методом ЯМР с применением ЯЭО. По данным ЯЭО, все они являются *транс*-изомерами (Н' – слабопольный сигнал):

 $\begin{array}{l} \textbf{3a} \ \eta_{\text{H-3}} \ (\text{H-4}) = 4.1, \ \eta_{\text{H-5}} \ (\text{H'-4}) = 3.65\%; \\ \textbf{5a} \ \eta_{\text{H-4}} \ (\text{H-3}) = 6.3, \ \eta_{\text{H'-4}} \ (\text{H-5}) = 8.8\%; \\ \textbf{3e} \ \eta_{\text{H-4}} \ (\text{H-3}) = 9.1, \ \eta_{\text{H'-4}} \ (\text{H-5}) = 3.1, \ \eta_{\text{H-3}} \ (\text{H-4}) = 8.0, \ \eta_{\text{H-5}} \ (\text{H'-4}) = 6.9\%. \end{array}$

Это позволило исключить предположение о *цис*-строении изомеров 3 или 5.

Достоверные доказательства строения региоизомеров получены с помощью метода масс-спектроскопии: как 3-, так и 5-функциональные производные имеют характерную для каждого ряда соединений основную фрагментацию (табл. 2). Для соединений **5** наблюдали отщепление кетонного фрагмента в виде радикала:

Образующийся при этом ион-радикал пиразолиния с массой *m/z* 160 является максимальным или достаточно интенсивным в спектрах всех изомеров данного ряда, что объясняется его стабилизацией имеющимся при атоме N-2 фенильным заместителем. Данная картина распада типична для всех 1-ацетил-2-фенил-5-замещенных пиразолидинов [4].

В случае производных **3** в результате перегруппировки Мак-Лафферти отщепляется енольная форма кетона с образованием стабильного иона пиразолия с m/z 159, максимального во всех спектрах. Ни потери радикала кетона с образованием иона m/z 160, ни отщепления молекулы HCN в масс-спектрах 3-функциональных соединений не наблюдается. Те же закономерности наблюдались нами для производных пиразолидина **1а** – кетонов **3b** и **5b**.

Масс-спектры β-оксоалкилпиразолидинов

Соеди- нение	<i>m/z (I</i> _{отн} , %)
5a 3a 5b	322 [M] ⁺ (29.7), 279 (94.1), 160 (100), 159 (21), 145 (24.8), 133 (5), 118 (32.7) 322 [M] ⁺ (15.9), 279 (7), 159 (100), 118 (32.7), 105 (72.3) 308 [M] ⁺ (4.2), 265 (52.8), 146 (62.0), 145 (21.1), 105 (100)
3b 5c	308 [M] ⁺ (4.2), 265 (12.0), 145 (100), 105 (31.7) 400, 402 [M] ⁺ (5.6), 357, 359 (29.7), 182 (49), 184 (34.3), 160 (100), 159 (28.7), 133 (4.9)
3c 5e 3o	400, 402 [M] ⁺ (5.6), 357, 359 (6.3), 182, 184 (13.3), 159 (100) 260 [M] ⁺ (40.6), 217 (100), 160 (35.6), 159 (20.8), 145 (16.3), 133 (7.4) 260 [M] ⁺ (21.3), 217 (22.3), 159 (100)
5f ¹ 3f	$300 [M]^{+} (14.0), 257 (100), 160 (37.1), 159 (11.2), 133 (9.1), 118 (49.0) 300 [M]^{+} (14.0), 257 (21.0), 159 (100), 118 (12.6)$

Таблица 2

Для производных циклогексанона **3f** и **5f**, вследствие появления еще одного центра асимметрии (метинная группа циклогексанонового фрагмента), оба региоизомера представлены двумя диастереомерами. В реакции на фториде калия для 5-функционального производного соотношение диастереомеров составило **5f**¹–**5f**², 2:1, для 3-функционального производного соотношение диастереомеров составило **5f**¹–**5f**², 3.5:1, для 3-функционального производного соотношение диастереомеров составило **5f**¹–**5f**², 3.5:1, для 3-функционального производного – **3f**¹–**3f**², 1.5:1. Диастереомеров 5-функционального производного разделены хроматографически и выделены в чистом виде.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

