В. Д. Дяченко

СИНТЕЗ И КРИСТАЛЛИЧЕСКАЯ СТРУКТУРА 4,6-ДИФЕНИЛ-3-ЭТОКСИКАРБОНИЛ-3,4-ДИГИДРОПИРИДИН-2(1Н)-ТИОНА

Взаимодействием бензилиденацетофенона с цианоуксусным эфиром и сероводородом синтезирован 4,6-дифенил-3-этоксикарбонил-3,4-дигидропиридин-2(1H)-тион, строение которого исследовано методом РСА.

Ключевые слова: бензилиденацетофенон, 4,6-дифенил-3-этоксикарбонил-3,4-дигидропиридин-2(1H)-тион, цианоуксусный эфир, РСА.

Конденсация 1,3-диарил-2-пропен-1-онов с цианоуксусным эфиром, катализируемая ацетатом аммония, приводит к 4,6-диарил-3-цианопиридин-2(1Н)-онам [1–4]. Нами обнаружено, что применение в данной реакции в качестве катализатора N-метилморфолина и барботирование через реакционную смесь сероводорода позволяет получить 4,6-дифенил-3-этоксикарбонил-3,4-дигидропиридин-2(1Н)-тион (1). Отметим, что аналогичный диметиловый эфир – 3-метоксикарбонил-4,6-дифенил-3,4-дигидропиридин-2(1Н)-тион – недавно получен при конденсации халкона с метиловым эфиром тиокарбамоилуксусной кислоты в присутствии пиперидина [5].

Путь реакции включает, по-видимому, присоединение по Михаэлю к 1,3-дифенил-3-пропен-1-ону (2) цианоуксусного эфира (3) с образованием аддукта 4. В дальнейшем следует присоединение сероводорода к циано-группе, приводящее к тиоамиду 5. Его региоселективная внутримолекулярная циклоконденсация является заключительной стадией реакции получения дигидропиридинтиона 1.

1180

Рис. 1. Общий вид молекулы 1 с нумерацией атомов.

Строение соединения 1 установлено с помощью РСА (таблица и рис. 1). Центральный шестичленный гетероцикл $N_{(1)}C_{(1,3-6)}$ заметно неплоский (отклонения атомов от среднеквадратичной плоскости достигают 0.31 Å) и имеет конформацию, промежуточную между *полуванной* и *полукреслом* (модифицированные параметры Кремера–Попла [6] *S*, θ и ψ составляют 0.64, 47.8° и 18.7° соответсвенно). Атом $N_{(1)}$ характеризуется плоскотригональной конфигурацией связей (в пределах ошибки эксперимента сумма валентных углов при этом атоме составляет 360°). Связи $N_{(1)}$ – $C_{(1)}$ 1.336(2) и $N_{(1)}$ – $C_{(3)}$ 1.415(2) Å несколько укорочены по сравнению со значением 1.45 Å, характерным для чисто одинарных связей $N(sp^2)$ – $C(sp^2)$ [7], что, по-видимому, обусловлено *p*– π -сопряжением между неподеленной электронной парой атома $N_{(1)}$ и двойными связями $C_{(1)}$ = $S_{(1)}$ и $C_{(3)}$ = $C_{(4)}$. Действительно, молекулярная конформация вполне благоприятна для такого взаимодействия (торсионные углы $C_{(3)}$ – $N_{(1)}$ – $C_{(1)}$ и $C_{(1)}$ – $C_{(3)}$ – $C_{(4)}$

Основные длины связей (d) и валентные углы(w) в молекуле соединения 1

Связь	<i>d</i> , Å	Угол	ω, град.
S ₍₁₎ -C ₍₁₎	1.647(2)	$C_{(7)} - O_{(2)} - C_{(8)}$	116.96(18)
$O_{(1)} - C_{(7)}$	1.197(2)	$C_{(1)} - N_{(1)} - C_{(3)}$	124.62(16)
O ₍₂₎ -C ₍₇₎	1.325(2)	$N_{(1)}-C_{(1)}-C_{(6)}$	113.88(16)
O ₍₂₎ -C ₍₈₎	1.459(3)	$N_{(1)}-C_{(3)}-C_{(4)}$	119.77(16)
$N_{(1)} - C_{(1)}$	1.336(2)	$N_{(1)}-C_{(3)}-C_{(16)}$	115.48(16)
$N_{(1)} - C_{(3)}$	1.415(2)	$C_{(4)} - C_{(3)} - C_{(16)}$	124.68(17)
$C_{(1)} - C_{(6)}$	1.513(3)	$C_{(3)} - C_{(4)} - C_{(5)}$	121.25(16)
$C_{(3)} - C_{(4)}$	1.328(3)	$C_{(4)} - C_{(5)} - C_{(6)}$	107.78(16)
$C_{(4)} - C_{(5)}$	1.501(3)	$C_{(1)} - C_{(6)} - C_{(5)}$	111.89(15)
$C_{(5)} - C_{(6)}$	1.545(3)		

Рис. 2. Кристаллическая упаковка соединения **1** (пунктирными линиями обозначены межмолекулярные водородные связи)

В кристалле молекулы соединения **1** за счет межмолекулярных водородных связей $N_{(1)}-H_{(1)}\cdots O_{(1)}$ средней прочности образуют бесконечные цепочки (рис. 2). Основные геометрические параметры этих связей: $N_{(1)}-H_{(1)}$ 0.91(2), $N_{(1)}\cdots O_{(1)}$ 2.890(2), $O_{(1)}\cdots H_{(1)}$ 2.01(2) Å, $N_{(1)}H_{(1)}O_{(1)}$ 161.4(1.3)° (среднестатистическое значение расстояния N…O для водородных связей типа N–H…O составляет 2.89 Å [8]).

