Посвящается профессору Н. С. Зефирову в знак искреннего уважения в связи с его юбилеем

И. Иовель, Л. Голомба, Ю. Попелис, С. Гринберга, Э. Лукевиц

СИНТЕЗ И ГИДРОСИЛИЛИРОВАНИЕ ФУРАНОВЫХ И ТИОФЕНОВЫХ N-МЕТИЛИДЕНФТОРАНИЛИНОВ В ПРИСУТСТВИИ Pd(I)-КОМПЛЕКСА

Реакциями фурановых и тиофеновых альдегидов с 2-, 3- и 4-фторанилинами в присутствии молекулярных сит синтезирована серия новых N-гетарилальдиминов. Изучено взаимодействие некоторых синтезированных азометинов с триэтилсиланом в присутствии комплекса [Pd(allyl)Cl]₂. Выявлено влияние структуры исходных альдиминов на направление гидросилилирования. Все изученные субстраты превращаются в соответствующие амины. В реакционных смесях обнаружены также продукты N- и C-силилирования. В некоторых случаях происходит восстановление фуранового и тиофенового циклов.

Ключевые слова: комплексы Pd, основания Шиффа, тиофен, фторанилин, фуран, гидросилилирование, катализ.

Ранее нами разработан эффективный метод [1–5] синтеза широкого ряда азометинов конденсациями гетероциклических альдегидов с различными аминами в присутствии молекулярных сит. Последние играют в этих процессах не только роль дегидратирующего агента, но и оптимального кислотного катализатора, не приводящего (в отличие от большинства гомогенных систем) к осмолению ацидофобных гетероциклических субстратов. С использованием этого метода в настоящей работе осуществлен ряд синтезов (схема 1) и получены соответствующие фторзамещенные в азачасти молекул фурановые и тиофеновые альдимины – N-гетарилметилиден-2-, 3- и 4-фторанилины (**3а–1**). Характеристики синтезированных соединений, их спектры ЯМР ¹Н и масс-спектры приведены в табл. 1–3.

Схема 1

1312

аблица 1

Имин*	х	R	Положение F	Время реакции, ч	Брутто- формула		<u>Найде</u> Вычис.	Т. пл., °С**	Выход,		
						С	Н	Ν	S	,	%
3a	0	Н	2-	19	C ₁₁ H ₈ FNO	<u>69.82</u> 69.84	<u>4.26</u> 4.26	$\frac{7.30}{7.40}$	_	76–77	87
3b	0	Me	2-	19	C ₁₂ H ₁₀ FNO	$\frac{70.58}{70.93}$	<u>4.86</u> 4.96	<u>6.76</u> 6.89	_	39–40	76
3c	S	Н	2-	22	C ₁₁ H ₈ FNS	<u>64.27</u> 64.37	<u>3.77</u> 3.93	<u>6.67</u> 6.82	<u>15.55</u> 15.62	65–66	70
3d	S	Me	2-	22	$C_{12}H_{10}FNS$	<u>65.58</u> 65.73	$\frac{4.48}{4.59}$	$\frac{6.22}{6.39}$	$\frac{14.47}{14.62}$	40–41	75
3e	0	Н	3-	20	C ₁₁ H ₈ FNO	-	-	-	-	—	83
3f	0	Me	3-	20	$C_{12}H_{10}FNO \\$	-	-	-	-		82
3g	S	Н	3-	22	$C_{11}H_8FNS$	-	-	-	-	—	78
3h	S	Me	3-	22	$C_{12}H_{10}FNS$	<u>65.70</u> 65.73	<u>4.65</u> 4.59	<u>6.35</u> 6.39	<u>14.59</u> 14.62	43–44	71
3i	0	Н	4-	4	C ₁₁ H ₈ FNO	-		-	-	—	70
3ј	0	Me	4-	4	$C_{12}H_{10}FNO$	-	-	-	-	-	78
3k	S	Н	4-	20	C ₁₁ H ₈ FNS	$\frac{63.41}{64.37}$	$\frac{3.87}{3.93}$	$\frac{6.55}{6.82}$	$\frac{15.05}{15.62}$	38–39	78
31	S	Me	4-	20	$C_{12}H_{10}FNS$	<u>65.46</u> 65.73	$\frac{4.68}{4.59}$	<u>6.28</u> 6.39	<u>14.54</u> 14.62	77–78	75

Характеристики синтезированных соединений За-l

* Имины **3е–g,i,j** – маслообразные вещества. ** Растворитель для перекристаллизации: гексан–этилацетат, 1 : 1 (**3а,с**) или гексан (**3b,d,h,k,l**).