ИК спектры получали на приборе UR-20 в вазелиновом масле или пленках. Спектры ЯМР ¹H и ¹³C измеряли на приборе Varian VXR-400 (400 и 100 МГц соответственно) в CDCl₃, внутренний стандарт ТМС. Масс-спектры (ЭУ, 70 эВ) регистрировали на приборе Finnigan SSQ-7000 с прямым вводом образцов в источник. Чистоту полученных соединений контролировали с помощью TCX на пластинках Silufol в системе петролейный эфир–этилацетат, 1:1, проявление парами иода и в растворе FeCl₃ в спирте. Хроматографическую очистку полученных соединений проводили методом флэш-хроматографии на сухой колонке с силикагелем марки L 5/40 по методу [5].

β-Оксоалкилпиразолидины 3 и 5 (общие методики). Вся работа проводится в инертной атмосфере вплоть до экстракции реакционной смеси с адсорбента. А. В ампулу помещают 2.2 г фторида калия, нанесенного на оксид алюминия [6], вносят раствор 1 ммоль гидроксипиразолидина и 1 ммоль кетона в бензоле, растворитель отгоняют в вакууме без нагревания и перемешивают смесь. Ампулу вакуумируют, запаивают и нагревают 4 ч при 80 °С. Ампулы вскрывают и реакционную смесь экстрагируют эфиром. Экстракт упаривают, остаток разделяют флэш-хроматографией на сухой колонке с SiO₂, элюируя смесью петролейный эфир (40–70 °С)–этилацетат в градиенте от 10:1 до 1:1. Выделенные соединения перекристаллизовывают из эфира.

Б. В ампулу помещают 8.8 г безводного гидроксида бария, вносят раствор 2 ммоль гидроксипиразолидина и 3 ммоль кетона в 2 мл бензола. Растворитель отгоняют в вакууме без нагревания, перемешивают и вакуумируют ампулу. Смесь встряхивают два раза в 1 сут (продолжительность процесса см. табл. 1). После вскрытия ампулы реакционную смесь экстрагируют эфиром. Дальнейшую обработку проводят по методу А.

1-Ацетил-5-бензонлметил-3-метил-2-фенилпиразолидин (5a) получают взаимодействием 2.2 г (10 ммоль) пиразолидина **1b** с 2.4 мл (15 ммоль) ацетофенона. Выход 0.8 г [25% (А) и 5% (Б)], т. пл. 98–99 °С. ИК спектр, v, см⁻¹: 1650 (СО амид.), 1690 (СО кет.). Спектр ЯМР ¹H, δ, м. д. (*J*, Гц): 1.21 (3H, д, *J* = 6.8, 3-CH₃); 2.02 (3H, с, CH₃CO); 1.85 (1H, м, H-4); 2.25 (1H, м, H-4); 2.83 (1H, д. д, $J_{\alpha\alpha}$ = 16.2, $J_{\alpha5}$ = 10.6, H- α); 4.10 (1H, д. д, $J_{\alpha\alpha}$ = 16.0, $J_{\alpha5}$ = 3.5, H- α); 4.15 (1H, м, H-3); 4.76 (1H, м, H-5); 6.95–7.27 (5H, м, N–C₆H₅); 7.40–7.90 (5H, м, COC₆H₅). Спектр ЯМР ¹³С, δ, м. д.: 19.5 (CH₃); 21.3 (CH₃); 38.2 (C-4); 44.6 (C- α); 53.7 (C-3); 61.7 (C-5); 115.0 (*o*-C₆H₅N); 121.7 (*p*-C₆H₅N); 128.1 (*m*-C₆H₅N); 128.5 (*m*-C₆H₅CO); 129.2 (*o*-C₆H₅CO); 133.2 (*p*-C₆H₅CO); 136.3 (*i*-C₆H₅CO); 150.4 (*i*-C₆H₅N); 174.6 (<u>COCH₃</u>); 197.8 (COC₆H₅). Найдено, %: C 74.78; H 6.78; N 8.60. C₂₀H₂₂N₂O₂. Вычислено, %: C 74.53; H 6.83; N 8.70.

