## Е. В. Громачевская, Е. А. Кайгородова, С. И. Фирганг, Г. Д. Крапивин

#### ИССЛЕДОВАНИЯ В ОБЛАСТИ ХИНАЗОЛИНОВ

#### 3\*. СИНТЕЗ 2-(ПИРИДОН-2-ИЛ-3)- И 2-[ТИЕНО[2,3-*b*]ПИРИДИН-2(3)-ИЛ]-3,4-ДИГИДРОХИНАЗОЛИНОВ

Изучено взаимодействие *о*-аминофенилдифенилкарбинола с замещенными цианотиено-пиридином, цианопиридинами, -пиридонами и -пиридинтионами. Показано, что в случае производных пиридина реакция протекает с образованием 3,4дигидрохиназолинов, существующих в растворе в двух таутомерных формах. Выявлены общие закономерности начальной фрагментации указанных продуктов под действием электронного удара.

**Ключевые слова**: 3,4-дигидрохиназолины, цианопиридины, -пиридинтионы, -пиридоны, таутомерные формы, фрагментация.

В продолжение наших работ по синтезу 3,4-дигидрохиназолинов [2], в настоящем сообщении описано взаимодействие *о*-аминофенилдифенилкарбинола (1) с 3-амино-6-метил-4-метоксиметилен-2-цианотиено[2,3-*b*]пиридином (**2a**), замещенными 3-цианопиридинами **2b–c**, -2(1H)-пиридонами **2d–f**, и -2(1H)-пиридинтионами **2g–h**.

Взаимодействие нитрилов **1а-h** с карбинолом **1** проводили по ранее разработанной методике [2], в присутствии эквимолярных количеств HClO<sub>4</sub>. Установлено, что направление реакции и выход продуктов во многом определяются строением нитрила (см. схему 1).

Так, в случае цианотиенопиридина 2a, цианопиридинов 2b,с и N-незамещенных циано-2-пиридонов 2d-e образуются соответствующие перхлораты дигидрохиназолиния 3a-e, а из N-этил-6-метил-4-метоксиметил-3-циано-2-пиридона (2f) и 3-циано-2-пиридинтионов 2g-h вместо продуктов типа **3** по конкурирующей реакции [3] образуется перхлорат 9-фенилакридиния (**4**).

Установлено, что в рассматриваемых превращениях существенную роль играет растворитель. В нитрометане с хорошими выходами получаются соли **3** (табл. 1). В хлороформе выходы последних снижаются за счет протекания побочной реакции образования соли акридиния **4**. В ДМСО продукты типа **3** и **4** не образуются. Таким образом, были выявлены наиболее оптимальные условия синтеза солей **3**: растворитель – кипящий нитрометан, эквимолярные соотношения карбинола **1**, нитрила **2** и HClO<sub>4</sub>. В этих условиях перхлораты **3а**-е были получены с выходами 50–85% (см. табл. 1). При обработке водным раствором щелочи соли **3** превращаются в соответствующие свободные основания **5а**-е.

<sup>\*</sup> Сообщение 2 см. [1].

Схема 1



**b**  $R^{4} = R^{3} = Me$ ,  $R^{2} = R^{4} = CI$ ; **c**  $R^{4} = CH_{2}OMe$ ,  $R^{2} = H$ ,  $R^{3} = Me$ ;  $R^{4} = O$ ,  $R^{1} = CH_{2}OMe$ ,  $R^{2} = R^{4} = H$ ,  $R^{3} = Me$ ; **2**, **5 f** X = O,  $R^{1} = CH_{2}OMe$ ,  $R^{2} = H$ ,  $R^{3} = Me$ ,  $R^{4} = Et$ ; **g** X = S,  $R^{1} = CH_{2}OMe$ ,  $R^{2} = R^{4} = H$ ,  $R^{3} = Me$ ; **h** X = S,  $R^{1} = CH_{2}OMe$ ,  $R^{2} = CI$ ,  $R^{3} = Me$ ,  $R^{4} = H$ ; **i**  $R = CH_{2}Ph$ 

1223

В спектрах ЯМР <sup>1</sup>Н соединений **5а**–**d** присутствуют сигналы протона группы NH гетероцикла в виде двух уширенных синглетов, суммарная интенсивность которых соответствует интенсивности сигнала одного протона. Сигналы протонов групп 4'-CH<sub>2</sub>O (соединения **5а,с,е**) и 6'-CH<sub>3</sub> (соединения **5b,c**) имеют в каждом случае форму двух синглетов, интенсивность которых равна интенсивности 2H и 3H соответственно. Эти данные свидетельствуют о существовании указанных соединений в растворе в двух таутомерных формах – 3,4-дигидрохиназолина (форма **A**) и 1,4-дигидрохиназолина (форма **Б**).

