А. П. Енгоян, К. А. Элиазян, В. А. Пивазян, Э. А. Казарян, В. В. Довлатян

ВЛИЯНИЕ РАЗЛИЧНЫХ ЗАМЕСТИТЕЛЕЙ НА АМИН-ИМИННУЮ ТАУТОМЕРИЮ ПРОИЗВОДНЫХ 2-АМИНО-4-МЕТИЛТИАЗОЛА

Методом ЯМР ¹Н изучена амин-иминная таутомерия некоторых эфиров и амидов 2-N-мещенных 4-метилтиазол-5-карбоновых и 5-карбаминовых кислот. Показано, что на положение таутомерного равновесия влияет характер заместителей групп 2-NHR¹, 5-COR² или 5-NHCOR².

Ключевые слова: эфиры и амиды тиазол-5-карбоновой кислоты и тиазол-5-карбаминовой кислоты, амин-иминная таутомерия.

Органические соединения, содержащие амидиновую группировку, являются потенциально таутомерными системами. В настоящей работе методом ЯМР ¹Н изучено таутомерное равновесие некоторых эфиров и амидов 2-N-замещенных 4-метилтиазол-5-карбоновых (**1а–і**) и 5-карбаминовых кислот **2а–і** (таблица). Положение двойной связи в тиазинах и оксазинах заметно влияет на химический сдвиг протонов группы 4-CH₃ гетероцикла [1, 2], поэтому в данной работе таутомерное равновесие соединений **1** и **2** оценивалось по значению химического сдвига сигнала этого заместителя.

Поскольку амин-иминные превращения протекают "быстро" по временной шкале ЯМР [3, 4] и в протонных спектрах наблюдаются лишь усредненные сигналы обоих таутомеров, необходимым условием изучения их равновесия является привлечение модельных соединений с фиксированным положением двойной связи. В качестве модели имина нами использованы синтезированные ранее 2-тиоксо-3,4-диметилтиазолины 3a—е (химический сдвиг группы 4-CH₃ во всех случаях равен 2.7 м. д.) и 4a,b (химический сдвиг группы 4-CH₃ 2.22 и 2.20 м. д. соответственно) [5, 6], поскольку для них влияние анизотропии экзо- и эндоциклической двойной связи на химический сдвиг протонов группы 4-CH₃ является определяющим. Влияние индуктивного эффекта экзоциклического гетероатома выражено намного слабее вследствие удаленности последнего от этой группы.