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Рентгеноструктурное исследование монокристалла дигидропиридина 1 с линейными размерами 0.25×0.38×0.47 мм проведено при комнатной температуре на автоматическом четырехкружном дифрактометре Enraf-Nonius CAD-4 (СиКα-излучение, отношение скоростей сканирования $2\theta/\omega = 1.2$, $\theta_{max} = 60^{\circ}$, сегмент сферы $0 \le h \le 9$, $0 \le k \le 21$, $-12 \le l \le 12$). Всего было собрано 3027 отражений, из которых 2717 являются симметрически независимыми ($R_{int} = 0.017$). Кристаллы соединения 1 моноклинные, a = 8.316(7), b = 19.329(9), c = 11.655(11) Å, $\beta = 99.25(6)^{\circ}$, $V = 1849.1(\times)$ Å³, M = 347.43, Z = 4, $d_{\text{выч}} = 1.25$ г/см³, $\mu = 16.1 \text{ см}^{-1}$, F(000) = 715.0, пространственная группа $P2_1/c$. Структура расшифрована прямым методом и уточнена МНК в полноматричном анизотропном приближении с использованием комплекса программ CRYSTALS [9]. В уточнении использовано 2358 отражений с I > 3(I) (221 уточняемый параметр, число отражений на параметр 10.7). Все атомы водорода были выявлены из разностного синтеза электронной плотности и включены в уточнение с фиксированными позиционными и тепловыми параметрами (лишь атом H₍₁₎, участвующий в образовании водородной связи, был уточнен изотропно). Учет поглощения в кристалле выполнен с помощью метода азимутального сканирования [10]. При уточнении использована весовая схема Чебышева [11] с параметрами: 3.34, -0.28, 2.62, -0.54 и 0.56. Окончательные значения факторов расходимости R = 0.039 и $R_W = 0.043$, GOF = 1.109. Остаточная электронная плотность из разностного ряда Фурье 0.21 и -0.26 е/Å³. Координаты неводородных атомов могут быть получены у автора.

ИК спектр синтезированного соединения **1** записывали на приборе ИКС-29 в вазелиновом масле. Спектр ЯМР ¹Н регистрировали на приборе Bruker AM-300 (300 МГц) в ДМСО-d₆, внутренний стандарт ТМС. Температуру плавления определяли на блоке Кофлера. Контроль за ходом реакции осуществляли методом TCX (Silufol UV-254, ацетон–гексан, 3:5, проявитель – пары иода).

4,6-Дифенил-3-этоксикарбонил-3,4-дигидропиридин-2(1H)-тион (1). К смеси 4.16 г (20 ммоль) халкона **2** и 2.13 мл (20 ммоль) цианоуксусного эфира **3** в 25 мл абсолютного этанола прибавляют 3 капли N-метилморфолина и перемешивают 0.5 ч. Затем через реакционную смесь барботируют сероводород в течение 1 ч и оставляют ее в холодильнике. Через 1 сут образовавшийся осадок отфильтровывают, промывают этанолом и гексаном. Получают дигидропиридин **1** в виде желтых кристаллов с выходом 3.89 г (62%), т. пл. 133 °С (из EtOH). ИК спектр, v, см⁻¹: 3266 (NH), 1730 (С=О). Спектр ЯМР ¹H, δ, м. д. (*J*, Гц): 1.07 (3H, т, *J* = 6.9, CH₃); 4.08 (1H, д, *J* = 4.8, C₍₃₎H); 4.02 (2H, к, *J* = 6.9, CH₂); 4.05 (1H, м, C₍₄₎H); 5.86 (1H, д, *J* = 4.8, C₍₅₎H); 7.23–7.56 (10H, м, 2C₆H₅); 11.97 (1H, уш. с, NH). Найдено, %: C 69.14; H 5.87; N 4.62. C₁₈H₁₉NO₂S. Вычислено, %: C 68.98; H 6.11; N 4.47.

СПИСОК ЛИТЕРАТУРЫ

- 1. F. M. A. Soliman, A. S. S. Salman, M. A. El-Hashash, J. Serb. Chem. Soc., 56, 377 (1991).
- 2. S. El-Nagdy, E. A. Bassiouny, I. Attia, M. R. Mahmoud, Rev. Roum. Chim., 34, 1979 (1989).
- 3. M. M. Mohamed, M. A. El-Hashash, M. A. Sayed, A. A. Shehata, *Rev. Roum. Chim.*, **30**, 419 (1985).
- 4. M. El-Mobayed, B. E. Bayoumy, A. F. El-Farargy, A. A. Fahmy, *Egypt. J. Pharm. Sci*, **30**, 329 (1989).
- 5. А. Краузе, Г. Дубурс, ХГС, 1421 (1997).
- 6. Н. С. Зефиров, В. А. Палюлин, ДАН, **252**, 111 (1980).
- 7. M. Burke-Laing, M. Laing, Acta Crystallogr., B32, 3216 (1976).
- 8. L. N. Kuleshova, P. M. Zorkii, Acta Crystallogr., B37, 1363 (1981).
- 9. D. J. Watkin, C. K. Prout, J. R. Carruthers, P. W. Betteridge, *CRYSTALS. Issue 10, Chemical Crystallography Laboratory*, Univ. of Oxford, 1996.
- 10. A. C. T. North, D. C. Phillips, F. Scott, F. S. Mathews, Acta Crystallogr., A24, 351 (1968).
- 11. J. R. Carruthers, D. J. Watkin, Acta Crystallogr., A35, 698 (1979).

Луганский национальный педагогический университет им. Тараса Шевченко, Луганск 91011, Украина e-mail: dvd_lug@online.lg.ua Поступило в редакцию 12.03.2003