В. Д. Дяченко

СИНТЕЗ И КРИСТАЛЛИЧЕСКАЯ СТРУКТУРА 3,5-ДИЦИАНО-2,6-ДИЭТИЛТИОПИРИДИНА

Алкилированием цианотиоацетамида этилиодидом в ДМФА синтезирован 3,5-дициано-2,6-диэтилтиопиридин и исследована его молекулярная и кристаллическая структура.

Ключевые слова: 3,5-дициано-2,6-диэтилтиопиридин, цианотиоацетамид, этилиодид, алкилирование, РСА.

В синтезе производных 3-цианопиридин-2(1Н)-тионов по Михаэлю цианотиоацетамид успешно используется в качестве СН-кислотного компонента [1–6]. Вместе с тем, по его алкилированию и использованию в органическом синтезе соответствующих S-алкилимидотиоэфиратов как в свободном виде [7], так и *in situ* [8] известны только две работы, посвященные получению замещенных 4-оксохиназолинов.

В настоящей работе впервые показано, что алкилирование цианотиоацетамида (1) этилиодидом в ДМФА при 18 °С приводит к 3,5-дициано-2,6-диэтилтиопиридину (2). Путь реакции, вероятно, включает образование имина **3A**, способного к прототропной амино-иминной таутомерии с енамином **3Б**. Последний в условиях реакции конденсируется с ДМФА до соответствующего енаминоимина **4**, взаимодействующего далее с соединением **3** по Михаэлю или по типу нуклеофильного винильного замещения [9]. Образующийся продукт **5** в результате циклоконденсации превращается в замещенный пиридин **2** [10].

Строение соединения 2 было подтверждено РСА. В кристалле этого пиридина наблюдаются две симметрически независимые молекулы A и Б (таблица, рис. 1).

Рис. 1. Общий вид молекулы 2А с нумерацией атомов

Рис. 2. Фрагмент кристаллической упаковки соединения 2

Связь	<i>d</i> , Å		VEOL	ω, град.	
	2A	2Б	¥1011	2A	2Б
S ₍₁₎ -C ₍₁₎	1.745(3)	1.748(3)	$C_{(1)} - S_{(1)} - C_{(8)}$	102.61(14)	103.62(16)
$S_{(1)} - C_{(8)}$	1.809(3)	1.802(4)	$C_{(5)} - S_{(2)} - C_{(10)}$	103.49(15)	103.23(15)
S ₍₂₎ -C ₍₅₎	1.749(3)	1.747(3)	$C_{(1)} - N_{(1)} - C_{(5)}$	119.2(2)	118.3(3)
$S_{(2)}-C_{(10)}$	1.810(3)	1.812(4)	$N_{(1)}$ - $C_{(1)}$ - $C_{(2)}$	121.9(2)	122.9(2)
$N_{(1)}-C_{(1)}$	1.334(4)	1.342(4)	$C_{(1)} - C_{(2)} - C_{(3)}$	118.9(3)	118.6 (3)
N ₍₁₎ -C ₍₅₎	1.336(3)	1.342(4)	$C_{(2)} - C_{(3)} - C_{(4)}$	118.8(3)	118.9(3)
$C_{(1)} - C_{(2)}$	1.413(4)	1.404(4)	$C_{(3)} - C_{(4)} - C_{(5)}$	118.8(3)	119.2(2)
C ₍₂₎ -C ₍₃₎	1.389(4)	1.386(4)	$N_{(1)} - C_{(5)} - C_{(4)}$	122.4(2)	122.1(3)
C(3)-C(4)	1.388(4)	1.386(4)			
C ₍₄₎ -C ₍₅₎	1.408(4)	1.408(4)			