Следует отметить некоторые закономерности, наблюдающиеся в спектрах ЯМР ¹Н серии синтезированных альдиминов (табл. 2). Наличие метильной группы в гетероароматическом цикле приводит к сдвигу сигнала CH=N в сильное поле по сравнению с незамещенными молекулами. Для всех тиофеновых иминов характерны большие химические сдвиги сигналов протонов групп CH=N и CH₃, чем для соответствующих фурановых соединений.

В многочисленных исследованиях (см. обзоры [6–9], а также работы [10–13]) было показано, что силилирование CH=N двойной связи приводит в основном к образованию N-силилированных продуктов. Недавно нами впервые обнаружено [14], что при взаимодействии алкилгидросиланов с фурановыми, тиофеновыми и пиридиновыми метилиден-*орто*трифторметиланилинами наряду с N-силилированием происходит также присоединение силильной группы к атому углерода иминной связи CH=N. В связи с этим представляло интерес исследовать гидросилилирование вновь синтезированных азометинов **За–d**, содержащих фторгруппу в *орто*-положении азачасти молекул.

Таблица 2

Coe-	Химические сдвиги, б, м. д. (КССВ, Ј, Гц)								
дине- ние	CH=N, c	CH ₃ , c	Протоны колец						
3a	8.40	_	6.60 (1H, д. д, <i>J</i> = 2.0, <i>J</i> = 3.6, H-4); 7.0–7.5 (5H, м, H-3,3', H-4',5',6'); 7.68 (1H, м, H-5)						
3b	8.26	2.44	6.21 (1H, д, <i>J</i> = 3.2, H-4); 7.0–7.4 (5H, м, H-3,3',4',5',6')						
3c	8.63	_	7.0–7.2 (5Н, м, Н-4,3',4',5',6'); 7.5 (1Н, м, Н-3,5)						
3d	8.53	2.56	6.83 (1H, д, <i>J</i> = 3.0, H-4); 7.0–7.2 (3H, м, H-3,4',5'); 7.3 (1H, м, H-3'); 7.46 (1H, м, H-6')						
3e	8.28	—	6.59 (1Н, д. д. <i>J</i> = 1.8, <i>J</i> = 3.4, H-4); 6.8–7.2 (4Н, м, H-3, 2',4',5'); 7.35 (1Н, м, H-6'); 7.65 (1Н, с, H-5)						
3f	8.18	2.45	6.23 (1H, д, <i>J</i> = 2.0, H-4), 6.8–7.2 (4H, м, H-3,2',4',5'); 7.35 (1H, м, H-6')						
3g	8.54	-	6.8–7.1 (3H, м, H-2',4',5'); 7.15 (1H, м, <i>J</i> = 4.6, H-4); 7.35 (1H, м, H-6'); 7.56 (2H, м, H-3,5)						
3h	8.43	2.55	6.7–7.1 (4H, м, H-4,2',4',5'); 7.2–7.5 (2H, м, H-3,6')						
3i	8.25	_	6.55 (1H, д. д, J = 2.0, J = 3.6, H-4); 6.93 (1H, д, J = 3.6, H-3); 6.9–7.1 (2H, м, H-2',6'); 7.1–7.3 (2H, м, H-3',5'); 7.60 (1H, м, H-5)						
3ј	8.14	2.42	6.16 (1H, д, <i>J</i> = 2.8, H-4); 6.82 (1H, д, <i>J</i> = 2.8, H-3); 7.0–7.1 (2H, м, H-2',6'); 7.1–7.3 (2H, м, H-3',5')						
3k	8.54	—	7.0–7.3 (5Н, м, Н-3,4,5,2',6'); 7.5–7.6 (2Н, м, Н-3',5')						
31	8.48	2.57	6.87 (1Н, ш. с, Н-4); 7.0–7.2 (2Н, м, Н-2',6'); 7.2–7.5 (2Н, м, Н-3',5'); 7.6 (1Н, ш. с, Н-3)						