В ИК спектрах перхлоратов дигидрохиназолиния **За–е** и дигидрохиназолинов **5а–е** присутствуют полосы колебаний всех характеристических групп (см. табл. 1, 3), что также подтверждает структуру этих продуктов.

Анализ масс-спектров (табл. 4, 5) соединений 5а-е и полученных ранее 2-(R-нитрофенил)-, 2-бензил-, 2-метил- и 2-винил-4,4-дифенил-3,4-дигидрохиназолинов (5f-i соответственно) [2] показывает присутствие во всех спектрах пиков однозарядных молекулярных ионов ( $M^+$ ), относительные интенсивности которых изменяются от 92% для дигидрохиназолина 5а до 0.5% для 2-бензил-4,4-дифенил-3,4-дигидрохиназолина 5g (табл. 4). Для фрагментации молекулярных ионов 3,4-дигидрохиназолинов **5а-і** характерен отрыв фенильного радикала от атома C<sub>(4)</sub> с образованием катиона  $\Phi_1$ , имеющего в спектрах соединений **5**a,b,e,h,i максимальную интенсивность. Для катионов Ф<sub>1</sub>, образованных из молекулярных ионов 5g-i, имеющих у C<sub>(2)</sub> алифатические заместители, типичным является экструзия молекулы бензола, приводящая к катиону Ф<sub>2</sub> (схема 2). Ни в одном случае не наблюдается фрагментация молекулярного иона с разрушением дигидрохиназолинового кольца, что существенно отличает первичный масс-распад дигидрохиназолинов от их гетероаналогов – производных 4Н-3,1-бензоксазинов [4, 5].

Фрагментация катионов  $\Phi_1$  с разрушением гетероцикла для всех исследуемых соединений происходит по двум направлениям: а) с потерей молекулы нитрила RC=N (ретродиеновый распад [6, 7]); б) с отрывом молекулы RCN<sub>2</sub>H [8] с образованием, соответственно, катионов  $\Phi_3$  и  $\Phi_6$ . Такая фрагментация отличается от описанного ранее распада молекулярного иона хиназолина и его гомологов, обусловленного последовательным выбросом двух молекул нитрила из молекулярного иона [7, с. 79–80].

Далее катион  $\Phi_3$  элиминирует атом водорода, а затем радикал  $C_2H_3$  с разрушением ароматического цикла [6, с. 140], что приводит к ионам  $\Phi_4$  и  $\Phi_5$  (см. схему 2).

Фрагментация катиона  $\Phi_1$  соединения **5f** имеет несколько отличную схему от представленной выше. Отсутствие в масс-спектре пика иона с m/z180 ( $\Phi_3$ ) наводит на предположение, что ретродиеновому распаду подвергается не катион  $\Phi_1$ , а ион  $\Phi_7$  (см. схему 2) с образованием нечетноэлектронной частицы  $\Phi_4$ . Последняя, элиминируя радикал C<sub>2</sub>H<sub>3</sub><sup>-</sup> [6, с. 140], превращается в катион  $\Phi_5$ . Появление пика иона  $\Phi_7$  вполне логично представить как результат распада катиона  $\Phi_1$  путем отщепления радикала NO<sub>2</sub><sup>-</sup> с одновременной миграцией водорода [6, с. 134, 145].



Структура полученных дигидрохиназолинов **5а-е** и их солей **3а-е** подтверждена спектральными данными и результатами элементного анализа (табл. 1–5).