Основные длины связей (d) и валентные углы (w) в молекулах 2А и 2Б

Пиридиновый цикл в молекулах 2А и 2Б плоский (отклонения атомов от среднеквадратичной плоскости не превышают, соответственно, 0.007 и 0.003 Å). Атомы $S_{(1)}$ и $S_{(2)}$ выходят по одну и ту же сторону из плоскости цикла (на 0.030 и 0.039 Å в молекуле 2A и 0.046 и 0.020 Å в молекуле 2Б). При этом в силу стерических условий этильные заместители имеют почти ортогональную ориентацию относительно пиридинового цикла: торсионные углы C₍₁₎-S₍₁₎-C₍₈₎-C₍₉₎ и C₍₅₎-S₍₂₎-C₍₁₀₎-C₍₁₁₎ составляют 83.4 и -80.6° (молекула 2А) и 84.1 и -80.4° (молекула 2Б). Геометрические параметры в группировках C₍₁₎-S₍₁₎-C₍₉₎ и C₍₅₎-S₍₂₎-C₍₁₀₎ близки к соответствующим параметрам, найденным в молекуле Ph-S-Me (S-C(sp²) 1.749(4), S-C(sp³) 1.803(4) Å, CSC 105.6(7)^o) [11]. В кристалле соединения 2 молекулы упакованы таким образом, что все пиридиновые кольца параллельны друг другу (двугранный угол между пиридиновыми системами молекул 2А и 2Б составляет лишь 1.0°) и образуют "псевдодимеры" типа АА и ББ (рис. 2) с соответствующими расстояниями между пиридиновыми кольцами димерных пар 3.40 и 3.45 Å (что, вероятно, указывает на возможность п-п-стэкингвзаимодействия [12]). При этом в каждой "димерной паре" этильные заместители направлены в противоположные от центра тяжести стороны, тем самым стерически препятствуя образованию в кристалле "стопочного упорядочения".

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Рентгеноструктурное исследование монокристалла соединения 2 с линейными размерами 0.13 × 0.28 × 0.44 мм проведено при комнатной температуре на автоматическом четырехкружном дифрактометре Enraf–Nonius CAD-4 (МоКа-излучение, отношение скоростей сканирования $2\theta/\omega = 1.2$, $\theta_{max} = 27^{\circ}$, сегмент сферы $0 \le h \le 11$, $-12 \le k \le 12$, $-21 \le l \le 21$). Всего было собрано 5805 отражений, из которых 5442 являются симметрически независимыми ($R_{int} = 0.01$). Кристаллы соединения 2 триклинные, a = 8.854(1), b = 9.740(1), c = 16.654(3) Å, $\alpha = 84.21(1)$, $\beta = 75.15(1)$, $\gamma = 64.17(1)^{\circ}$, V = 1249.3(4) Å³, M = 249.35, Z = 4, $d_{BHY} = 1.32$ г/см³, $\mu = 3.84$ см⁻¹, F(000) = 520.9, пространственная группа

 $P2_{1/n}$ (N 2). Структура расшифрована прямым методом и уточнена МНК в полноматричном анизотропном приближении с использованием комплекса программ CRYSTALS [13]. В уточнении использовано 2685 отражений с I > 3(I) (289 уточняемых параметров, число отражений на параметр 9.3). Все атомы водорода были выявлены из разностного синтеза электронной плотности и включены в уточнение с фиксированными позиционными и тепловыми параметрами. Учет поглощения в кристалле был выполнен с помощью метода азимутального сканирования [14]. При уточнении использована весовая схема Чебышева [15] с параметрами: 1.50, 1.37 и 1.11. Окончательные значения факторов расходимости R = 0.043 и $R_W = 0.047$, GOF = 1.129. Остаточная электронная плотность из разностного ряда Фурье 0.31 и -0.22 е/Å³. Координаты неводородных атомов могут быть получены у автора.

