Г. В. Боженков, Г. Г. Левковская, А. Н. Мирскова, Л. И. Ларина

1-(2,4-ДИНИТРОФЕНИЛ)-5(4)-ХЛОРПИРАЗОЛЫ ИЗ 2,4-ДИНИТРОФЕНИЛГИДРАЗОНОВ ХЛОРВИНИЛКЕТОНОВ И β,β-ДИХЛОРАКРОЛЕИНА

Разработан метод получения 1-(2,4-динитрофенил)-3-алкил(фенил)-4(5)-хлорпиразолов из соответствующих динитрофенилгидразонов 1-хлор-, 1,2- и 2,2-дихлорвинилкетонов нагреванием последних в полифосфорной кислоте. Методами ИК и ЯМР ¹Н спектроскопии изучено строение пиразолов.

Ключевые слова: бромакролеин, дихлоракролеин, 2,4-динитрофенилгидразоны, 1-(2,4-динитрофенил)пиразолы, 1-(2,4-динитрофенил)-4(5)-хлорпиразолы, хлорвинилкетоны, гетероциклизация.

1-Алкил-5(4)-хлор(бром)-3-

алкил(арил)(хлоралкил)(перфторалкил)пира- золы, перспективные для создания медицинских препаратов, красителей, инсектицидов, инсектоакарицидов и др. [1–8], образуются в реакциях соответствующих 1,2-дихлор- и 2,2-дигалогенвинилкетонов с алкилгидра- зинами в присутствии оснований [9–12]. Широкий ряд 1-метил-3-алкил-пиразолов, 1-метил-5-хлор(бром)пиразолов был получен нами с исполь- зованием новой одностадийной селективной реакции гетероциклизации 2-хлор- и 2,2-дихлор(бром)винилкетонов с несимметричным диметил-гидразином [13–15].

Оказался возможным синтез 1-фенил-4(5)-хлорпиразолов ипи незамещенных в положении 4 и 5 1-фенилпиразолов внутримолекулярной гетероциклизацией предварительно полученных фенилгидразонов 1-хлорвинилалкил(арил)- и 2,2-дихлорвинилфенилкетонов [9, 16]. В то же время, лишь на одном примере 1-(2,4-динитрофенил)-3-фенил-5-хлорпиразола [17] описано получение 1-нитрофенилзамещенных галогенпиразолов термической циклизацией соответствующих арилгидразонов 2.2-дихлорвинилфенилкетона. Одновременно было показано, что 2,4-динитрофенилгидразоны (ДНФГ) алифатических 2,2-дихлорвинилкетонов при термолизе не циклизуются в соответствующие 5-хлорпиразолы. При систематическом изучении строения ДНФГ дихлорвинилкетонов [17, 18] была однозначно установлена определяющая роль конфигурации гидразона для получения пиразолов: ДНФГ алифатических кетонов предпочтительно существуют в *s-цис-анти*-форме, а ДНФГ ароматических кетонов – в *s-транс-син-*форме, способствующей осуществлению внутримолекулярной гетероциклизации. Энергетический барьер перехода одной формы в другую достаточно высок [17], но как установлено [18] процесс *син–анти*-превращения геометрических изомеров ДНФГ катализируется кислотами.

Учитывая сказанное выше, нами разработан удобный метод получения 1-(2,4-динитрофенил)пиразолов термической гетероциклизацией соответствующих 2,4-динитрофенилгидразонов 2-хлор-, 1,2- и 2,2-дихлорвинилкетонов, 2,2-дихлоракролеина в кислой среде. Мы установили, что 2,4-динитрофенилгидразоны доступных алкил(фенил)хлорвинилкетонов циклизуются в соответствующие пиразолы при нагревании их раствора в ПФК с выходом 45–93% (табл. 1). Процесс циклизации протекает при 100–150 °C в течение 20–40 мин. Разработанный метод основан на доступных исходных соединениях, позволяет осуществить варьирование строения продуктов, в том числе вводить атомы галогена в положения 4 или 5 гетерокольца.