#### Таблица 1

| Со-<br>еди- | Брутто-                                                           | <u>Найдено, %</u><br>Вычислено, % |                     |                       |                     | Т. пл.,            | ИК спектр, v, см $^{-1}$               |                        | Вы-<br>ход, |
|-------------|-------------------------------------------------------------------|-----------------------------------|---------------------|-----------------------|---------------------|--------------------|----------------------------------------|------------------------|-------------|
| не-<br>ние  | не- формула                                                       |                                   | Н                   | Cl                    | Ν                   |                    | HN , + NH                              | $\text{ClO}_4^-$       | %           |
| 3a          | C <sub>30</sub> H <sub>27</sub> ClN <sub>4</sub> O <sub>5</sub> S | <u>61.12</u><br>60.96             | <u>4.25</u><br>4.57 | <u>6.22</u><br>6.01   | <u>9.75</u><br>9.48 | 225–227            | 3220, 1630,<br>3320 (NH <sub>2</sub> ) | 1130,<br>1090,<br>1050 | 75          |
| 3b          | $C_{27}H_{22}Cl_3N_3O_4$                                          | <u>58.52</u><br>58.01             | <u>4.05</u><br>3.94 | <u>18.85</u><br>19.07 | <u>7.31</u><br>7.52 | >160<br>(разл.)    | 3200, 1655                             | 1170,<br>1120,<br>1040 | 50          |
| 3c          | C <sub>30</sub> H <sub>30</sub> ClN <sub>3</sub> O <sub>6</sub>   | <u>63.55</u><br>63.89             | <u>5.54</u><br>5.32 | <u>6.15</u><br>6.30   | <u>7.32</u><br>7.45 | 230–232            | 3190, 1635                             | 1150,<br>1110,<br>1050 | 65          |
| 3d          | C <sub>27</sub> H <sub>27</sub> ClN <sub>3</sub> O <sub>5</sub>   | <u>64.31</u><br>64.09             | <u>4.53</u><br>4.75 | <u>7.30</u><br>7.02   | <u>8.15</u><br>8.31 | >210<br>(разл.)    | 3180, 3290,<br>1620, 1635<br>(C=O)     | 1160,<br>1100,<br>1050 | 70          |
| 3e          | C <sub>28</sub> H <sub>26</sub> ClN <sub>3</sub> O <sub>6</sub>   | <u>62.52</u><br>62.74             | $\frac{4.70}{4.85}$ | <u>6.51</u><br>6.63   | <u>7.45</u><br>7.84 | 170–172<br>(разл.) | 3200, 1640,<br>1615 (C=O)              | 1130,<br>1100,<br>1065 | 85          |

#### Характеристики перхлоратов замещенного 3,4-дигидрохинолиния За-е

# Таблица 2

| 2-Замеще | нные-4,4- | -дифенил- | -3,4-дигидро | Эхинолины | 5a-e |
|----------|-----------|-----------|--------------|-----------|------|
|          |           |           |              |           |      |

| Соеди-<br>нение | Брутто-<br>формула                                        | В                     | <u>Найдено, %</u><br>ычислено, % | %                     | Т. пл.,⁰С           | $R_{f}$ * | Выход,<br>% |  |
|-----------------|-----------------------------------------------------------|-----------------------|----------------------------------|-----------------------|---------------------|-----------|-------------|--|
|                 | 4 ° P J                                                   | С                     | Н                                | Ν                     |                     |           |             |  |
| 5a              | $\mathrm{C}_{30}\mathrm{H}_{26}\mathrm{N}_{4}\mathrm{OS}$ | <u>73.95</u><br>73.44 | <u>5.02</u><br>5.34              | <u>11.12</u><br>11.42 | 171–173<br>(гептан) | 0.25      | 70          |  |
| 5b              | $C_{27}H_{21}Cl_2N_3**$                                   | <u>71.17</u><br>70.75 | $\frac{4.33}{4.62}$              | <u>9.46</u><br>9.13   | >250<br>(гептан)    | 0.20      | 75          |  |
| 5c              | $C_{30}H_{25}N_3O_2$                                      | <u>77.32</u><br>77.73 | <u>6.64</u><br>6.31              | <u>8.85</u><br>9.06   | 159–160<br>(спирт)  | 0.33      | 65          |  |
| 5d              | $C_{27}H_{23}N_3O$                                        | <u>80.14</u><br>79.98 | <u>5.38</u><br>5.72              | <u>10.55</u><br>10.36 | >260<br>(ацетон)    | 0.05      | 73          |  |
| 5e              | $C_{18}H_{25}N_3O_2$                                      | <u>77.59</u><br>77.22 | <u>5.08</u><br>5.79              | <u>9.31</u><br>9.75   | 240-242<br>(спирт)  | 0.08      | 80          |  |

\* Система растворителей: эфир-бензол (соединения **5а-с**) и бензол-ацетон, 1:1 (соединения **5d**,**e**).