1-Ацетил-3-бензоилметил-5-метил-2-фенилпиразолидин (3а) получают взаимодействием 2.2 г (10 ммоль) соединения 1b с 2.4 мл (15 ммоль) ацетофенона. Выход 0.5 г [16% (Б) и 7% (А)], т. пл. 124–125 °С. ИК спектр, v, см⁻¹: 1650, 1690. Спектр ЯМР ¹Н, δ, м. д. (*J*, Гц): 1.50 (3H, д, *J* = 6.4, 5-CH₃); 1.83 (3H, с, CH₃CO); 1.95 (1H, м, H-4); 2.10 (1H, м, H-4); 2.83 (1H, д. д, $J_{\alpha\alpha} = 17.1, J_{\alpha3} = 5.0, H-\alpha$); 3.38 (1H, д. д, $J_{\alpha\alpha} = 17.0, J_{\alpha3} = 9.0, H-\alpha$); 4.40 (1H, м, H-5); 4.70 (1H, м, H-3); 6.95–7.55 (10H, м, Ar). Спектр ЯМР ¹³С, δ, м. д.: 21.18 (CH₃); 21.25 (CH₃); 38.2 (C-4); 40.1 (C- α); 52.6 (C-3); 62.9 (C-5); 115.6 (*o*-C₆H₅N); 121.9 (*p*-C₆H₅N); 127.9 (*m*-C₆H₅N); 128.6 (*m*-C₆H₅CO); 128.9 (*o*-C₆H₅CO); 133.3 (*p*-C₆H₅CO); 136.6 (*i*-C₆H₅CO); 150.2 (*i*-C₆H₅N); 173.8 (<u>C</u>OCH₃); 197.6 (COC₆H₅). Найдено, %: C 75.29; H 6.99; N 8.83. C₂₀H₂₂N₂O₂. Вычислено, %: C 74.53; H 6.83; N 8.70.

1-Ацетил-5-бензоилметил-2-фенилпиразолидин (5b) получают взаимодействием 0.41 г (2 ммоль) пиразолидина 1а с 0.36 мл (3 ммоль) ацетофенона по методу Б. Выход 0.03 г (5%), т. пл. 102–103 °С. (По данным работы [1] – масло.) Спектр ЯМР ¹Н, δ , м. д. (*J*, Гц): 2.10 (3H, с, CH₃CO); 1.70 (1H, м, H-4); 2.50 (1H, м, H-4); 2.88 (1H, д. д, $J_{\alpha\alpha} = 16.4$, $J_{\alpha5} = 10.6$, H- α); 4.12 (1H, д, J = 15.3, H- α); 3.35 (1H, м, H-3); 3.82 (1H, м, H-3); 4.75 (1H, м, H-5); 7.0–7.9 (10H, м, C₆H₅).

1-Ацетил-3-бензоилметил-2-фенилпиразолидин (**3b**) получают взаимодействием 0.41 г (2 ммоль) соединения **1a** с 0.36 мл (3 ммоль) ацетофенона по методу Б. Выход 0.02 г (3%), масло. Спектр ЯМР ¹H, δ, м. д. (*J*, Гц): 1.85 (3H, с, CH₃CO); 1.90 (1H, м, H-4); 2.25 (1H, м, H-4); 2.82 (1H, д. д, *J*_{αα} = 16.9, *J*_{α3} = 5.0, H-α); 3.40 (1H, д. д, *J*_{αα} = 16.8, *J*_{α3} = 9.2, H-α); 3.46 (1H, м, H-5); 4.10 (1H, м, H-5); 4.62 (1H, м, H-3); 7.0–7.45 (10H, м, C₆H₅). Найдено, %: С 74.20; H 6.65; N 8.87. C₁₉H₂₀N₂O₂. Вычислено, %: С 74.03; H 6.49; N 9.09.