Спектры ЯМР ¹Н иминов За-l

Таблица З

Соеди- нение	<i>m/z</i> (I _{отн} , %)									
	M^+	$\left[M-H\right]^{+}$	$[M-Me]^+$	$[M-HCO]^+$	[M-Me-HCO] ⁺	[M-HCO-HCN] ⁺	[M-MeCO-HCN] ⁺	$[M-Het]^+$	Ar^+	$[Ar-HF]^+$
3a	189 (100)	188 (78)	-	160 (12)	-	133 (19)	-	122 (12)	95 (35)	75 (31)
3b	203 (100)	202 (52)	188 (22)	-	160 (17)	-	133 (12)	122 (14)	95 (30)	75 (33)
3c	205 (77)	204 (100)	-	-	-	133 (3)	-	122 (8)	95 (32)	75 (28)
3d	219 (84)	218 (100)	204 (4)	-	_	_	133 (1)	122 (13)	95 (27)	75 (23)
3e	189 (100)	188 (50)	-	160 (48)	_	133 (40)	-	122 (7)	95 (87)	75 (55)
3f	203 (100)	202 (34)	188 (40)	-	160 (74)	-	133 (32)	122 (8)	95 (68)	75 (42)
3g	205 (97)	204 (100)	-	-	_	133 (7)	-	122 (8)	95 (60)	75 (33)
3h	219 (89)	218 (100)	204 (9)	-	_	_	133 (1)	122 (11)	95 (42)	75 (23)
3i	189 (100)	188 (60)	-	160 (24)	_	133 (32)	-	122 (11)	95 (61)	75 (41)
3ј	203 (100)	202 (41)	188 (32)	-	160 (47)	-	133 (24)	122 (13)	95 (57)	75 (38)
3k	205 (92)	204 (100)	-	-	_	133 (7)	_	122 (6)	95 (58)	75 (35)
31	219 (88)	218 (100)	204 (6)	-	-	-	133 (1)	122 (12)	95 (52)	75 (29)

Масс-спектры иминов Het-CH=N-Ar (3a-l)*

* Указаны сигналы характеристичных ионов. Пики с *m/z* <75 не приведены.

Ранее [11, 14] нами найдено, что одним из наиболее активных катализаторов гидросилилирования гетероциклических иминов является димерный комплекс одновалентного палладия бис {[μ -хлороаллил]палладий} – [Pd(allyl)Cl]₂. В присутствии этого комплекса в данной работе изучено взаимодействие новых фурановых и тиофеновых альдиминов **3а**–**d** с триэтилсиланом. Реакции проводили в бензоле при 65 °C, используя соотношение субстрат–силан 1 : 1.2 мол. и концентрацию катализатора 2 мол.%. Ход реакций контролировали методами ТСХ и ГЖХ–МС. По завершении силилирования (продолжительность реакций указана в табл. 4) реакционную смесь обрабатывают (как указано в экспериментальной части) и анализируют методом ЯМР ¹Н.

В спектрах ЯМР ¹Н реакционных смесей присутствуют наборы сигналов, свидетельствующих об образовании нескольких типов продуктов, содержащих центральные группировки CH_2 –NH, CH_2 –NSiEt₃, Et₃SiCH–NH, CH=N. Эти соединения характеризуются, соответственно, сигналом CH_2 и широким синглетом NH (2H и 1H), синглетом CH_2 (2H), двумя уширенными синглетами протонов группы CH–NH (1H–1H), а также синглетом в области CH=N (табл. 4). Сигналы протонов (гетеро)ароматических циклов всех полученных соединений находятся в характерной для них области спектров. Группировка SiEt₃ в спектрах ЯМР ¹Н синтезированных силилильных соединений проявляется в виде

Таблица 4

		Vaupan	Прод	укт	Спектр ЯМР ¹ Н, δ, м. д.				
Ис- ход- ный имин	Время реак- ции, ч	конвер- сия имина, % (ГЖХ)	в реак- ционной смеси* (выход, %, ГЖХ)	после выде- ления**	CH ₃ (3H, c)	CH ₂ –N (2H, c)	CH–N (1H, c)	CH=N (1H, c)	
3 a	15	80	4a (55)	4 a	-	4.33	-	-	
			5a (20)	5a	-	_	4.11		
			6a (25)	-	_	-	_	7.18	
3b	15	70	4b (25)	4b	2.22	4.22	_	-	
			7b (75)	7b	2.15	4.20	_	-	
3c	16	70	4c (99)	4c	_	4.49	_	-	
3d	16	80	4d (30)	4d	2.40	4.22	-	-	
			7d (40)	7d	2.53	4.44	-	-	
			8d (10)	_	2.35	4.10	_	-	
	I	1	I	1		1	1	1	

Характеристики реакций гидросилилирования и их продуктов

* По данным спектров ЯМР ¹Н и ГЖХ–МС смеси продуктов.