1, 2 a X = Y = H, R = Pr, **b–d** X = H, Y = Cl, **b** R = H, **c** R = Pr, **d** R = Ph, **e–g** X = Cl, Y = H, **e** R = Me, **f** R = Et, **g** R = Pr

В результате осуществления процесса из 2,4-динитрофенилгидразонов **1а-g** получены 1-(2,4-динитрофенил)-3-пропилпиразол **(2а)**, 1-(2,4-динитрофенил)-5-хлорпиразол **(2b)**, 1-(2,4-динитрофенил)-3-пропил-5-хлорпиразол **(2c)**, 1-(2,4-динитрофенил)-3-фенил-5-хлорпиразол **(2d)**, 1-(2,4-динитрофенил)-3-алкил-4-хлорпиразолы **2е-g** с высокими выходами.

Нами установлено, что действие оснований (амины, щелочи, алкоголяты щелочных металлов) на ДНФГ алкил-2,2- и 1,2-дихлорвинилкетонов, а также нагревание их в различных растворителях (ДМФА, ДМСО, ацетонитрил, спирты) в присутствии оснований с варьированием температуры от 70 до 140 °C и времени процесса до 10 ч не приводят к осуществлению реакции гетероциклизации с образованием пиразолов.

Поскольку нагревание растворов гидразонов **1а-g** в ПФК приводит к образованию соответствующих пиразолов, следует предположить, что в растворе кислоты ДНФГ 2,2- и 1,2-дихлорвинилкетонов претерпевают изомеризацию, в результате *анти*-форма переходит в *син*-изомер, который далее циклизуется в пиразол.

Со-еди-	Брутто-	<u>Найдено, %</u> Вычислено, %				Т. пл.,	Выход,
не- ние	формула	С	Н	Hal	Ν		%0
1a	C ₁₂ H ₁₃ ClN ₄ O ₄	<u>46.12</u> 46.09	<u>4.23</u> 4.19	<u>11.35</u> 11.34	<u>17.93</u> 17.92	130–132	98
1e	$C_{10}H_8Cl_2N_4O_4$	<u>37.65</u> 37.64	<u>2.56</u> 2.53	<u>22.20</u> 22.22	<u>17.55</u> 17.56	205–206	98
1f	$C_{11}H_{10}Cl_2N_4O_4$	<u>39.64</u> 39.66	<u>3.07</u> 3.03	<u>21.26</u> 21.28	<u>16.80</u> 16.82	204	97
1g	$C_{12}H_{12}Cl_2N_4O_4$	<u>41.53</u> 41.52	<u>3.46</u> 3.48	$\frac{20.43}{20.42}$	<u>16.13</u> 16.14	75	98
2a	$C_{12}H_{12}N_4O_4$	<u>52.20</u> 52.17	<u>4.45</u> 4.38	-	$\frac{20.26}{20.28}$	88–90	92
2b	$C_9H_5ClN_4O_4$	<u>40.22</u> 40.24	<u>1.89</u> 1.88	<u>13.25</u> 13.20	<u>20.79</u> 20.86	115	45
2c	$C_{12}H_{11}ClN_4O_4$	<u>46.36</u> 46.39	<u>3.45</u> 3.57	<u>11.52</u> 11.41	<u>18.09</u> 18.03	73–75	90
2d	C ₁₅ H ₉ ClN ₄ O ₄	<u>52.25</u> 52.27	<u>2.68</u> 2.63	<u>10.30</u> 10.28	<u>16.29</u> 16.25	136	78
2e	$C_{10}H_7ClN_4O_4$	<u>42.53</u> 42.50	$\frac{2.49}{2.50}$	<u>12.57</u> 12.54	<u>19.85</u> 19.82	96	85
2f	C ₁₁ H ₉ ClN ₄ O ₄	<u>44.55</u> 44.53	<u>3.09</u> 3.06	<u>11.97</u> 11.95	<u>18.85</u> 18.89	87–89	87
2g	$C_{12}H_{11}ClN_4O_4$	<u>46.35</u> 46.39	<u>3.49</u> 3.57	<u>11.47</u> 11.41	<u>17.98</u> 18.03	103–105	93
3	$C_9H_7BrN_4O_4$	<u>34.33</u> 34.31	<u>2.22</u> 2.24	<u>25.36</u> 25.38	<u>17.77</u> 17.78	163	98

Физико-химические характеристики соединений 1-3

Механизм реакции заключается, по-видимому, во внутримолекулярной нуклеофильной атаке 2,4-динитрофениламиным фрагментом β-атома углерода винильной группы. Образующийся при этом галогенид N-(2,4-динитрофенил)пиразолиния дегидрохлорируется при нагревании в ароматический пиразол.