\*\* Найдено, %: Cl 15.82. Вычислено, %: Cl 15.47.

Спектральные характеристики соединений 5а-е

| Соеди-<br>нение | ИК спектр,<br>v, см <sup>-1</sup>                  | Спектр ЯМР <sup>1</sup> Н (ДМСО), б, м. д. ( <i>J</i> , Гц)                                                                                                                                                                                                                                                                                                                                          |
|-----------------|----------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 5a              | 3300–3450<br>(NH, NH <sub>2</sub> );<br>1590 (C=N) | 2.60 (3H, с, CH <sub>3</sub> ); 3.41 (3H, с, OCH <sub>3</sub> ); 4.80 и 4.85 (2H, два с, OCH <sub>2</sub> ); 6.55 (1H, д. д. ${}^{3}J_{8,7}$ = 7.7, ${}^{4}J_{8,6}$ = 1.6, H-8); 6.96 (1H, с, H-5'); 7.50 (15H, м, H <sub>аром</sub> + NH <sub>2</sub> ); 8.20 и 9.33 (1H, два с, NH)                                                                                                                |
| 5b              | 3340 (NH);<br>1640 (C=N)                           | 1.92 и 1.96 (3H, два с, CH <sub>3</sub> ); 2.51 и 2.57 (3H, два с, CH <sub>3</sub> ); 6.60 (1H, д. д. ${}^{3}J_{8.7}$ = 7.7, ${}^{4}J_{8.6}$ = 1.5, H-8); 7.15 (13H, м, H <sub>аром</sub> ); 9.00 и 10.05 (1H, два с, NH)                                                                                                                                                                            |
|                 |                                                    | [1.87 и 2.00 (3H, два с, CH <sub>3</sub> ); 2.55 (3H, с, CH <sub>3</sub> ); 6.80 (4H, м, H <sub>аром</sub> ); 7.18 и 7.22 (10H, два с, $2C_6H_5$ ); 5.35 и 7.92 (1H, два с, NH)]*                                                                                                                                                                                                                    |
| 5c              | 3340 (NH);<br>1585 (C=N)                           | 1.25 (3H, т, $J = 7.1$ , CH <sub>3</sub> ); 2.41 и 2.44 (3H, два с, CH <sub>3</sub> ); 3.05 и<br>3.08 (3H, два с, OCH <sub>3</sub> ); 4.00 и 4.09 (2H, два с, OCH <sub>2</sub> ); 4.32 (2H,<br>к, <sup>3</sup> $J = 7.1$ , OCH <sub>2</sub> ); 6.62 (1H, д. д. <sup>3</sup> $J_{8.7} = 7.8$ , <sup>4</sup> $J_{8.6} = 1.7$ , H-8);<br>7.10 (14H, м, H <sub>аром</sub> ); 8.60 и 9.55 (1H, два с, NH) |
| 5d              | 3230–3280 (NH);<br>1600 (C=O);<br>1580 (C=N)       | 1.85 (3H, c, CH <sub>3</sub> ); 2.20 (3H, c, CH <sub>3</sub> ); 5.90 (1H, c, H-5'); 6.95 (14H, м, H <sub>аром</sub> ); 9.40 и 9.65 (1H, два c, NH); 11.66 (1H, уш. c, N'H)                                                                                                                                                                                                                           |
| 5e              | 3150, 3200 (NH);<br>1635 (C=O);<br>1620 (C=N)      | 2.22 (3H, с, CH <sub>3</sub> ); 3.01 (3H, с, OCH <sub>3</sub> ); 3.95 и 4.45 (2H, два с, OCH <sub>2</sub> ); 6.15 (1H, с, H-5'); 7.00 (14H, м, H <sub>аром</sub> ); 9.85 (1H, уш. с, NH); 11.82 (1H, уш. с, N'H)                                                                                                                                                                                     |

\* Спектр ЯМР <sup>1</sup>Н снят в CDCl<sub>3</sub>.

