И. В. Украинец, Л. В. Сидоренко, О. В. Горохова

4-ГИДРОКСИХИНОЛОНЫ-2

84*. СИНТЕЗ 5-R-5H-5,7a,12-ТРИАЗАБЕНЗО[a]АНТРАЦЕН-6,7-ДИОНОВ

В условиях термолиза 2-аминопиридины реагируют с этиловыми эфирами 1-R-4-гидрокси-2-оксохинолин-3-карбоновых кислот исключительно в иминоформе, образуя соответствующие 5-R-5H-5,7*a*,12-триазабензо[*a*]антрацен-6,7-дионы и 4-(пиридил-2-амино)-1-R-хинолин-2-оны.

Ключевые слова: азабензоантрацен, 2-аминопиридин, 4-(пиридил-2-амино)хинолин-2-он, 4-хлор-3-этоксикарбонилхинолин-2-он.

Способность бифункциональных алкилирующих и/или ацилирующих агентов легко реагировать с 2-аминопиридинами широко используется в органической химии для получения различных конденсированных гетероциклов [2–4], многие из которых нашли применение в медицине в качестве высокоэффективных противоаллергических [5], антимикробных [6, 7], гипнотических [8] и других лекарственных средств.

Ранее мы установили, что этиловые эфиры 1-R-2-оксо-4-хлорхинолин-3-карбоновых кислот 1, получаемые из 4-оксипроизводных в одну или две стадии [9], при обработке кипящим пиридином с высокими выходами образуют соответствующие хлориды N-(1-R-2-оксо-3-этоксикарбонилхинолин-4-ил)пиридиния [1]. При замене пиридина на его 2-аминозамещенные аналоги появляется возможность протекания более глубоких структурных преобразований, а именно гетероциклизации с участием этоксикарбонильной и аминогрупп.

Реакция хлорзамещенных эфиров 1 с первичными и вторичными алкиламинами приводит к образованию 4-алкиламино-3-этоксикарбонилхинолонов [10]. Не затрагивается сложноэфирная группа и в случае обработки хлоридов N-(1-R-2-оксо-3-этоксикарбонилхинолин-4-ил)пиридиния избытком как ароматических, так и алифатических аминов [1]. Из этого следует, что начальной стадией реакции эфиров 1 с 2-аминопиридинами является нуклеофильное замещение активированного атома хлора, причем строение конечного продукта реакции определяется тем, в какой таутомерной форме вступает во взаимодействие 2-аминопиридин.

В нейтральной среде 2-аминопиридины находятся почти исключительно в ароматической таутомерной форме, нуклеофильным центром которой является пиридиновый атом азота [11]. В таком случае рассматриваемая реакция через соответствующие четвертичные пиридиниевые соли 2 должна будет приводить к триазабензофенантрендионам 3.

^{*} Сообщение 83 см. [1].

5 a R = R' = R'' = H; b R = R' = H, R'' = 11-OH; c R = R' = H, R'' = 11-Me; d R = R' = H, R'' = 10-Me; e R = R' = H, R'' = 8-Me; f R = R' = H, R'' = 9-Cl; g R = R' = H, R'' = 9-Br; h R = Me, R' = R'' = H; i R = Me, R' = H, R'' = 10-Me; j R = Et, R' = H, R'' = 11-OH; k R = Pr, R' = R'' = H; l R = Pr, R' = H, R'' = 11-Me; m R = Pr, R' = H, R'' = 9-Cl; n R = Et, R' = Cl, R'' = H

Если же 2-аминопиридин вступает в реакцию в иминоформе, чему могут способствовать достаточно жест кие условия синтеза (250 °C), то первичной электрофильной атаке будет подвергаться уже экзоциклический атом азота [11] и образующиеся при этом хинолинаминопиридины 4 в конечном итоге дадут не триазабензофенантрены 3, а изомерные им триазабензоантрацены 5.

После сплавления эквимолярных количеств эфиров 1 и 2-аминопиридинов и перекристаллизации из ДМФА с удовлетворительными выходами получены светло-желтые кристаллические вещества, возгоняющиеся при нагревании, не растворимые в воде и спиртах (табл. 1). Исключение составляет лишь реакция с 2-амино-6-метилпиридином, который, очевидно, из-за стерических препятствий реагирует с трудом и в результате выход конечного продукта реакции составляет всего 19%.

