С. В. Войтехович, А. Н. Воробьев, П. Н. Гапоник, О. А. Ивашкевич

СИНТЕЗ НОВЫХ ФУНКЦИОНАЛЬНО ЗАМЕЩЕННЫХ 1-R-ТЕТРАЗОЛОВ И ИХ 5-АМИНОПРОИЗВОДНЫХ

Показано, что аминопроизводные сульфаниламида, а также некоторые функционально замещенные первичные ариламины и циклоалкиламины вступают в реакцию гетероциклизации с триэтилортоформиатом и азидом натрия с образованием 1-монозамещенных тетразолов. Первичные амины ряда азолов – 5-аминотетразол, 1-метил-5аминотетразол, 4-амино-1,2,4-триазол, а также низкоосновные ариламины (3-нитро-4фторанилин, 2,6-дибром-4-нитроанилин) не вступают в исследуемую реакцию. Предложен эффективный метод введения аминогруппы в положение C(5) тетразольного цикла 1-арилтетразолов, основанный на щелочном расщеплении тетразольного цикла и гетероциклизации образующихся N-арилцианамидов при взаимодействии с генерируемым *in situ* азидом аммония.

Ключевые слова: 1-R-5-аминотетразолы, N-арилцианамиды, 1-R-тетразолы.

С- и N-Тетразолильные группы входят в состав ряда биологически активных соединений, многие из которых нашли применение в медицинской практике [1, 2]. Это, в первую очередь, связано с уникальной структурой тетразольного цикла, который, в зависимости от расположения заместителей, может быть биоизостером карбоксильной либо амидной группировок, обладая при этом рядом преимуществ перед ними [2, 3]. Одним из наиболее предпочтительных путей построения 1-монозамещенного тетразольного цикла, является гетероциклизация первичных аминов с триэтилортоформиатом и азидом натрия [3]. Данный процесс используется для синтеза тетразолов, исходя из первичных аминов различной природы, включая алифатические, ароматические и гетероциклические [4-9]. При этом показано, что гладко протекают реакции с участием лишь простейших алкил- и ариламинов. Обнаружено что 2,4-динитроанилин не вступает в реакцию [7], а в случае орто-фенилендиамина процесс завершается на стадии образования бензимидазола пролукта конденсации триэтилортоформиата с исходным амином [6]. В аналогичных условиях тиосемикарбазид образует 2-аминотиадиазол [7]. Не удалось идентифицировать продукты превращений ряда других соединений с первичной аминогруппой, в том числе гидразина, фенилгидразина, меламина и аминогуанидина [7]. Поведение других функционально замещенных первичных аминов до настоящего времени не изучено, несмотря на очевидное влияние природы заместителей на протекание реакции гетероциклизации.

В развитие этих исследований и с целью расширения препаративных 1174

возможностей рассматриваемой реакции, в представленной работе изучена гетероциклизация некоторых алкил-, арил- и гетариламинов, в том числе субстанций ряда широко известных фармацевтических препаратов, обладающих антибактериальным и противовирусным действием, включая стрептоцид, этазол, сульфадимезин, ремантадин и другие. Обнаружено, что первичные амины 1 гладко реагируют с азидом натрия и триэтилортоформиатом в среде уксусной кислоты при молярном соотношении реагентов 1:1.1:3, образуя соответствующие 1-монозамещенные тетразолы 2.

g R = 1-Ad, **h** R = 1-AdCH(Me), **i** R = *cyclo*-C₃H₅, **j** R = PhCH₂CH₂, **k** R = 4-F-3-ClC₆H₃, **l** R = 4-I-2-MeC₆H₃, **m** R = 4-C₆H₄COOH, **n** R = 4-(4-O₂NC₆H₄)C₆H₄

При этом их функциональные группы не затрагиваются. Высокие выходы целевых тетразолов достигаются путем нагревания реакционной смеси при 80–95 °C в течение 4–5 ч (табл. 1).

Установлено, что 3-нитро-4-фторанилин и 2,6-дибром-4-нитроанилин в аналогичных условиях не вступают в исследуемую реакцию. По-видимому, низкая основность указанных аминов препятствует их взаимодействию с триэтилортоформиатом – начальной стадии гетероциклизации [11]. Аналогичным образом можно объяснить и тот факт, что первичные амины ряда азолов – 5-аминотетразол, 1-метил-5-аминотетразол и 4-амино-1,2,4-триазол также не вступают в изученных условиях в реакцию. Во всех случаях из реакционной среды выделены исходные амины либо их гидрохлориды.