Нуклеофильное присоединение 2,4-динитрофениламинового фрагмента к двойной связи с образованием соответствующих пиразолинов и последующее их дегидрогалогенирование с выделением соответствующих пиразолов, по-видимому, не реализуется. Так, при попытке проведения гетероциклизации 2,4-динитрофенилгидразона α-бромакролеина **3** в ПФК ни 1-(2,4-динитрофенил)-4-бром-2-пиразолин, ни 1-(2,4-динитрофенил)пиразол не образуются.

Найденный метод получения 1-(2,4-динитрофенил)пиразолов, несомненно, делает эти соединения доступными и интересными объектами для

дальнейших исследований. Использование в синтезе пиразолов алкил-(арил)-1,2-дихлор- и -2,2-дихлор(бром)винилкетонов с различными радикалами и 2-галогенакролеинов позволяет широко варьировать как строение заместителей в положении 3 гетероцикла, так и положение и природу атомов галогена в пиразолах.

Следует отметить, что для синтеза 1-(нитрофенил)замещенных пиразолов ранее были применены несколько подходов, ограниченных малой доступностью исходных соединений, не позволяющих варьировать строение целевых 1-(2,4-динитрофенил)пиразолов, в том числе получить пиразолы с атомом галогена в кольце и с различными заместителями в положении 3 пиразольного цикла. Известные методы получения 1-нитрофенилпиразолов включали: нитрование предварительно полученных 1-фенилпиразолов [19–21], конденсацию ацетилацетона с нитрофенилгидразинами [22, 23], арилирование 1-незамещенных пиразолов 2,4-динитрохлорбензолом [19] либо реакцию малонового диальдегида с 2,4-динитрофенилгидразином [24].

Синтезированные 1-(2,4-динитрофенил)пиразолы являются перспективными полупродуктами для развития химии потенциальных биологически активных соединений пиразольного ряда.

ДНФГ **1b-d** и пиразол **2d** были описаны ранее и их физико-химические свойства соответствовали литературным [17, 18]. Строение впервые полученных гидразонов **1a,e-g**, **3** и пиразолов **2a-c,e-g** доказано методами ИК и ЯМР спектроскопии (табл. 2), состав подтвержден элементным анализом (табл. 1).

В ИК спектрах ДНФГ **1а,е-g, 3** наблюдаются полосы поглощения N–H, C–H_{арил, алкил}, связей C=N, C=C и групп NO₂. В спектрах ЯМР ¹Н ДНФГ **1а,е-g, 3** отмечено наличие синглетных сигналов протонов группы NH, связи HC=C, а в случае ДНФГ α-бромакролеина (**3**) также два синглета протонов фрагмента =CH, CH=N.

В ИК спектрах полученных пиразолов **2а–g** наблюдаются полосы поглощения связей =С–Н пиразольного кольца, арильных и гетарильных связей групп С=N, С=С и NO₂ (табл. 2). $\begin{array}{c} R \\ 3 \\ 4 \\ X \\ \end{array} \begin{array}{c} 2 \\ N \\ 1 \\ Y \\ Y \\ H \end{array} \begin{array}{c} 2' \\ 2' \\ 3' \\ H \\ 0' \\ 5' \\ H \end{array} \begin{array}{c} H \\ H \\ NO_2 \end{array}$