Как отличительную особенность спектров ЯМР ¹Н синтезированных веществ можно отметить сигналы двух протонов, находящиеся в довольно слабом поле – около 8.5 и 9 м. д. (табл. 2). Сравнительный анализ спектральных характеристик незамещенного соединения и его аналогов с заместителями отдельно в аминопиридиновой и хинолиновой частях молекулы показывает, что обусловлены они протонами в положениях 5 и 6 исходных эфиров 1 и аминопиридинов соответственно. С одной сто-роны, существенный парамагнитный сдвиг резонансных сигналов указан-ных протонов (например, для хинолонового, соответствующего в структу-рах 3 или 5 положению 1, он составляет в среднем 0.5 м. д. по сравнению с модельными этиловыми эфирами 4-амино- [1] и 4-алкиламино-1Н-2оксохинолин-3-карбоновых кислот [10]) можно объяснить эффектом вандер-Ваальса, который возникает при их сильном пространственном взаимодействии. Из двух предполагаемых структур такой эффект характерен только для фенантренов [12], поэтому продукты реакции этиловых эфиров 1-R-2-оксо-4-хлорхинолин-3-карбоновых кислот 1 с 2-аминопиридинами можно характеризовать как 5-R-5,8,12*a*-триазабензо[*c*]фенантрен-6,7дионы 3. С другой стороны, полученные экспериментальные данные

Таблица 1

Соеди-	Брутто-		<u>Найдено, %</u> Вычислено, %		Т. пл., ℃	Выход,	
нение	формула	С	Н	Ν	*	%0	
5a	$C_{15}H_9N_3O_2$	<u>68.31</u> 68.44	<u>3.58</u> 3.45	<u>15.85</u> 15.96	414–416	77	
5b	$C_{15}H_9N_3O_3$	<u>64.67</u> 64.52	<u>3.14</u> 3.25	<u>15.19</u> 15.05	397–399	68	
5c	$C_{16}H_{11}N_3O_2$	<u>69.45</u> 69.31	$\frac{4.13}{4.00}$	<u>15.02</u> 15.15	394–396	70	
5d	$C_{16}H_{11}N_3O_2$	<u>69.23</u> 69.31	$\frac{4.17}{4.00}$	<u>15.26</u> 15.15	445–447	72	
5e	$C_{16}H_{11}N_3O_2$	<u>69.21</u> 69.31	$\frac{4.10}{4.00}$	<u>15.22</u> 15.15	337–339	19	
5f	$C_{15}H_8ClN_3O_2$	$\frac{60.66}{60.52}$	<u>2.60</u> 2.71	<u>14.01</u> 14.11	388–390	74	
5g	$C_{15}H_8BrN_3O_2$	<u>52.50</u> 52.66	<u>2.49</u> 2.36	$\frac{12.33}{12.28}$	430–432	66	
5h	$C_{16}H_{11}N_3O_2$	<u>69.22</u> 69.31	$\frac{4.13}{4.00}$	<u>15.04</u> 15.15	365–367	80	
5i	$C_{17}H_{13}N_3O_2$	<u>70.20</u> 70.09	$\frac{4.64}{4.50}$	$\frac{14.30}{14.42}$	344–346	72	
5j	$C_{17}H_{13}N_3O_3$	<u>66.58</u> 66.44	$\frac{4.23}{4.26}$	<u>13.79</u> 13.67	375–377	65	
5k	$C_{18}H_{15}N_3O_2$	<u>70.70</u> 70.81	<u>4.84</u> 4.95	<u>13.88</u> 13.76	278–280	76	
51	$C_{19}H_{17}N_3O_2$	<u>71.57</u> 71.46	<u>5.46</u> 5.37	<u>13.03</u> 13.16	270–272	63	
5m	$C_{18}H_{14}ClN_3O_2$	$\frac{\underline{63.60}}{\underline{63.63}}$	$\frac{4.07}{4.15}$	$\frac{12.45}{12.37}$	256–258	67	
5n	$C_{17}H_{12}ClN_{3}O_{2}$	<u>62.77</u> 62.88	<u>3.60</u> 3.71	$\frac{12.84}{12.90}$	310-312	71	