1-Ацетил-5-*п***-бромбензоилметил-3-метил-2-фенилпиразолидин (5с)** получают взаимодействием 0.22 г (1 ммоль) пиразолидина **1b** с 0.2 г (1 ммоль) *п*-бромацетофенона. Выход 0.053 г (12%, А), т. пл. 108–109 °С. ИК спектр, v, см⁻¹: 1650, 1690. Спектр ЯМР ¹Н, δ , м. д. (*J*, Гц): 1.20 (3H, д, *J* = 6.8, 3-CH₃); 1.79 (1H, м, H-4); 2.05 (3H, с, CH₃CO); 2.20 (1H, м, H-4); 2.80 (1H, д. д, *J*_{αα} = 16.0, *J*_{α5} = 10.5, H-α); 3.95 (1H, д. д, *J*_{αα} = 16.1, *J*_{α5} = 3.4, H-α); 4.10 (1H, м, H-3); 4.50 (1H, м, H-5); 6.95–7.28 (5H, м, C₆H₅); 7.65, 7.80 (4H, два д, *J* = 8.6, *p*-BrC₆H₄CO). Найдено, %: С 60.01; H 5.40; N 6.95. C₂₀H₂₁BrN₂O₂. Вычислено, %: С 59.85; H 5.24; N 6.98.

1-Ацетил-3-*n***-бромбензоилметил-5-метил-2-фенилпиразолидин (3с)** получают взаимодействием 0.22 г (1 ммоль) пиразолидина **1b** с 0.2 г (1 ммоль) *n*-бромацетофенона. Выход 0.13 г (32%, Б), т. пл 149–150 °С. ИК спектр, v, см⁻¹: 1650, 1690. Спектр ЯМР ¹Н, δ , м. д. (*J*, Гц): 1.47 (3H, д, *J* = 6.4, 5-CH₃); 1.84 (3H, с, CH₃CO); 1.98 (1H, м, H-4); 2.12 (1H, м, H-4); 2.80 (1H, д. д. $J_{\alpha\alpha} = 17.3$, $J_{\alpha3} = 4.8$, H- α); 3.35 (1H, д. д. $J_{\alpha\alpha} = 17.0$, $J_{\alpha3} = 8.9$, H- α); 4.50 (1H, м, H-5); 4.75 (1H, м, H-3); 7.0–7.3 (5H, м, N–C₆H₅); 7.60, 7.83 (4H, два д. *J* = 8.6, ArCO). Найдено, %: C 60.14; H 5.29; N 7.21. C₂₀H₂₁BrN₂O₂. Вычислено, %: C 59.85; H 5.24; N 6.98.

1-Ацетил-3-метил-5-*п*-метоксибензоилметил-2-фенилпиразолидин (5d) получают взаимодействием 0.220 г (1 ммоль) пиразолидина 1b с 0.165 г (1.1 ммоль) *п*-метоксиацетофенона. Выход 0.06 г (17%, A), т. пл. 95–96 °С. ИК спектр, v, см⁻¹: 1660, 1680. Спектр ЯМР ¹Н, δ, м. д. (*J*, Гц): 1.22 (3H, д, *J* = 7.0, 3-CH₃); 2.10 (3H, с, CH₃CO); 1.85 (1H, м, H-4); 2.22 (1H, м, H-4); 2.82 (1H, д. д, $J_{\alpha\alpha} = 15.6, J_{\alpha5} = 10.6, H-\alpha$); 3.88 (3H, с, OCH₃); 4.05 (1H, д. д, $J_{\alpha\alpha} = 15.9, J_{\alpha5} = 3.2, H-\alpha$); 4.15 (1H, м, H-3); 4.80 (1H, м, H-5); 6.85, 7.93 (4H, два д, *J* = 8.9, ArCO); 7.00–7.23 (5H, м, N–C₆H₅). Найдено, %: С 71.40; H 6.99; N 7.69. C₂₁H₂₄N₂O₃. Вычислено, %: С 71.59; H 6.82; N 7.95.