Со- еди- не- ние	ИК спектр (KBr), v, см ⁻¹	Спектр ЯМР ¹ Н (ацетон-d ₆), б, м. д. (<i>J</i> , Гц)*
1	2	3
1a	3305 (NH); 3100, 3075 (=C-H); 1610 (C=N); 1590, 1315 (NO ₂); 1400 (C=C)	11.07 (1H, c, NH); 8.84 (1H, π , ${}^{4}J = 2.4$, H-3'); 8.38 (1H, π , π , ${}^{4}J = 2.4$, ${}^{3}J = 9.5$, H-5'); 7.88 (1H, π , ${}^{3}J = 9.5$, H-6'); 7.34 (1H, π , ${}^{3}J = 13.7$, =CH); 6.64 (1H, π , $J = 13.7$, =CHCl); 2.60 (2H, π , ${}^{3}J = 7.4$, CH ₂); 1.59 (2H, M, CH ₂); 1.01 (3H, π , $J = 7.4$, CH ₃)
1e	3320 (NH); 3080 (=C-H); 1600 (C=N); 1300, 1330, 1500, 1580 (NO ₂); 1430 (C=C)	11.18 (1H, c, NH); 9.02 (1H, π , ${}^{4}J = 2.6$, H-3'); 8.48 (1H, π , π , ${}^{4}J = 2.6$, ${}^{3}J = 9.5$, H-5'); 8.13 (1H, π , ${}^{3}J = 9.5$, H-6'); 7.53 (1H, c, =CH); 2.41 (3H, c, CH ₃)
1f	3300 (NH); 1620 (C=N); 1300, 1330, 1575 (NO ₂); 1490 (C=C)	11.15 (1H, c, NH); 8.92 (1H, д, ⁴ <i>J</i> = 2.6, H-3'); 8.43 (1H, д. д, ⁴ <i>J</i> = 2.6, ³ <i>J</i> = 9.4, H-5'); 8.02 (1H, д, ³ <i>J</i> = 9.4, H-6'); 7.68 (1H, с, =CH); 2.78 (2H, кв, <i>J</i> = 7.6, CH ₂); 1.20 (3H, т, <i>J</i> = 7.6, CH ₃)
1g	3300 (NH); 1620 (C=N); 1300, 1330, 1575 (NO ₂); 1490 (C=C)	11.42 (1H, c, NH); 9.14 (1H, д, ${}^{4}J$ = 2.5, H-3'); 8.38 (1H, д. д, ${}^{4}J$ = 2.5, ${}^{3}J$ = 9.5, H-5'); 8.06 (1H, д, ${}^{3}J$ = 9.5, H-6'); 7.01 (1H, c, =CH); 2.64 (2H, т, <i>J</i> = 7.8, CH ₂); 1.70 (2H, м, CH ₂); 1.11 (3H, т, <i>J</i> = 7.8, CH ₃)
2a	3145, 3120, 3090 (C=H); 1600 (C=N); 1550, 1345 (NO ₂)	8.79 (1H, μ , ⁴ <i>J</i> = 2.6, H-3'); 8.56 (1H, μ . μ , ⁴ <i>J</i> = 2.6, ³ <i>J</i> = 9.0, H-5'); 8.39 (1H, μ , <i>J</i> = 2.6, Y); 8.07 (1H, μ , ³ <i>J</i> = 9.0, H-6'); 6.50 (1H, μ , <i>J</i> = 2.6, X); 2.53 (2H, π , <i>J</i> = 7.4, CH ₂); 1.60 (2H, μ , CH ₂); 0.90 (3H, π , <i>J</i> = 7.4, CH ₃)
2b	3150, 3100, 3050 (=CH); 1600 (C=N); 1530, 1345 (NO ₂)	9.07 (1H, μ , ⁴ <i>J</i> = 2.5, H-3'); 8.92 (1H, μ . μ , ⁴ <i>J</i> = 2.5, ³ <i>J</i> = 8.7, H-5'); 8.29 (1H, μ , ³ <i>J</i> = 8.7, H-6'); 6.95 (1H, μ , <i>J</i> = 1.8, H-3); 6.80 (1H, μ , <i>J</i> = 1.8, X)
2c	3150, 3105, 3090 (=CH); 1600 (C=N); 1520, 1340 (NO ₂)	8.86 (1H, c, H-3'); 8.70 (1H, д, ³ <i>J</i> = 8.8, H-5'); 8.06 (1H, д, ³ <i>J</i> = 8.8, H-6'); 6.43 (1H, c, X); 2.57 (2H, т, <i>J</i> = 7.3, CH ₂); 1.66 (2H, м, <i>J</i> = 7.3, CH ₂); 0.93 (3H, т, <i>J</i> = 7.3, CH ₃)
2d	3145, 3125 (=CH); 1600 (C=N); 1535, 1345 (NO ₂)	8.97 (1H, д, ⁴ <i>J</i> = 2.6, H-3'); 8.80 (1H, д. д, ⁴ <i>J</i> = 2.6, ³ <i>J</i> = 8.7, H-5'); 8.25 (1H, д, ³ <i>J</i> = 8.7, H-6'); 7.85, 7.45 (5H, м, C ₆ H ₅); 7.17 (1H, с, X)
2e	3145 (=CH); 1600 (C=N); 1540, 1350 (NO ₂)	8.76 (1H, μ , ⁴ J = 2.5, H-3'); 8.63 (1H, μ , μ , ⁴ J = 2.5, ³ J = 8.9, H-5'); 8.43 (1H, c, Y); 8.08 (1H, μ , ³ J = 8.9, H-6'); 2.22 (3H, c, CH ₃)