^{**} Продукты выделены методом колоночной хроматографии; элюент гексанэтилацетат, 3 : 1 (соединения 4a, 5a) и бензол-этилацетат, 10 : 0.05 (соединения 4b-d, 7b).

двух групп сигналов протонов CH₂ (6H, кв) и CH₃ (9H, т) в интервале δ 0.5–1.6 м. д. Методом препаративной колоночной хроматографии удалось выделить почти все синтезированные соединения (табл. 4), представляющие собой желтые маслообразные вещества. Масс-спектры полученных соединений (табл. 5) соответствуют указанным типам продуктов.

Согласно полученным данным, можно заключить, что при гидросилилировании всех изученных иминов 3a-d образуются соответствующие амины – (2-гетарилметил)(2-фторфенил)амины 4a-d (в случае тиофенового имина 3c – с 99% селективностью). С-Силилированный амин 5aобразуется лишь из альдимина 3a. Кроме того этот имин восстанавливается до дигидрофуранового производного 6a. N-Силил- амины ожидаемой структуры 7b,d образуются (в смеси с другими продуктами) при превращении обоих метилпроизводных иминов 3b,d, причем последний дает также небольшое количество N-силилированного производного 8dс дигидротиофеновым циклом в структуре молекулы (схема 2).

Интересно сопоставить полученные результаты с нашими данными [15] по гидросилилированию ароматического аналога изученных в настоя-щей работе гетероциклических альдиминов – N-бензилиден-2-фторани-лина. Последний в идентичных условиях реакции полностью превра-щается в соответствующий амин в течение 8 ч, т. е. обладает большей реакционной способностью, чем субстраты **3а–d**, а по направлению реакции является аналогом тиофенового имина **3с**.

Таблица 5

Соеди-	<i>m/z</i> (I _{отн} , %)										
нение	M^+	$\left[M-H\right]^{+}$	$[M - Et]^+$	[M-HSiEt ₃] ⁺	$[SiEt_3]^+$	$[HetCH_2]^+$					
4 a	191 (32)	190 (15)	_	-	-	81 (100)					
5a	305 (25)	304 (100)	-	189 (11)	115 (29)	-					
6a	191 (12)	190 (100)	-	-	-	-					
4b	205 (14)	-	_	_	_	95 (100)					
7b	319 (8)	_	290 (7)	_	-	95 (100)					
4c	207 (21)	-	-	-	-	97 (100)					
4d	221 (14)	-	-	-	-	111 (100)					
7d	335 (10)	-	306 (8)	-	-	111 (100)					
8d	337 (100)	-	-	-	115 (35)	-					

Масс-спектры* продуктов гидросилилирования

* Приведены сигналы характеристичных ионов.

Схема 2

Кроме того, можно отметить, что наличие объемной группы CF₃ в *орто*-положении азачасти реагирующих молекул в большей степени способствует необычному направлению процессов – С-силилированию, чем группы F. Это указывает на влияние стерических факторов, как и предполагалось в работе [15].

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Спектры ЯМР ¹Н исследовали на спектрометрах Varian Mercury (200 МГц) и Bruker WH-90/DS (90 МГц) в CDCl₃, внутренний стандарт ТМС. Масс-спектры получены на хромато-масс-спектрометре HP 6890 GC/MS, оборудованном капиллярной колонкой HP-5 MS (30.0 м × 250 мкм × 0.25 мкм), при программировании температуры от 70 до 260 °C (10 °C/мин). Бензол перед использованием перегоняли над CaH₂. Альдегиды, амины, гидросилан и Pd-комплекс, использованные в работе, были получены от фирм Acros, Aldrich и Fluka. В работе применяли молекулярные сита 4A (VEB Laborchemie Apolda).