Таблица 4

Масс-спектры замещенных 3,4-дигидрохинолиназолинов 5а-і

| Соеди-<br>нение | <i>m/z (I</i> <sub>отн</sub> , %)                                                                                                             |
|-----------------|-----------------------------------------------------------------------------------------------------------------------------------------------|
| 5a              | 490 (92); 475 (72); 413 (100); 397 (5); 381 (92); 258 (30); 229 (20); 199 (23); 190 (29); 180 (32); 179 (6); 165 (19); 152 (13); 77 (44)      |
| 5b*             | 457 (19); 380 (100); 344 (25); 308 (14); 254 (13); 210 (8); 180 (8); 179 (4); 165 (12); 152 (9); 77 (28)                                      |
| 5c              | 463 (39); 448 (100); 386 (8); 326 (11); 258 (9); 202 (9); 180 (18); 179 (5); 172 (20); 165 (10); 152 (4); 77 (12)                             |
| 5d              | 405 (8); 328 (100); 326 (6); 310 (3); 254 (3); 203 (5); 180 (3); 179 (2); 165 (3); 164 (5); 152 (4); 104 (4); 77 (19)                         |
| 5e              | 435 (52); 420 (100); 358 (25); 326 (36); 258 (45); 256 (15); 255 (13); 254 (13); 180 (44); 179 (2); 171 (25); 165 (22); 152 (8); 77 (34)      |
| 5f              | 405 (8); 328 (100); 282 (30); 281 (3); 203 (3); 179 (6); 178 (4); 165 (3); 152 (5); 117 (10); 77 (12)                                         |
| 5g              | 374 (0.5); 297 (6); 226 (11.5); 225 (65); 219 (4); 180 (2); 179 (1); 167 (4); 165 (1); 152 (0.5); 104 (5); 92 (52); 91 (100); 77 (6); 65 (25) |
| 5h              | 298 (19); 254 (6); 222 (14); 221 (100); 180 (6); 179 (3); 165 (4); 152 (9); 143 (25); 102 (6); 77 (30)                                        |
| 5i              | 310 (17); 254 (4); 234 (7); 233 (100); 205 (3); 180 (3); 179 (2); 165 (3); 155 (19); 152 (5); 77 (16)                                         |

\* Значения *m/z* ионов рассчитаны на легкий изотоп галогена (<sup>35</sup>Cl).

На схеме 2 представлены также ионы  $\Phi_8-\Phi_{14}$ , связанные с фрагментацией заместителя R у  $C_{(2)}$  молекулярного иона ( $M^+$ ) и катионов  $\Phi_1$  соединений **5а–е**.

Анализ масс-спектрального распада 2-бензил-4,4-дифенил-3,4-дигидрохиназолина (**5g**, схема 3) показывает, что наряду с описанной выше фрагментацией  $M^+$  с отщеплением фенильного радикала и образованием катиона  $\Phi_1$ , а затем  $\Phi_2-\Phi_6$  (см. схему 2), наблюдаются конкурирующие распады по нескольким направлениям. По-видимому, это связано с аномально низкой для рассматриваемого ряда устойчивостью молекулярного иона соединения **5a** (его интенсивность составляет всего 0.1%, табл. 4). Возможно, при наличии бензильного заместителя главным направлением фрагментации  $M^+$  становится образование устойчивого

Схема 3



Таблица 5

Интенсивность пиков характеристических ионов в масс-спектрах соединений 5а-i ( $\Sigma_{50}$ , %)

| Соеди-<br>нение | $W_m$ | $\Phi_1$ | $\Phi_2$ | $\Phi_3$ | $\Phi_4$ | $\Phi_5$ | $\Phi_6$ | $\Phi_7$ | $\Phi_{16}$ | $\Phi_{18}$ |
|-----------------|-------|----------|----------|----------|----------|----------|----------|----------|-------------|-------------|
| 5a              | 6.2   | 6.7      | -        | 2.2      | 0.4      | 0.9      | 1.3      | _        | _           | -           |
| 5b              | 5.7   | 30.2     | -        | 2.4      | 1.2      | 2.7      | 3.6      | _        | _           | -           |
| 5c              | 15.2  | 3.1      | -        | 7.0      | 2.0      | 1.6      | 3.9      | _        | _           | -           |
| 5d              | 2.5   | 31.9     | -        | 1.0      | 0.7      | 1.3      | 1.0      | -        | -           | -           |
| 5e              | 7.9   | 3.8      | -        | 6.6      | 0.2      | 1.3      | 1.0      | -        | -           | -           |
| 5f              | 3.5   | 44.2     | -        | -        | 2.7      | 2.2      | 1.3      | 13.3     | -           | -           |
| 5g              | 0.1   | 1.6      | 1.1      | 0.5      | 0.3      | 0.1      | 0.3      | -        | 26.3        | 13.7        |
| 5h              | 4.9   | 25.5     | 6.4      | 1.4      | 0.6      | 2.3      | 1.0      | -        | -           | -           |
| 5i              | 5.7   | 33.4     | 6.4      | 0.6      | 0.4      | 1.8      | 0.7      | -        | -           | -           |
|                 |       |          |          |          |          |          |          |          |             |             |