Окончание таблицы 2

1	2	3
1016		

ИК и ЯМР ¹Н спектры динитрофенилгидразонов 1a,e-g, 3 и пиразолов 2a-g

2f	3145, 3080 (=CH); 1600 (C=N); 1550, 1525, 1365 (NO ₂)	8.80 (1H, д, ⁴ <i>J</i> = 2.5, H-3'); 8.66 (1H, д. д, ⁴ <i>J</i> = 2.5, ³ <i>J</i> = 8.9, H-5'); 8.47 (1H, с, Y); 8.13 (1H, д, ³ <i>J</i> = 8.9, H-6'); 2.66 (2H, к, <i>J</i> = 7.5, CH ₂); 1.23 (3H, т, <i>J</i> = 7.5, CH ₃)
2g	3145, 3075 (=CH); 1600 (C=N); 1535, 1345 (NO ₂)	8.77 (1H, π , ⁴ <i>J</i> = 2.6, H-3'); 8.63 (1H, π . π , ⁴ <i>J</i> = 2.6, ³ <i>J</i> = 8.9, H-5'); 8.45 (1H, c, Y); 8.10 (1H, π , ³ <i>J</i> = 8.9, H-6'); 2.60 (2H, π , <i>J</i> = 7.3, CH ₂); 1.67 (2H, m , <i>J</i> = 7.3, CH ₂); 0.94 (3H, π , <i>J</i> = 7.3, CH ₃)
3	3275 (NH); 1615 (C=N); 1510, 1320 (NO ₂)	11.72 (1H, c, NH); 8.84 (1H, π , ${}^{4}J_{H-3-H-5} = 2.5$, H-3'); 8.44 (1H, c, C(O)H); 8.42 (1H, π , π , ${}^{4}J = 2.5$, ${}^{3}J = 9.5$, H-5'); 7.91 (1H, π , ${}^{3}J = 9.5$, H-6'); 6.49 (1H, π , ${}^{2}J = 1.8$, =CH); 6.29 (1H, π , ${}^{2}J = 1.8$, =CH)

* Спектр ЯМР ¹Н снят в ДМСО- d_6 (соединения 1a, 1f и 2a), в CDCl₃ (соединение 1g).

Следует отметить наличие в ИК спектрах пиразолов **2а–** полосы в области 3145–3150 см⁻¹, характеризующей валентные колебания связей $C_{(4)}$ –Н и $C_{(5)}$ –Н гетероцикла. Полосы поглощения связей C=C гетероцикла проявляются в ИК спектрах при 1470–1575 см⁻¹. В ИК спектрах соединений **2а–** исчезает интенсивная полоса поглощения в области 3300 см⁻¹, относящаяся к поглощению группы NH исходных гилразонов.