Характеристики 5-R-5H-5,7a,12-триазабензо[a]антрацен-6,7-дионов 5a-n

Таблица 2

	Химинеские сприги 8 м п (1 Гп)						
Соеди-	ци- Наром.						
нение	H-8 (1H)	H-1 (1H)	сигналы других аром. протонов	R	R"		
5a	9.04 (д, <i>J</i> = 6.6)	8.52 (д, J = 8.2)	8.08-7.14 (6Н, м)	11.40 (1H, c, NH)	_		
5b	9.03 (д, J=7.7)	8.51 (д, J=7.2)	7.57–7.16 (5Н, м)	11.41 (1H, c, NH)	10.32 (1H, c, OH)		
5c	8.91 (д, <i>J</i> = 6.8)	8.55 (д, J = 7.9)	7.94–7.10 (5Н, м)	11.29 (1H, c, NH)	2.62 (3H, c, CH ₃)		
5d	8.96 (д, <i>J</i> = 7.2)	8.50 (д, J = 8.0)	7.63–7.17 (5Н, м)	11.38 (1H, c, NH)	2.49 (3H, c, CH ₃)		
5e	-	8.42 (д, <i>J</i> = 8.1)	7.75-6.90 (6Н, м)	11.32 (1H, c, NH)	2.87 (3H, c, CH ₃)		
5f	9.00 (c)	8.50 (д, J=8.2)	8.12-7.18 (5Н, м)	11.50 (1H, c, NH)	-		
5g	9.07 (c)	8.50 (д, J=8.3)	8.17–7.17 (5Н, м)	11.47 (1H, c, NH)	_		
5h	9.04 (д, <i>J</i> = 6.5)	8.59 (д, <i>J</i> = 8.1)	8.06-7.20 (6Н, м)	3.52 (3H, c, CH ₃)	_		
5i	8.92 (д, <i>J</i> = 6.9)	8.64 (д, <i>J</i> = 8.3)	7.73–7.18 (5Н, м)	3.53 (3H, c, CH ₃)	2.48 (3H, c, CH ₃)		
5j	9.05 (д, J=7.9)	8.56 (д, J=7.2)	7.59–7.15 (5Н, м)	4.28 (2H, к, <i>J</i> = 6.9, NCH ₂); 1.22 (3H, т, <i>J</i> = 7.0, CH ₃)	10.30 (1H, c, OH)		
5k	9.00 (д, <i>J</i> = 6.9)	8.67 (д, <i>J</i> = 8.1)	8.08-7.22 (6Н, м)	4.16 (2H, т, <i>J</i> = 7.3, NCH ₂); 1.67 (2H, м, C <u>H</u> ₂ CH ₃); 0.94 (3H, т, <i>J</i> = 7.3, CH ₃)	-		
51	8.89 (д, <i>J</i> = 6.8)	8.73 (д, <i>J</i> = 8.0)	7.97–7.20 (5Н, м)	4.18 (2H, т, <i>J</i> = 7.4, NCH ₂); 1.64 (2H, м, C <u>H</u> ₂ CH ₃); 0.96 (3H, т, <i>J</i> = 7.4, CH ₃)	2.64 (3H, c, CH ₃)		
5m	8.97 (c)	8.61 (д, <i>J</i> = 8.1)	8.03–7.17 (5Н, м)	4.15 (2H, т, <i>J</i> = 7.4, NCH ₂); 1.62 (2H, м, C <u>H</u> ₂ CH ₃); 0.95 (3H, т, <i>J</i> = 7.4, CH ₃)	_		
5n	8.98 (д, J = 7.0)	8.47 (c)	8.05-7.23 (5Н, м)	4.17 (2H, ĸ, <i>J</i> = 6.9, NCH ₂); 1.19 (3H, т, <i>J</i> = 6.9, CH ₃)	-		

Спекры ЯМР ¹Н соединений 5а-п

можно трактовать и как следствие простого соседства отмеченных протонов с электроотрицательными атомами азота в триазабензоантраценах 5. Следовательно, спектроскопия ЯМР ¹Н без дополнительных исследований модельных соединений, к сожалению, не позволяет сделать окончательный вывод о строении полученных веществ.

Не дает прямого ответа и хромато-масс-спектрометрия, позволяющая только определить, что синтезированные вещества индивидуальны и при ионизации образуют устойчивые молекулярные ионы. Свидетельством этому служит максимально высокая в большинстве случаев относительная интенсивность их пиков, тогда как для фрагментарных ионов она редко превышает 30% (табл. 3). Для последующего распада молекулярных ионов характерен поэтапный выброс двух молекул СО. Исключение составляют

5-N-этильные и пропильные производные, молекулярные ионы которых под действием электронного удара первоначально теряют N-алкильные заместители. Однако затем также следует поочередное эли-минирование двух молекул CO, т. е. в дальнейшем их спектры полностью совпадают со спектрами соответствующих 5-NH-производных. Интересно, что в масс-спектрах соединений, полученных из замещенных 2-амино-пиридинов, практически отсутствуют пики осколочных ионов [M–OH]⁺, [M–Me]⁺, [M–Cl]⁺ или [M–Br]⁺ – их интенсивность не превышает 9%. Поэтому такой путь фрагментации можно считать нехарактерным для изучаемого класса веществ.