бензильного (тропилиевого) катиона  $\Phi_{16}$  [6, с. 104; 8, с. 30], с *m/z* 91, име-1228

ющего максимальную интенсивность в спектре. Из этого следует, что соединение **5g**, по крайней мере, в газовой фазе имеет структуру 3,4-дигидрохиназолина с эндоциклической связью C=N [2]. Особенностью массраспада соединения **5g** является наличие в его масс-спектре интенсивного пика с m/z 92 ( $\Phi_{18}$ ), соответствующего катион-радикалу толуола. Ион  $\Phi_{15}$ может быть также фрагментом распада M<sup>+</sup>.

#### ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

ИК спектры записаны на приборе Specord IR-75 при комнатной температуре в вазелиновом масле. Спектры ЯМР <sup>1</sup>Н сняты на приборах Tesla BS (68 МГц) и Bruker DRX 500 (500 МГц). Масс-спектры получены на приборе Varian CH-6 с прямым вводом вещества в ионизационную камеру при температуре 50–180 °C и энергии ионизации электронов 70 эВ.

Перхлорат 2-(6-метил-4-метоксиметил-2-оксо-1,2-дигидропиридин-3-ил)-4,4-дифенил-3,4-дигидрохиназолиния (3е). К кипящей смеси 0.22 г (1.25 ммоль) нитрила 2g, 0.13 мл (1.25 ммоль) 70% HClO<sub>4</sub> в 3 мл нитрометана в течение 30–40 мин добавляют по каплям раствор (суспензию) 0.34 г (1.25 ммоль) карбинола 1 в 3 мл нитрометана. После охлаждения реакционной массы (баня со льдом) эфиром выделяют и отфильтровывают 0.57 г перхлората 3е.

Соли За- получают аналогично.

**2-(6-Метил-4-метоксиметил-2-оксо-1,2-дигидропиридин-3-ил)-4,4-дифенил-3,4-дигидрохиназолин (5е).** Смешивают 1 г (1.8 ммоль) соли **3е** с избытком (10 мл) 25% водного аммиака и кипятят 10 мин. Осадок отфильтровывают, промывают водой, сушат на воздухе, перекристаллизовывают из спирта. Выход 0.62 г (80%).

Основания 5а-d получают аналогично.

Синтез соединений 5f-i описан в работе [2].

### СПИСОК ЛИТЕРАТУРЫ

- Г. Д. Крапивин, Е. В. Громачевская, Ф. В. Квитковский, в кн. Тр. Куб. гос. технол. ун-та, Сер. Химия, химическая технология и нефтегазпереработка, Краснодар, 2002, 13, вып. 1, с. 84.
- Е. В. Громачевская, Г. Д. Крапивин, Ф. В. Квитковский, А. О. Шейн, В. Г. Кульневич, XГС, 640 (2001).
- 3. В. Г. Кульневич, Е. В. Громачевская, Т. П. Косулина, ХГС, 953 (1984).
- 4. Е. В. Громачевская, Т. П. Косулина, В. Г. Кульневич, Ю. Ю. Самитов, А. И. Хаяров, В. Т. Дубоносов, *XIC*, 101 (1990).
- 5. А. А. Полякова, Р. А. Хмельницкий, *Масс-спектрометрия в органической химии*, Химия, Москва, 1972, 327 с.
- 6. Р. Джонстон, Руководство по масс-спектрометрии для химиков-органиков, Мир, Москва, 1975, 236 с.
- 7. Н. С. Вульфсон, В. Г. Заикин, А. И. Микая, *Macc-спектрометрия органических* соединений, Химия, Москва, 1986, 312 с.
- 8. В. В. Тахирстов, Органическая масс-спектрометрия. Закономерности перегруппировочных процессов, Наука, Ленинград, 1990, с. 108.

Кубанский государственный технологический университет, Краснодар 350072, Россия e-mail: organics@kubstu.ru Поступило в редакцию 05.06.2003

1229