1240

Соеди- нение	\mathbf{R}^{1}	R ²	δ, м. д. (4-СН ₃)	Соеди- нение	R^1	R ²	δ, м. д. (4-СН ₃)
1a	Me	OCH ₂ COOMe	2.42	2a	SO ₂ Ph	OEt	2.0
1b	Me	ОН	2.43	2b	SO_2Ph	OCHMe ₂	1.98
1c	Me	OCH ₂ Ph	2.44	2c	SO_2Ph	OCH ₂ CH ₂ Cl	2.0
1d	SO ₂ C ₆ H ₄ NHCOMe	OEt	2.42	2d	SO_2Ph	NHCMe ₃	1.98
1e	SO ₂ C ₆ H ₄ NHCOMe	NHPh	2.43	2e	SO_2Ph	NHCH2CH2OPh	2.0
1f	$ \underset{N \longrightarrow N}{\overset{N = \swarrow}{\underset{N \longrightarrow N}{\overset{N = \swarrow}{\underset{N \longrightarrow NHCHMe_2}{\overset{N = \rightthreetimes}{\underset{N \to NL}{\overset{N = \rightthreetimes}{\underset{N \longrightarrow N}{\overset{N = \rightthreetimes}{\underset{N \to N \longrightarrow}{\underset{N \to N}{\overset{N = \rightthreetimes}{\underset{N \to N}{\overset{N \to N}{\underset{N \to N}{\underset{N \to N}{\overset{N = \rightthreetimes}{\underset{N \to N \longrightarrow}{\underset{N \to N}{\underset{N \to N}{\underset{N \to N}{\overset{N = \rightthreetimes}{\underset{N \to N}{\underset{N \to N}{\underset{N \to N}{\underset{N \to N}{\underset{N \to N}{\underset{N \to N}{\underset{N \to N \to N}{\underset{N \to N}{\underset{N \to N}{\underset{N \to N}{\underset{N \to N}{\underset{N \to N \to N}{\underset{N \to N}{\underset{N \to N}{\underset{N \to N}{\underset{N \to N}{\underset{N \to N \to N}{\underset{N \to N \to N}{\underset{N \to N \to N}{\underset{N \to N}{\underset{N \to N}{\underset{N \to N}{\underset{N \to N}{\underset{N \to N \to N}{\underset{N \to N \to N}{\underset{N \to N}{\underset{N \to N}{\underset{N \to N}{\underset{N \to N}{\underset{N \to N \to N}{\underset{N \to N}{\underset{N \to N \to N \atopN \to N}{\underset{N \to N \to N}{\underset{N \to N}{\underset{N \to N}{\underset{N \to N}{\underset{N \to N}{\underset{N \to N}{\underset{N \to N \to N}{\underset{N \to N}{\underset{N \to N}{\underset{N \to N}{\underset{N \to N}{\underset{N \to N \to N}{\underset{N \to N \to N}{\underset{N \to N}{\underset{N \to N}{\underset{N \to N}{\underset{N \to N}{\underset{N \to N \to N}{\underset{N \to N \to N}{\underset{N \to N}{\underset{N \to N}{\underset{N \to N}{\underset{N \to N}{\underset{N \to N \to N}{\underset{N \to N}{\underset{N \to N}{\underset{N \to N \to N}{\underset{N \to N \to N}{\underset{N \to N \to N}{\underset{N \to N \to N}{\underset{N \to N}{\underset{N \to N}{\underset{N \to N \to N \atopN}}{N $	OEt	2.57	2f	SO ₂ Ph	NHC ₆ H ₃ Cl ₂ -o,o	2.1
1g	$ \xrightarrow{N = \bigvee_{N = \bigvee_{N = \bigvee_{N \in V}}^{N \text{HEt}}} }_{N = \bigvee_{N \in V}} $	OEt	2.56	2g	SO ₂ C ₆ H ₄ -Me-p	NHC ₆ H ₄ Cl- <i>o</i>	2.08
1h	$ \xrightarrow{N = \bigvee_{N } V N V V V V V V V V V VVVVVVVVVVVVV$	OEt	2.58	2h	SO ₂ C ₆ H ₄ -Me-p	NHC ₆ H ₃ Cl ₂ -0,0	2.08
1i	$ \longrightarrow_{N}^{N} \xrightarrow{Me}_{OMe}^{Me} $	OEt	2.56	2i	SO ₂ Ph	- NH	2.15

Химические сдвиги сигналов групп 4-СН₃ соединений 1 и 2

1241

3 a R^2 = OMe, b R^2 = OCH₂Ph, c R^2 = OCH₂CH₂OPh, d R^2 = OCH₂CH₂OC₆H₃Cl₂-o,o, e R^2 = OCH₂COOMe; **4** a R^2 = OCH₂CH₂Cl, b R^2 = OCH₂CH₂NMe₂

В спектрах ЯМР ¹Н соединений **1а–с** сигнал группы NCH₃ имеет вид дублета в области 2.85–2.90 м. д., а протона группы NH в области 7.80– 8.20 м. д. – квадруплета с одинаковыми КССВ, причем интегральная интенсивность квадруплета соответствует одному протону. Эти данные, несомненно, свидетельствуют о том, что указанные соединения находятся исключительно в аминоформе, для которой характерен синглетный сигнал группы 4-CH₃ при 2.42–2.44 м. д. (таблица). В случае арилсульфонилпроизводных **1d**,е положение последнего практически не изменяется, поэтому можно полагать, что они также являются аминами. В спектрах соединений **1f–i**, у которых экзоциклический атом азота непосредственно связан с ароматическим циклом триазина или пиримидина, сигнал группы 4-CH₃ смещен в слабое поле (2.56–2.58 м. д.). Поскольку в случае соединений **3** с экзоциклической двойной связью химический сдвиг протонов группы 4-CH₃ равен 2.70 м. д., указанное изменение, по-видимому, связано со смещением таутомерного равновесия в сторону иминоформы.