Синтезированные 1-R-тетразолы представляют интерес не только как объекты для исследования их биологической активности, но и как синтоны для получения других функциональных производных тетразола. Известно, что некоторые 5-амино-1-арилтетразолы обладают противовоспалительной, миорелаксантной, противоязвенной, анальгетической и другими видами биологической активности [12]. Однако возможности их практического применения существенно ограничены рядом синтетических сложностей – недоступность исходного сырья, низкие выходы продуктов и использование высокотоксичных и взрывоопасных реагентов [13–18].

Таблица 1

Соеди-	Брутто-	<u>Найдено, %</u> Вычислено, %			Т.пл., ℃	Выход,
нение	формула	С	Н	Ν	1. m., c	%
2a	$C_7H_7N_5O_2S$	$\frac{37.48}{37.33}$	<u>3.59</u> 3.13	<u>30.86</u> 31.09	205 (разл.)	57
2b	$C_{10}H_8N_6O_2S_2$	<u>38.60</u> 38.95	<u>2.49</u> 2.62	<u>27.10</u> 27.26	235 (разл.)	96
2c	$C_{11}H_{11}N_7O_2S_2$	<u>39.98</u> 39.16	<u>3.44</u> 3.29	<u>28.68</u> 29.06	193–195	66
2d	$C_{13}H_{13}N_7O_2S$	<u>47.28</u> 47.12	<u>3.87</u> 3.95	<u>29.40</u> 29.59	215-217	98
2e	$C_{13}H_{13}N_7O_4S$	<u>43.19</u> 42.97	<u>3.90</u> 3.61	<u>27.07</u> 26.98	195–197	58
2f	$C_{11}H_8N_4$	<u>67.41</u> 67.34	<u>4.29</u> 4.11	<u>28.68</u> 28.55	95–96	73
2g	$C_{11}H_{16}N_4$	<u>64.77</u> 64.68	$\frac{8.01}{7.89}$	<u>27.58</u> 27.43	135–137*	84
2h	$C_{13}H_{20}N_4$	<u>67.34</u> 67.21	<u>8.75</u> 8.68	<u>24.39</u> 24.12	133–135	85
2i	$C_4H_6N_4$	<u>43.88</u> 43.63	<u>5.60</u> 5.49	<u>50.90</u> 50.88	42–44	74
2ј	$C_{9}H_{10}N_{4}$	<u>61.85</u> 62.05	<u>5.62</u> 5.79	<u>32.11</u> 32.16	61–63	71
2k	$C_7H_4N_4ClF$	<u>42.22</u> 42.34	$\frac{1.99}{2.03}$	<u>28.50</u> 28.22	97–98	89
21	$C_8H_7N_4I$	<u>33.70</u> 33.59	<u>2.80</u> 2.47	<u>20.40</u> 19.58	93–94	73
2m	$C_8H_6N_4O_2$	<u>50.60</u> 50.53	<u>3.11</u> 3.18	<u>29.62</u> 29.46	255–256	91
2n	$C_{13}H_9N_5O_2$	$\frac{58.30}{58.43}$	<u>3.30</u> 3.39	<u>26.68</u> 26.31	257–259	91
3a	$C_{10}H_9N_7O_2S_2$	<u>37.39</u> 37.14	$\frac{2.90}{2.81}$	$\frac{30.11}{30.32}$	225 (разл.)	74
3b	$C_{11}H_9N_2$	<u>62.45</u> 62.55	<u>4.41</u> 4.29	<u>33.30</u> 33.16	230–232	80
3c	C ₇ H ₅ ClFN ₅	<u>39.50</u> 39.36	<u>2.50</u> 2.36	<u>32.88</u> 32.79	188–189	76
3d	$\mathrm{C_8H_7N_5O_2}$	$\frac{46.90}{46.83}$	<u>3.56</u> 3.44	<u>34.28</u> 34.13	290 (разл.)	91
3e	$C_{13}H_{10}N_6O_2$	<u>55.46</u> 55.32	<u>3.77</u> 3.57	<u>29.50</u> 29.77	209–211	85

* Т. пл. 130–132, 140–141 °С [10].

Как показано нами, соединения данного ряда, в частности, тетразолы **3а**-е могут быть легко получены рециклизацией 1-арилтетразолов **2**, включающей щелочное расщепление тетразолов и последующее азидирование промежуточных N-арилцианамидов **4**. Отметим высокие выходы целевых продуктов, достигнутые на каждой стадии процесса (табл. 1). Кроме того, предложенный путь введения аминогруппы в положение C(5) 1-арилтетразолов значительно более прост в экспериментальном исполнении по сравнению с ранее описанными [17].