ИК спектр синтезированного соединения **2** записывали на приборе ИКС-29 в вазелиновом масле. Спектр ЯМР ¹Н регистрировали на приборе Bruker AM-300 (300 МГц) в ДМСО- d_6 , внутренний стандарт ТМС. Масс-спектр получали на спектрометре Kratos MS-890 (70 эВ). Температуру плавления определяли на блоке Кофлера. Контроль за ходом реакции осуществляли методом TCX (Silufol UV-254, ацетон–гексан, 3:5, проявитель – пары иода).

3,5-Дициано-2,6-диэтилтиопиридин (2). К раствору 2.00 г (20 ммоль) цианотиоацетамида **1** в 15 мл ДМФА прибавляют 1.61 мл (20 ммоль) этилиодида и перемешивают 5 ч. Через 48 ч реакционную смесь разбавляют 27 мл воды. Образовавшийся осадок отфильтровывают, промывают водой, этанолом и гексаном. Получают пиридин **2** в виде бесцветных игл с выходом 1.67 г (67%), т. пл. 132 °C (из этанола). ИК спектр, v, см⁻¹: 2226 (C≡N). Спектр ЯМР ¹H, δ, м. д. (*J*, Гц): 1.41 (6H, т, *J* = 6.0, (CH₃)₂); 3.34 (4H, к, *J* = 6.0, (CH₂)₂); 8.49 (1H, с, C₍₄₎H). Масс-спектр, *m/z* (*I*_{отн}, %): 249 [M]⁺ (100), 234 (15), 221 (44), 220 (58), 216 (43), 206 (32), 188 (79), 160 (38), 133 (24), 89 (49), 82 (26), 69 (37), 59 (51), 45 (77). Найдено, %: C 53.14; H 4.51; N 16.68. C₁₁H₁₁N₃S₂. Вычислено, %: C 52.99; H 4.45; N 16.85.

СПИСОК ЛИТЕРАТУРЫ

- 1. B. Y. Riad, A. M. Negm, S. E. Abdou, H. A. Daboun, Heterocycles, 26, 205 (1987).
- 2. Я. Озолс, Б. Виганте, Г. Дубурс, ХГС, 1603 (1994).
- 3. В. Д. Дяченко, Дис. док. хим. наук, Москва, 1998.
- 4. F. A. Abu-Shanab, A. D. Redhouse, J. R. Thompson, B. J. Wakefield, Synthesis, 557 (1995).
- 5. M. H. Elnagdi, Sh. M. Sherif, R. M. Mohareb, Heterocycles, 26, 497 (1987).
- 6. Ю. А. Шаранин, В. К. Промоненков, в кн. *Итоги науки и техники. Органическая химия*, Москва, ВИНИТИ, 1990, **16**, 232.
- 7. M. A. Abdel-Aziz, H. A. Daboun, S. M. Abdel-Gawad, J. Serb. Chem. Soc., 55, 79 (1990).
- 8. Ю. М. Воловенко, О. В. Хиля, Т. А. Воловненко, Т. В. Шокол, *ХГС*, 350 (2002).
- 9. Z. Rappoport, Acc. Chem. Res., 25, 474 (1992).
- Общая органическая химия, под ред. Д. Бартона, У. Д. Оллиса, Химия, Москва, 1982, 3, с. 482.
- 11. S. Samdal, H. M. Seip, T. Torgrimsen, J. Mol. Struct., 57, 105 (1979).
- 12. T. Dahl, Acta Chem. Scand., 40, 95 (1994).
- 13. D. J. Watkin, C. K. Prout, J. R. Carruthers, P. W. Betteridge, *CRYSTALS Issue 10, Chemical Crystallography Laboratory*, Univ. of Oxford, 1996.
- 14. A. C. T. North, D. C. Phillips, F. Scott, F. S. Mathews, Acta Crystallogr., A24, 351 (1968).
- 15. J. R. Carruthers, D. J. Watkin, Acta Crystallogr., A35, 698 (1979).

Луганский национальный педагогический университет им. Тараса Шевченко, Луганск 91011, Украина e-mail:dvd_lug@online.lg.ua Поступило в редакцию 12.03.2003