В спектрах ЯМР ¹Н пиразолов **2а–d** резонансные сигналы протонов $H_{(4)}$ проявляются в области 5.9–6.5 м. д., а в пиразолах **2е–g** сигналы протонов $H_{(5)}$ находятся в области 8.43–8.45 м. д. Как и следовало ожидать, введение в положение 1 гетероцикла динитрофенильной группы приводит к сдвигу сигнала $H_{(5)}$ в спектре ЯМР ¹Н 4-хлорпиразолов **2е–g** в слабое поле на 1 м. д. по сравнению со сдвигом $H_{(5)}$ в спектрах ЯМР ¹Н 1-алкил-4-хлорпиразолов (7.23–7.49 м. д.) [10]. В то же время положение сигнала $H_{(4)}$ в соединениях **2b–d** сдвигается в слабое поле в меньшей степени по сравнению с его положением в спектрах ЯМР ¹Н 1-метил-5-хлорпиразолов (5.92–6.58 м. д.) [15].

Таким образом, в результате проведенных исследований разработан новый простой путь получения 3-алкил(арил)-1-(2,4-динитрофенил)-4(5)хлорпиразолов из легкодоступных исходных соединений.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Спектры ЯМР ¹Н получены на приборах Bruker DPX-400 (400 МГц) и Jeol FX-90 Q (90 МГц), внутренний стандарт ГМДС (δ 0.05 м. д. для ¹Н и 2.00 м. д. для ¹³С по отношению к ТМС). ИК спектры сняты на спектрофотометре Specord IR-75 в таблетках KBr.

Известные ранее 2,4-динитрофенилгидразоны **1b-d** получены по обычной методике [25], их физико-химические характеристики соответствуют данным [26].

2,4-Динитрофенилгидразоны 1а,е-д (общая методика). К раствору 10 ммоль 2,4-динитрофенилгидразина в 50 мл этанола и 10 мл 50% H₂SO₄ при перемешивании прибавляют по каплям 10 ммоль соответствующего 2-хлорвинилкетона. Выпавший в осадок продукт отфильтровывают, промывают этанолом (10 мл) и сушат.

Получение 1-(2,4-динитрофенил)пиразолов (общая методика). Раствор 2,4-динитрофенилгидразона хлорвинилкетона в ПФК при перемешивании нагревают при температуре 100–150 °C в течение 20–40 мин. Реакционную смесь охлаждают и выливают на лед. Выпавший осадок отфильтровывают, промывают водой до нейтральной реакции, сушат над Р₂O₅.

1-(2,4-Динитрофенил)-3-пропилпиразол (2а) получают из 2.2 г (7 ммоль) ДНФГ 2хлорвинилпропилкетона в 16 г ПФК при перемешивании и нагревании при 100–110 °С в течение 20 мин. Выход 1.78 г.

1-(2,4-Динитрофенил)-5-хлорпиразол (2b) получают из 7.64 г (25 ммоль) ДНФГ β,β-дихлоракролеина и 60 г ПФК при 130–150 °С, время реакции 40 мин. Выход 3.02 г.

1-(2,4-Динитрофенил)-3-пропил-5-хлорпиразол (2с) получают из 2 г (5.76 ммоль) ДНФГ 2,2-дихлорвинилпропилкетона в 40 г ПФК при 130 °С, время реакции 20 мин. Выход 1.59 г.

1-(2,4-Динитрофенил)-3-фенил-5-хлорпиразол (2d) получают в 20 г ПФК из 0.85 г (2.23 ммоль) ДНФГ 2,2-дихлорвинилфенилкетона при 140–150 °С, время реакции 30 мин. Выход 0.6 г.

1-(2,4-Динитрофенил)-3-метил-4-хлорпиразол (2е) получают из 1.24 г (3.9 ммоль) ДНФГ 1,2-дихлорвинилметилкетона в 20 г ПФК при 130–150 °С, время реакции 30 мин. Выход 0.93 г.

1-(2,4-Динитрофенил)-3-этил-4-хлорпиразол (2f) получают из 0.62 г (1.86 ммоль) ДНФГ 1,2-дихлорвинилэтилкетона в 20 г ПФГ при 120–125 °C, время реакции 30 мин. Выход 0.48 г.

1-(2,4-Динитрофенил)-3-пропил-4-хлорпиразол (2g) получают из 0.57 г (1.6·ммоль) ДНФГ 1,2-дихлорвинилпропилкетона в 20 г ПФГ при 130–140 °С, время реакции 30 мин. Выход 0.46 г.