Весьма важно, что 5-амино-1-арилтетразолы **За**–е получены в качестве единственных продуктов взаимодействия соответствующих цианамидов с избытком азида аммония, образующегося *in situ* из азида натрия и хлорида аммония. N-(Тетразол-5-ил)анилины, которые могут образоваться

2b,f,k,m,n
$$\xrightarrow{\text{KOH, EtOH}}$$
 NC—NH—R $\xrightarrow{\text{NaN}_3, \text{NH}_4\text{Cl}}$ $\xrightarrow{\text{N}=1}^{\text{NH}_2}$
3,4 a R = 4 -C₆H₄SO₂NH $\xrightarrow{\text{N}}_S$, b R = $\overbrace{\text{OMF}}$,
c R = 4-F-3-ClC₆H₃, d R = 4-C₆H₄COOH, e R = 4-(4-O_2NC_6H_4)C₆H₄

как побочные продукты, обнаружены не были. Тем самым подтверждаются результаты работ [13, 17], указывающие на региоселективность циклизации гуанидинийазидов, промежуточно образующихся в ходе реакции в результате присоединения азид-иона к нитрильной группе цианамидов.

Таблица 2

Соеди-	Спектр ЯМР ¹ Н, б, м. д. (<i>J</i> , Гц)			
нение	НСцикл	другие сигналы		
2a	10.18	8.08–8.13 (4H, м, C ₆ H ₅); 7.55 (2H, уш. с, NH ₂)		
2b	10.15	8.04–8.10 (4H, м, C ₆ H ₅); 7.28 (1H, д, <i>J</i> = 4.6, HC=); 6.87 (1H, д, <i>J</i> = 4. HC=)		
2c	10.11	8.05–8.11 (4H, м, C ₆ H ₅); 2.83 (2H, к, <i>J</i> = 8.9, CH ₂); 1.22 (3H, т, <i>J</i> = 8.9, CH ₃)		
2d	10.15	8.14–8.19 (4H, м, C ₆ H ₅); 6.72 (1H, с, HC=); 2.26 (6H, с, 2CH ₃)		
2e	10.18	8.15–8.20 (4H, м, C ₆ H ₅); 5.98 (1H, с, HC=); 3.80 (3H, с, CH ₃); 3.75 (3H, с, CH ₃)		
2f	9.96	7.44–8.32 (7H, м, C ₆ H ₅)		
2g	9.50	2.19 (9H, c, Ad); 1.74 (6H, c, Ad)		
2h	9.41	4.46 (1H, к, <i>J</i> = 7.0, CH); 1.20–1.98 (15H, м, Ad); 1.46 (3H, д, <i>J</i> = 7.0, CH ₃)		
2i	9.45	3.90–4.11 (1Н, м, СН); 1.12–1.21 (4Н, м, 2СН ₂)		
2j	9.26	7.15–7.27 (5H, м, C ₆ H ₅); 4.73 (2H, т, <i>J</i> = 7.2, CH ₂); 3.19 (2H, т, <i>J</i> = 7.2, CH ₂)		
2k	10.08	7.64–8.31 (3Н, м, С ₆ Н ₅)		
21	9.80	7.75–8.00 (2H, м, C ₆ H ₅); 7.28–7.33 (1H, м, C ₆ H ₅); 2.11 (3H, с, CH ₃)		
2m	10.18	8.00–8.24 (4H, м, C ₆ H ₅)		
2n	10.16	7.94–8.40 (4Н, м, С ₆ Н ₅)		
3a*		10.23 (2H, уш. с, NH ₂); 7.65–7.70 (4H, м, C ₆ H ₅); 7.20 (1H, д, J=4.6, CH); 6.78 (1H, д, J=4.6, CH)		
3b		7.38-8.31 (7Н, м, C ₆ H ₅); 5.32 (2Н, уш. с, NH ₂)		
3c		7.57–7.91 (3H, м, C ₆ H ₅); 6.94 (2H, уш. с, NH ₂)		
3d		7.66–8.18 (4H, м, С ₆ H ₅); 6.99 (2H, уш. с, NH ₂)		
3e		7.50–8.30 (8Н, м, 2С ₆ Н ₅); 5.91 (2Н, уш. с, NH ₂)		

Спектры ЯМР ¹Н соединений 2а-п 3а-е

* Спектр ЯМР ¹³С, б, м. д.: 112.3 (С, С₍₄₎-тиазол); 127.9 (2С, С₆Н₅); 128.4 (С, С₆Н₅); 131.1 (2С, С₆H₅); 139.8 (С, С₆H₅); 146.5 (С, С₍₅₎-тиазол); 158.5 (С, С₍₅₎-тетразол); 172.7 (С, С₍₂₎-тиазол).