Окончательное решение вопроса о строении продуктов реакции эфиров 1 с 2-аминопиридинами было получено на основании данных PCA, однозначно показавших, что они являются 5-R-5H-5,7*a*,12-триаза-бензо[*a*]антрацен-6,7-дионами **5a**–**n**. При этом установлено, что в структуре бензоантрацена **5n** (рис. 1) все неводородные атомы молекулы за исключением атома $C_{(17)}$ лежат в одной плоскости с точностью 0.03 Å. Атом $C_{(17)}$ расположен практически перпендикулярно плоскости молекулы (торсионный угол $C_{(1)}$ – $N_{(1)}$ – $C_{(16)}$ – $C_{(17)}$ 88.5(3)°). В бициклическом фрагменте $C_{(8)}$ – $C_{(7)}$ – $N_{(2)}$ – $C_{(10)}$... $C_{(14)}$ – $N_{(3)}$ – $C_{(15)}$ наблюдается четко выраженное альтернирование связей. В дигидропиридиновом кольце связи $C_{(9)}$ – $O_{(1)}$ 1.232(3), $N_{(1)}$ – $C_{(1)}$ 1.391(4) и $N_{(1)}$ – $C_{(9)}$ 1.392(4) Å удлинены по сравнению с их средними значениями 1.210, 1.353 и 1.339 Å соответственно [13]. Аналогичное удлинение связей обнаружено и в родственных соединениях [14–16].

В молекуле бензоантрацена **5n** наблюдаются укороченные внутримолекулярные контакты между бензольным кольцом $C_{(1)}...C_{(6)}$, карбонильной группой $C_{(9)}=O_{(1)}$ и этильным заместителем $C_{(2)}...H_{(16a)}$ 2.54, $C_{(16)}...H_{(2)}$ 2.53 (сумма ван-дер-ваальсовых радиусов 2.87 [17]), $H_{(16a)}...H_{(2)}$ 2.02 (2.34), $O_{(1)}...H_{(16b)}$ 2.29 Å (2.46 Å). Это не приводит к удлинению связи $N_{(1)}$ - $C_{(16)}$.

Таблица З

Соеди-	еди- <i>m/z</i> (<i>I</i> _{отн} , %)				
нение	$[M]^+$	$[M-(R-H)]^+$	$[M-(R-H)-CO]^+$	[M-(R-H)-2CO] ⁺	$[M-R"]^+$
5a	263 (100)	_	235 (27)	207 (12)	_
5b	279 (100)	_	251 (16)	223 (8)	262 (9)
5c	277 (100)	_	249 (23)	221 (14)	262 (7)
5d	277 (100)	_	249 (30)	221 (11)	262 (4)
5e	277 (100)	_	249 (27)	221 (8)	262 (2)
5f	297 (100)	_	269 (23)	241 (6)	262 (5)
5g	341 (100)	-	313 (28)	285 (17)	262 (3)
5h	277 (100)	_	249 (24)	221 (15)	_
5i	291 (100)	-	263 (24)	235 (10)	276 (2)
5j	307 (11)	279 (100)	251 (16)	223 (12)	290 (2)
5k	305 (43)	263 (100)	235 (26)	207 (10)	_
51	319 (37)	277 (100)	249 (21)	221 (12)	304 (5)
5m	339 (29)	297 (100)	269 (30)	241 (9)	304 (7)
5n	325 (34)	297 (100)	269 (21)	241 (14)	290 (8)
Укорочен	ные конта	акты наблю	даются также	между атомами	N ₍₂₎ и H ₍₅₎

Масс-спектры соединений 5а-п

(2.43, сумма ван-дер-ваальсовых радиусов 2.67 Å) и между атомами $O_{(2)}$ и $H_{(14)}$ (2.31, 2.46 Å). В кристалле бензоантрацена **5n** обнаружены межмолекулярные укороченные контакты $Cl_{(1)}...C_{(17)'}$ (1 –*x*, 0.5 +*y*, 1.5 –*z*) 3.55 (3.61) и $Cl_{(1)}...H_{(17b)'}$ (1 –*x*, 0.5 +*y*, 1.5 –*z*) 2.93 Å (3.06 Å).