1-Ацетил-5-метил-3-*п*-метоксибензоилметил-2-фенилпиразолидин (3d) получают взаимодействием 0.22 г (1 ммоль) пиразолидина 1b с 0.15 г (1 ммоль) *п*-метоксиацетофенона. Выход 0.47 г (13%, Б), т. пл. 146–147 °С. ИК спектр, v, см⁻¹: 1660, 1690. Спектр ЯМР ¹Н, δ, м. д. (*J*, Гц): 1.44 (3H, д, J = 6.3, 5-CH₃); 1.82 (3H, с, CH₃CO); 1.98 (1H, м, H-4); 2.12 (1H, м, H-4); 2.75 (1H, д. д, $J_{\alpha\alpha} = 16.7, J_{\alpha3} = 4.9, H-\alpha$); 3.37 (1H, д. д, $J_{\alpha\alpha} = 16.6, J_{\alpha3} = 9.0, H-\alpha$); 3.88 (3H, с, OCH₃); 4.45 (1H, м, H-5); 4.72 (1H, м, H-3); 6.95–7.95 (9H, м, Ar). Найдено, %: С 71.60; H 7.02; N 8.14. С₂₁H₂₄N₂O₃. Вычислено, %: С 71.59; H 6.82; N 7.95.

1-Ацетил-5-ацетонил-3-метил-2-фенилпиразолидин (5е) получают взаимодействием 2.2 г (10 ммоль) пиразолидина **1b** с 6 мл (100 ммоль) ацетона. Выход [30% (А) и 4% (Б)], т. пл. 69–70 °С. ИК спектр, см⁻¹: 1650, 1720. Спектр ЯМР ¹Н, δ , м. д. (*J*, Гц): 1.22 (3H, д, $J = 6.8, 3\text{-CH}_3$); 1.85 (1H, м, H-4); 2.05 (3H, с, 1-CH₃CO); 2.15 (3H, с, 5-CH₃CO); 2.22 (1H, м, H-4); 2.44 (1H, д. д. $J_{\alpha\alpha} = 17.2, J_{\alpha5} = 10.2, H-\alpha$); 3.40 (1H, д. д. $J_{\alpha\alpha} = 17.1, J_{\alpha5} = 3.7, H-\alpha$); 4.12 (1H, м, H-3); 4.61 (1H, м, H-5); 6.96–7.26 (5H, м, C₆H₅). Найдено, %: С 69.00; H 7.85; N 10.90. C₁₅H₂₀N₂O₂. Вычислено, %: С 69.23; H 7.69; N 10.77.

1-Ацетил-3-ацетонил-5-метил-2-фенилпиразолидин (3e) получают взаимодействием 2.2 г (10 ммоль) пиразолидина **1b** с 6 мл (100 ммоль) ацетона. Выход 0.74 г (28%, Б), т. пл. 95–96 °С. ИК спектр, v, см⁻¹: 1650, 1710. Спектр ЯМР ¹H, δ, м. д. (*J*, Гц): 1.45 (3H, д, J = 6.4, 5-CH₃); 1.90 (1H, м, H-4); 1.95 (3H, с, 1-CH₃CO); 2.00 (1H, м, H-4); 2.20 (3H, с, 3-CH₃CO); 2.40 (1H, д. д, $J_{\alpha\alpha} = 17.7, J_{\alpha3} = 4.9, H-\alpha$); 2.80 (1H, д. д, $J_{\alpha\alpha} = 17.1, J_{\alpha3} = 9.2, H-\alpha$); 4.40 (1H, м, H-5); 4.49 (1H, м, H-3); 6.98–7.13 (5H, м, C₆H₅). Найдено, %: С 69.23; H 8.52; N 11.19. C₁₅H₂₀N₂O₂. Вычислено, %: С 69.23; H 7.69; N 10.77.

1-Ацетил-3-метил-5-(2-оксоциклогексил)-2-фенилпиразолидин (5f¹) получают взаимодействием 0.44 г (2 ммоль) пиразолидина **1b** с 0.2 мл (2 ммоль) циклогексанона. Выход 0.248 г [40% (А) и 10% (Б)], т. пл. 143–144 °C. ИК спектр, v, см⁻¹: 1660, 1710. Спектр ЯМР ¹Н, б, м. д. (*J*, Гц): 1.22 (3H, д, J = 6.4, 3-CH₃); 1.55, 1.70, 1.75, 1.88, 2.01, 2.20–2.32 (11H, м, 4-CH₂ + C₆H₉O); 2.10 (3H, с, CH₃CO); 4.15 (1H, м, H-3); 4.71 (1H, м, H-5); 6.95–7.28 (5H, м, C₆H₅). Найдено, %: С 71.83; Н 7.88; N 9.12. C₁₈H₂₄N₂O₂. Вычислено, %: С 72.00; Н 8.00; N 9.33.