Полученные соединения идентифицированы на основании данных ИК, ЯМР ¹Н и ¹³С спектроскопии (табл. 2). Характеристичным для 1-монозамещенных тетразолов **2** является синглет протона при атоме C(5) тетразольного цикла, лежащий в спектрах ЯМР ¹Н в области 9.3–10.2 м. д. [4–9]. В ИК спектрах N-арилцианамидов **4** присутствует сильная полоса поглощения в области 2210–2250 см⁻¹, относящаяся к валентным колебаниям связи С=N, а также полосы поглощения в области 3100–3500 и 1580–1620 см⁻¹, характерные для валентных и деформационных колебаний связи N–H. В ИК спектрах 5-амино-1-арилтетразолов **3** имеются полосы поглощения валентных (3100–3400 см⁻¹) и деформаци- онных (1580–1600 см⁻¹) колебаний связей первичной аминогруппы N–H. Сигнал атома углерода тетразольного цикла в спектре ЯМР ¹³С тетразола **3а** проявляется при 158.5 м. д., что соответствует таковым для 5-амино-1-R-тетразолов [17–19]. Строение соединения **3b** подтверждено нами также данными PCA [20].

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Спектры ЯМР ¹Н и ¹³С записаны на спектрометре Tesla BS 567A (100 и 25 МГц соответственно) в ДМСО- d_6 , внутренний стандарт ГМДС (δ 0.05 м. д.). ИК спектры сняты на спектрометре Shimadzu FTIR-8601 в тонком слое чистых веществ, помещенных в алмазную кювету. Индивидуальность соединений контролировали методом TCX на пластинках Merck Kieselgel 60/Kieselgur F₂₅₄.

1-Монозамещенные тетразолы 2а-п (общая методика). К суспензии 0.1 моль первичного амина или соответствующего гидрохлорида и 7.2 г (0.11 моль) азида натрия в 44 мл (0.3 моль) триэтилортоформиата при перемешивании добавляют 40 мл ледяной уксусной кислоты и смесь нагревают, перемешивая на кипящей водяной бане в течение 4–5 ч. Реакционную смесь охлаждают, добавляют 0.2 моль концентрированной соляной кислоты и 50 мл воды. Выпавший осадок отделяют фильтрованием, промывают водой и сушат. Полученные тетразолы перекристаллизовывают из ацетонитрила (2а-е), 2-пропанола (2f-m) или смеси этанол–ДМФА (2n).

N-Арилцианамиды 4а-е (общая методика). К суспензии 0.01 моль 1-арилтетразола **2b,f,k,m,n** в 6 мл 10% водного раствора КОН (для синтеза цианамидов **4a,d** используют 6 мл 20% раствора КОН) при постоянном перемешивании по каплям добавляют 10 мл ДМСО. При этом наблюдается интенсивное выделение газа, сопровождающееся саморазогревом реакционной смеси. Реакционную смесь продолжают перемешивать в течение 15–20 мин после окончания визуально наблюдаемого выделения азота, затем разбавляют водой до 80 мл, подкисляют соляной кислотой до рН 3–4 и выдерживают при 5–10 °С до выпадения осадка. Полученные продукты отфильтровывают, промывают водой и сушат в вакууме.

N-(1-Тиазол-2-ил)-4-цианаминобензолсульфонамид (4а). Выход 91%. Т. пл. 215–217 °С (из ацетонитрила). ИК спектр, v, см⁻¹: 2234 (С≡N), 3190, 1600 (N–H), 1326 (S=O). Найдено, %: С 43.05; Н 2.60; N 20.39. С₁₀Н₈N₄O₂S₂. Вычислено, %: С 42.85; Н 2.88; N 19. 99.

1-Нафтилцианамид (4b). Выход 96%. Т. пл. 133–134 °С (из 2-пропанола) (135 °С [21]). ИК спектр, v, см⁻¹: 2233 (С≡N), 3182, 1585 (N–H).

4-Фтор-3-хлорфенилцианамид (4с). Выход 87%. Т. пл. 100–101°С (из 2-пропанола). ИК спектр, v, см⁻¹: 2241 (C≡N), 3171, 1612 (N–H). Найдено, %: С 48.85; Н 2.39; N 15.65. С₇H₄CIFN₂. Вычислено, %: С 49.29; Н 2.36; N 16.42.