Синтез альдиминов (общая методика). В колбу помещают 10 мл сухого бензола и по 5 ммоль исходных альдегида и амина, затем 5 г свежепрокаленных молекулярных сит и проводят реакцию при комнатной температуре в атмосфере аргона, периодически отбирая пробы и анализируя их методом ТСХ и ГЖХ–МС. В течение определенного времени в зависимости от субстратов (табл. 1) происходит практически полное их превращение в

соответствующие продукты. По окончании реакции сита отфильтровывают, промывают их бензолом, фильтрат упаривают при пониженном давлении (40 °C (15 мм рт. ст.)) и удаляют незначительные остатки исходных веществ в вакууме (45–50 °C (0.1 мм от. ст.)). Продукты представляют собой маслообразные или кристаллические вещества желтого цвета. Твердые соединения очищают перекристаллизацией из гексана, или его смеси с этилацетатом и регистрируют спектры ЯМР ¹Н.

Гидросилилирование (общая методика). Реакционную пробирку Pierce объемом 5 см³ продувают аргоном и помещают в нее 2 мл сухого бензола, 0.01 ммоль катализатора и 0.5 ммоль исходного имина, после чего перемешивают при комнатной температуре 30 мин. Затем раствор охлаждают льдом до 0 °C и добавляют шприцем 0.6 ммоль гидросилана. Реакцию проводят при 65 °C, периодически отбирая пробы и анализируя их методами TCX и ГЖХ–МС. По окончании силилирования реакционную смесь упаривают при пониженном давлении (30 °C (15 мм рт. ст.)) и регистрируют спектры ЯМР ¹Н. Смесь разделяют мето-дом жидкостной хроматографии на колонке с силикагелем (Kieselgel 60, 0.063–0.200 меш, Merck), используя различные элюенты. Все полученные продукты представляют собой маслообразные вещества желтого цвета.

Авторы благодарны Латвийскому совету по науке за финансирование работы (грант № 1771).

СПИСОК ЛИТЕРАТУРЫ

- 1. И. Иовель, Л. Голомба, Ю. Попелис, А. Гаухман, Э. Лукевиц, ХГС, 324 (2000).
- 2. И. Иовель, Л. Голомба, С. Беляков, Э. Лукевиц, ХГС, 778 (2000).
- 3. И. Иовель, Л. Голомба, Ю. Попелис, С. Гринберга, Э. Лукевиц, ХГС, 890 (2000).
- 4. И. Иовель, Л. Голомба, С. Беляков, Ю. Попелис, А. Гаухман, Э. Лукевиц, *XTC*, 361 (2003).
- 5. И. Иовель, Л. Голомба, С. Беляков, Ю. Попелис, Э. Лукевиц, ХГС, 1640 (2003).
- 6. Comprehensive Handbook of Hydrosilylation, B. Marciniec (Ed.), Pergamon, Oxford, 1992.
- 7. В. Б. Пухнаревич, Э. Лукевиц, Л. И. Копылова, М. Г. Воронков, *Перспективы* гидросилилирования, Инст. орган. синтеза ЛатвАН, Рига, 1992.
- 8. K. A. Horn, Chem. Rev., 95, 1317 (1995).
- 9. O. Riant, N. Mostefai, J. Courmarcel, Synthesis, 2943 (2004).
- I. Iovel, L. Golomba, S. Belyakov, A. Kemme, E. Lukevics, *Appl. Organometal. Chem.*, 15, 733 (2001).
- 11. И. Иовель, Л. Голомба, Ю. Попелис, Э. Лукевиц, ХГС, 51 (2002).
- 12. J.-F. Carpentier, V. Bette, Current Org. Chem., 6, 913 (2002).
- V.V. Zuev, O. P. Kovaleva, N. K. Skvortsov, *Phosphorus, Sulfur, Silicon, Related Elements*, 179, 83 (2004).
- 14. И. Иовель, Л. Голомба, Ю. Попелис, С. Гринберга, Э. Лукевиц, ХГС, 52 (2003).
- И. Иовель, Л. Голомба, М. Флейшер, Ю. Попелис, С. Гринберга, Э. Лукевиц, XTC, 825 (2004).

Латвийский институт органического синтеза, Рига LV-1006 e-mail: iovel@osi.lv Поступило в редакцию 15.02.2005

1319