1-Ацетил-3-метил-5-(2-оксоциклогексил)-2-фенилпиразолидин (5f²) получают взаимодействием 0.44 г (2 ммоль) пиразолидина **1b** с 0.2 мл (2 ммоль) циклогексанона. Выход 0.248 г [40% (А) и 10% (Б)], масло. ИК спектр, v, см⁻¹: 1660, 1710. Спектр ЯМР ¹Н, δ, м. д. (*J*, Гц): 1.20 (3H, д, J = 6.5, 3-CH₃); 1.50–2.40, 2.65, 2.87 (11H, м, H-4, H'-4 + C₆H₉O); 2.05 (3H, с, CH₃CO); 4.20 (1H, м, H-3); 4.83 (1H, м, H-5); 6.90–7.30 (5H, м, C₆H₅).

1-Ацетил-5-метил-3-(2-оксоциклогексил)-2-фенилпиразолидин (3f¹ и 3f²) получают взаимодействием 0.55 г (2.5 ммоль) пиразолидина **1b** с 1 мл (10 ммоль) циклогексанона. Выход 0.303 г (40%, Б), т. пл. 134–135 °C. ИК спектр, v, см⁻¹: 1680, 1710. Спектр ЯМР ¹H, δ , м. д. (*J*, Гц): 1.38, 1.43 (3H, два д, *J*(**f**¹) = 6.5, *J*(**f**²) = 6.2, 5-CH₃); 1.80 (1H, м, H-4); 1.93 (3H, с, CH₃CO); 2.08 (1H, м, H'-4); 1.72, 2.18, 2.38, 2.48 (9H, м, C₆H₉O); 4.33 (2H, м, H-3,5); 6.98–7.28 (5H, м, C₆H₅). Найдено, %: С 72.22; H 7.99; N 9.67. C₁₈H₂₄N₂O₂. Вычислено, %: С 72.00; H 8.00; N 9.33.

Модельный опыт. В пробирку помещают 4.4 г фторида калия, нанесенного на оксид алюминия, вносят раствор 0.32 г (2 ммоль) ацетилфенилгидразина в 3 мл бензола, растворитель отгоняют в вакууме, вносят 0.18 мл (2 ммоль) кротонового альдегида и 0.36 мл (3 ммоль) ацетофенона, заливают смесь октаном на 0.5 см выше поверхности адсорбента и нагревают 5 ч (контроль TCX). Дальнейшую обработку проводят по методу А. Выход соединения **5а** 0.080 г (12%), **3а** 0.010 г (1.5%).

СПИСОК ЛИТЕРАТУРЫ

- 1. Д. М. Мусатов, Л. А.Свиридова, И. А. Моторина, И. Φ. Лещева, Γ. А. Голубева, *XTC*, 483 (1994).
- 2. L. A. Sviridova, G. A. Golubeva, A. N. Tavtorkin, Mendeleev Commun., 66 (2005).
- 3. V. Hanus, H. Hroztica, O. Exher, Coll. Czech. Chem. Commun., 45, 2417 (1980).
- А. Г. Каландаришвили, П. Б. Терентьев, С. В. Афанасьева, Л. А. Свиридова, Р. Р. Разаков, Ю. Г. Бундель, А. С. Садыков, Н. С. Куликов, *XГС*, 1334 (1986).
- Дж. Шарп, И. Госни, А. Роули, Практикум по органической химии, Мир, Москва, 1993, с. 193.
- 6. D. E. Bergbreiter, J. J. Lalonde, J. Org. Chem., 52, 1604 (1987).

Поступило в редакцию 29.04.2005

Московский государственный университет им. М. В. Ломоносова, Химический факультет Москва 119992, Россия e-mail:svirid@org.chem.msu.ru

^аИнститут элементоорганических соединений им. А. Н. Несмеянова РАН, Москва 119991 e-mail:const@ineos.ac.ru

⁶Институт органической химии им. Н. Д. Зелинского РАН, Москва 119991