4-(Цианамино)бензойная кислота (4d). Выход 74%. Т. пл. выше 350 °С (переосаждение через натриевую соль). ИК спектр, v, см⁻¹: 2237 (С≡N), 3344, 1612 (N–H). Найдено, %: С 59.19; Н 3.58; N 17.18. С₈H₆N₂O₂. Вычислено, %: С 59.26; Н 3.73; N 17.28.

4-(4-Нитрофенил)фенилцианамид (4е). Выход 95%. Т. пл. 252–254 °С (из смеси этанол–ДМФА). ИК спектр, v, см⁻¹: 2245 (С≡N), 3197, 1593 (N–H). Найдено, %: С 65.09; Н 3.98; N 17.77. С₁₃Н₉N₃O₂. Вычислено, %: С 65.27; Н 3.79; N 17.56.

5-Амино-1-арилтетразолы За-е (общая методика). Суспензию 0.01 моль цианамида 1178

4а–е, 0.015 моль азида натрия и 0.02 моль хлорида аммония в 25 мл ДМФА перемешивают при 70–80 °С в течение 3–4 ч, после чего к реакционной смеси добавляют 100 мл воды, выпавший осадок отфильтровывают, промывают водой и перекристаллизовывают из ацетонитрила (**3a**), 2-пропанола (**3b**,**c**), переосаждают из смеси ДМФА–вода (**3e**) или очищают через натриевую соль (**3d**).

Работа выполнена в рамках государственной программы фундаментальных исследований "Биооргсинтез", а также проекта XO1-273, поддержанного Белорусским республиканским фондом фундаментальных исследований.

СПИСОК ЛИТЕРАТУРЫ

- 1. М. Д. Машковский, Лекарственные средства, Новая волна, Москва, 2000, 1-2.
- 2. S. J. Wittenberger, Org. Prep. Proced. Int., 26, 499 (1994).
- 3. R. N. Butler, *Comprehensive Heterocyclic Chemistry II*, A. R. Katritzky, C. W. Rees, E. F. V. Scriven (Eds.), Pergamon Press, Oxford, 1996, 4, 621.
- 4. П. Н. Гапоник, В. П. Каравай, *XГС*, 1422 (1985).
- 5. П. Н. Гапоник, В. П. Каравай, Ю. В. Григорьев, *ХГС*, 1521 (1985).
- 6. П. Н. Гапоник, В. П. Каравай, И. Е. Давшко, М. М. Дегтярик, А. Н. Богатиков, *XTC*, 1528 (1990).
- 7. Ю. В. Григорьев, И. И. Маруда, П. Н. Гапоник, Изв. НАН Беларуси, Сер. хим. наук, № 4, 86 (1997).
- S. V. Voitekhovich, P. N. Gaponik, A. S. Lyakhov, O. A. Ivashkevich, *Polish J. Chem.*, 75, 253 (2001).
- 9. П. Н. Гапоник, С. В. Войтехович, И. И. Маруда, А. А. Кулак, О. А. Ивашкевич, Изв. НАН Беларуси, Сер. хим. наук, № 3, 62 (2001).
- 10. В. В. Сараев, Е. Л. Голод, *ЖОрХ*, **33**, 629 (1997).
- 11. П. Н. Гапоник, Дис. докт. хим. наук, Минск, 2000.
- 12. Т. Schelenz, J. Prakt. Chem., 342, 205 (2000) и цитируемая там литература.
- 13. W. L. Garbrecht, R. M. Herbst, J. Org. Chem., 18, 1014 (1953).
- 14. R. Imhof, D. W. Ladner, J. M. Muchowski, J. Org. Chem., 42, 3709 (1977).
- 15. E. Zbiral, W. Schoerkhuber, Liebigs Ann. Chem., 1870 (1982).
- 16. F. R. Atherton, R. W. Lambert, Tetrahedron, 39, 2599 (1983).
- 17. M. S. Congreve, Synlett, 359 (1996).
- 18. R. A. Batey, D. A. Powell, Organic Lett., 2, 3237 (2000).
- 19. W. Bocian, J. Jazwinski, W. Kozminski, L. Stefaniak, G. A. Webb, J. Chem. Soc., Perkin Trans. 2, 1327 (1994).
- A. S. Lyakhov, A. N. Vorobiov, P. N. Gaponik, L. S. Ivashkevich, Vad. E. Matulis, O. A. Ivashkevich, *Acta Crystallogr.*, C59, 690 (2003).
- 21. H. H. Capps, W. M. Dehn, J. Am. Chem. Soc., 54, 4301 (1932).

Научно-исследовательский институт физико-химических проблем Белорусского государственного университета, Минск 220080 e-mail:azole@bsu.by, e-mail: azole@tut.by Поступило в редакцию 20.02.2003