Вместе с тем, более детальное изучение свидетельствует о том, что рассматриваемая реакция проходит не однозначно. В спектрах ЯМР ¹Н веществ, осажденных водой из полученных после выделения бензоантраценов **5** фильтратов, наряду с остатками означенных бензоантраценов зафиксированы и другие соединения. В одном случае такое вещество удалось выделить в индивидуальном виде и получить из него подходящий для PCA кристаллосольват с этанолом состава 1:1 (рис. 2). Оказалось, что это соединение представляет собой 4-(6-метилпиридил-2-амино)-1H-хинолин-2-он **6e** (R = R' = H, R" = 6-Ме), образовавшийся в результате термической деструкции этоксикарбонильной группы соответствующего хинолинаминопиридина **4**, что в целом характерно для таких веществ [18].

Рис. 1. Строение молекулы бензоантрацена 5n с нумерацией атомов

Рис. 2. Строение и нумерация атомов в сольвате пиридиламинохинолин-2-она **6**е с этанолом

Дигидропиридиновое кольцо пиридиламинохинолин-2-она 6е находится в конформации "сильно уплощенная ванна" (параметры складчатости: S = 0.09, $\theta = 81.1^{\circ}$, $\psi = 1.2^{\circ}$ [19]). Отклонения атомов N₍₁₎ и C₍₇₎ от среднеквадратичной плоскости остальных атомов цикла составляют -0.04 и -0.06 Å соответственно. При этом наблюдается некоторая скрученность двойной связи С₍₇₎-С₍₈₎ (торсионный угол С₍₆₎-С₍₇₎-С₍₈₎-С₍₉₎ 5.5(4)°). Образование межмолекулярной водородной связи между карбонильным кислородом и молекулой растворителя (O_(1W)-H_(1OW)...O₍₁₎ H...O 1.85 Å, O-H...O 170°) и межмолекулярной водородной связи N₍₁₎-H_(1N)...O₍₁₎ (-x, -y, -z) (H...O' 1.95 Å, N-H...O' 172°) приводит к заметному перераспределению электронной плотности в цикле. Связи O₍₁₎-C₍₉₎ 1.257(3) Å (среднее значение 1.210 [13]), N₍₁₎-C₍₉₎ 1.359(3) (1.339), N₍₁₎-C₍₁₎ 1.380(3) (1.353), С₍₇₎-С₍₈₎ 1.371(4) Å (1.326 Å) удлинены, а связи С₍₆₎-С₍₇₎ 1.445(4) (1.470) и С₍₈₎-С₍₉₎ 1.416(4) Å (1.455 Å) укорочены. Аналогичные эффекты обнаружены и у ранее изученного нами 4-(4-этоксифениламино)-1Нхинолин-2-она [16].

Стерическое отталкивание между ароматическим циклом $C_{(1)}...C_{(6)}$ и группой NH (укороченные контакты $C_{(5)}...H_{(2N)}$ 2.56 Å (сумма ван-дерваальсовых радиусов 2.87 [17]), $H_{(5)}...N_{(2)}$ 2.60 (2.67), $H_{(5)}...H_{(2N)}$ 2.08 Å (2.34 Å)) обусловливает пирамидальную конфигурацию атома $N_{(2)}$ (сумма валентных углов составляет 358°). Этим же, вероятно, объясняется и удлинение связей $N_{(2)}$ – $C_{(7)}$ 1.372(3) и $N_{(2)}$ – $C_{(10)}$ 1.406(3) Å по сравнению с их средними значениями 1.339 и 1.353 Å соответственно.