Существование соединений 1a-e в виде аминов можно объяснить сильными акцепторными свойствами заместителя в положении 5 тиазола, а также тем, что в этой форме вследствие поворота вокруг связи C–N имеет место максимальное перекрывание неподеленной электронной пары экзоциклического атома азота с π -электронами циклической связи C=N, сопряженной со связями C=C и C=O. Такое состояние является, очевидно, энергетически более выгодным, чем иминоформа. Последняя, напротив, возможна для гетероароматических производных 1f-i, поскольку при этом π -электроны экзоциклической связи C=N могут взаимодействовать с π -электронами триазинового или пиримидинового цикла. Появление новой сопряженной системы, по-видимому, компенсирует в некоторой степени укорачивание цепи сопряжения в тиазолиновом кольце, вследствие чего указанные соединения могут находиться в форме как амина, так и имина.

В спектрах ЯМР ¹Н соединений **За–е** и **4а,b** разность химических сдвигов сигналов групп 4-СН₃ составляет 0.48–0.50 м. д., что, вероятно, объясняется изменением свойств заместителя в положении 5 гетероцикла.

Такую же разность химических сдвигов можно ожидать и для сходных соединений аминной структуры 1 и 2. Следовательно, соединениям 2, находящимся в аминоформе, соответствовало бы поглощение группы 4-CH₃ в области 1.92-1.96 м. д. Поскольку в спектрах **2а–е** сигналы этой группы наблюдаются в области 1.98–2.00 м. д., можно сделать заключение о существовании этих соединений преимущественно в форме амина. В спектрах производных **2f**-i наблюдается слабопольное смещение синглета группы 4-CH₃ до 2.08–2.15 м. д. (таблица). Так как химические сдвиги сигналов этих протонов в спектрах соединений **4a**,**b** равны 2.20–2.22 м. д., наблюдаемую картину можно объяснить смещением таутомерного равновесия в сторону иминоформы.

Таким образом, на основании проведенных исследований можно заключить, что рассмотренные соединения могут находиться как в аминной, так и иминной формах, а на положение таутомерного равновесия влияют заместители как при экзоциклическом атоме азота, так и в положении 5 гетероцикла. Действительно, в спектре соединения 5 имеются два синглетных сигнала метильных заместителей гетероциклов **A** и **Б**. Если химический сдвиг первого сигнала (2.03 м. д.) согласуется с аминостроением гетероцикла **A**, то положение второго сигнала (2.52 м. д.) указывает на наличие в растворе некоторого количества формы с иминным строением гетероцикла **Б**. Следовательно, соединение **5** находится в виде смеси двух таутомеров, что можно объяснить акцепторными свойствами мостиковой связи C=O.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Спектры ЯМР ¹Н сняты на спектрометре Mercury Varian (300 МГц) при 30 °С, растворитель ДМСО-d₆, внутренний стандарт ТМС. Соединения **1а–i**, **2а–i**, **3а–e**, **4а**,**b** описаны ранее [5–7].

СПИСОК ЛИТЕРАТУРЫ

- 1. Е. М. Переслени, Л. А. Игнатова, П. Л. Овечкин, А. П. Енгоян, Ю. Н. Шейнкер, Б. В. Унковский, *XIC*, 1614 (1975).
- Е. М. Переслени, А. П. Енгоян, Т. Д. Зотова, Ю. Н. Шейнкер, Л. А. Игнатова, Б. В. Унковский, XTC, 346 (1977).
- Дж. Эмсли, Дж. Финей, Л. Сатклиф, Спектроскопия ЯМР высокого разрешения, Мир, Москва, 1968, 630 с.
- 4. А. Р. Катрицкий, Успехи химии, 41, 700 (1972).
- В. В. Довлатян, К. А. Элиазян, В. А. Пивазян, Э. А. Казарян, А. П. Енгоян, Р. Т. Григорян, Р. Г. Мирзоян, XTC, 677 (2000).
- 6. В. В. Довлатян, К. А. Элиазян, В. А. Пивазян, А. П. Енгоян, ХГС, 1409 (2003).
- 7. В. В. Довлатян, К. А. Элиазян, В. А. Пивазян, Э. А. Казарян, А. П. Енгоян, *XTC*, 90 (2004).

Армянская сельскохозяйственная академия, Ереван 375009 e-mail: vdovlat@netsys.am Поступило в редакцию 19.02.2002 После доработки 17.02.2003