2,4-Динитрофенилгидразон α-бромакролеина (3) получают аналогично соединению **1** из 3.36 г (17 ммоль) ДНФГ и 2.35 г (17 ммоль) α-бромакролеина. Выход 5.24 г.

СПИСОК ЛИТЕРАТУРЫ

- 1. Jpn. Pat. 0656792 (1994); Chem. Abstr., 122, 31573 (1995).
- 2. А. Ф. Гранов, *Успехи химии*, **68**, 773 (1999).
- 3. A. Pawer, A. A. Patil, Indian J. Chem., 33B, 156 (1994).
- 4. D. E. Butler, H. A. De Wald, J.Org. Chem., 36, 2542 (1971).
- 5. M. Nazarinia, A. Sharifian, A. Shafiee, J. Heterocycl. Chem., 32, 223 (1995).
- 6. Пат. США 3823157 (1974); РЖХим., 12О253П (1975).
- 7. BDR Pat. 2423642 (1974); Chem. Abstr., 83, 206345 (1975).
- 8. Ф. Шен, Р. Пейнье, Ж.-П. Вор, Ж. Мортье, Р. Кантегрий, Д. Краузе, Пат. РФ 2072991 (1997); Б. И., № 4, 194 (1997).
- 9. A. E. Pohland, W. R. Benson, Chem. Rev., 66, 161 (1966).
- 10. Г. В. Боженков, Тез. Молодеж. науч. школы-конф. по орг. хим., Екатеринбург, 2002, с. 96.
- 11. Г. Г. Левковская, Г. В. Боженков, Л. А. Ларина, И. Т. Евстафьева, А. Н. Мирскова, *ЖОрХ*, **37**, 684 (2001).
- 12. Г. Г. Левковская, Г. В. Боженков, А. Н. Мирскова, Тез. 1 Междунар. конф. "Химия и биологическая активность синтетических и природных соединений. Азотистые гетероциклы и алкалоиды", Москва, 2001, с. 184.
- Г. Г. Левковская, Г. В. Боженков, Р. Н. Малюшенко, А. Н. Мирскова, ЖОрХ, 37, 1836 (2001).
- Г. Г. Левковская, Г. В. Боженков, А. Н. Мирскова, А. П. Танцырев, Пат. РФ 2186772 (2002); Б. И., № 22, 439 (2002).
- Г. Г. Левковская, Г. В. Боженков, Л. И. Ларина, А. Н. Мирскова, ЖОрХ, 38, 1554 (2002).
- 16. A. Roedig, H.-J. Becker, Liebigs Ann. Chem., 597, 214 (1955).
- И. Д. Калихман, Г. Г. Левковская, Л. И. Лавлинская, А. Н. Мирскова, А. С. Атавин, Изв. АН СССР, Сер. хим., 2235 (1973).
- 18. И. Д. Калихман, Л. И. Лавлинская, Г. Г. Левковская, А. Н. Мирскова, А. С. Атавин, В. А. Пестунович, Изв. АН СССР, Сер. хим., 1402 (1974).
- 19. I. L. Finar, R. J. Hurlock, Liebigs Ann. Chem., 597, 3024 (1957).
- 20. V. Parrini, Ann. Chim., 929 (1957); РЖХим., 32484 (1958).

- Dal-Monte-Casoni Dea, Gazz. Chim. Ital., 1539 (1959); РЖХим., 17873 (1960).
 H. G. Gard, S. Joshis, J. Org. Chem., 26, 946 (1961); РЖХим., 24Ж148 (1961).
- 23. К. Conrow, J. Ат. Chem. Soc., 81, 5461 (1959); РЖХим., 65307 (1960).
- 24. R. Hüttel, Ber., 74, 1825 (1941).
- 25. Органикум, Мир, Москва, 1992, 2, 71.
- 26. А. Н. Мирскова, Г. Г. Левковская, П. В. Лидина, М. Г. Воронков, Хим.-фарм. журн., № 3, 74 (1977).

Иркутский институт химии им. А. Е. Фаворского СО РАН, Иркутск 664033 Поступило в редакцию 02.04.2003

e-mail: ggl@irioch.irk.ru