Бензоан	трацен 5 п	Пиридиламино	хинолин-2-он 6е
Связь	l, Å	Связь	l, Å
Cl ₍₁₎ –C ₍₄₎	1.734(3)	O ₍₁₎ –C ₍₉₎	1.257(3)
N(1)-C(9)	1.392(4)	$N_{(1)}-C_{(1)}$	1.380(3)
N(2)-C(10)	1.322(4)	N ₍₂₎ -C ₍₁₀₎	1.406(4)
N(3)-C(14)	1.375(4)	N ₍₃₎ -C ₍₁₄₎	1.357(4)
N ₍₃₎ -C ₍₁₅₎	1.455(4)	$C_{(1)}-C_{(2)}$	1.395(4)
O(2)-C(15)	1.212(4)	C(3)-C(4)	1.392(4)
$C_{(1)} - C_{(2)}$	1.407(4)	C(5)-C(6)	1.415(4)
C(3)-C(4)	1.379(5)	C(7)-C(8)	1.371(4)
C ₍₅₎ -C ₍₆₎	1.390(4)	$C_{(10)} - C_{(11)}$	1.371(4)
C ₍₇₎ –C ₍₈₎	1.393(4)	$C_{(12)} - C_{(13)}$	1.367(5)
C ₍₈₎ –C ₍₉₎	1.451(4)	$C_{(14)} - C_{(15)}$	1.487(5)
$C_{(11)} - C_{(12)}$	1.357(5)	C(1W)-C(2W)	1.508(1)
C(13)-C(14)	1.343(5)	N(1)-C(9)	1.359(3)
$N_{(1)}-C_{(1)}$	1.391(4)	N ₍₂₎ -C ₍₇₎	1.372(3)
$N_{(1)}-C_{(16)}$	1.471(4)	N(3)-C(10)	1.321(4)
N ₍₂₎ -C ₍₇₎	1.347(4)	C ₍₁₎ -C ₍₆₎	1.395(4)
N(3)-C(10)	1.386(4)	C ₍₂₎ -C ₍₃₎	1.362(4)
O ₍₁₎ –C ₍₉₎	1.232(3)	C ₍₄₎ -C ₍₅₎	1.366(4)
$C_{(1)} - C_{(6)}$	1.390(4)	C ₍₆₎ –C ₍₇₎	1.445(4)
$C_{(2)} - C_{(3)}$	1.376(4)	C ₍₈₎ -C ₍₉₎	1.416(4)
$C_{(4)} - C_{(5)}$	1.370(4)	C ₍₁₁₎ -C ₍₁₂₎	1.370(5)
$C_{(6)} - C_{(7)}$	1.450(4)	C(13)-C(14)	1.370(5)
C ₍₈₎ -C ₍₁₅₎	1.431(4)	O _(1W) -C _(2W)	1.407(7)
$C_{(10)} - C_{(11)}$	1.413(4)		
$C_{(12)} - C_{(13)}$	1.389(5)		
C(16)-C(17)	1.518(5)		

Длины связей (*l*) в структуре соединений 5n и бе

Пиридиновое кольцо практически компланарно связи $C_{(7)}-C_{(8)}$ (торсионный угол $C_{(10)}-N_{(2)}-C_{(7)}-C_{(8)}$ –2.5(4)°) и развернуто относительно связи $C_{(7)}-N_{(2)}$ на –44.5(4)° (торсионный угол $C_{(7)}-N_{(2)}-C_{(10)}-N_{(3)}$), несмотря на образование слабой ВМВС $C_{(8)}-H_{(8)}...N_{(3)}$ H...N 2.35 Å, C–H...N 121°. Наличие различных заместителей при атомах $C_{(10)}$ и $C_{(14)}$ пиридинового кольца является причиной удлинения связи $N_{(3)}-C_{(14)}$ 1.357(4) Å и укорочения связи $N_{(3)}-C_{(10)}$ 1.321(4) Å по сравнению с их средним значением 1.337 Å в пиридине. В кристалле молекулы соединения **6e** образуют также слабую межмолекулярную водородную связь $N_{(2)}-H_{(2N)}...O_{(1W)"}$ (*x*, *y*–1, *z*) (H...O" 2.23 Å, N–H...O" 160°).

Следует отметить также существенное отличие спектра ЯМР ¹Н пиридиламинохинолин-2-она **6e**, затруднившее его первоначальную интерпретацию, от спектров структурных аналогов – 4-амино- [1] и 4-(4-этоксифениламино)-1Н-хинолин-2-онов [18]. Такой отличительной чертой являются необычно большие сдвиги в сторону слабого поля сигналов протона в положении 3 хинолонового цикла (на 2 м. д.) и протона группы 4-NH (~1 м. д.). Причина наблюдаемого эффекта, вероятно, обусловлена участием протона $C_{(3)}$ –Н в образовании отмеченной выше ВМВС с пиридиновым атомом азота, а также близостью последнего к группе 4-NH.

Таблица 5

Бензоантрацен 5 п		Пиридиламинохинолин-2-он 6е		
Угол	ω, град.	Угол	ω, град.	
$C_{(1)} - N_{(1)} - C_{(9)}$	122.7(3)	$C_{(9)} - N_{(1)} - C_{(1)}$	123.5(2)	
$C_{(9)} - N_{(1)} - C_{(16)}$	116.3(2)	$C_{(10)} - N_{(3)}C_{(14)}$	117.9(3)	
$C_{(14)} - N_{(3)}C_{(10)}$	121.1(3)	$N_{(1)}-C_{(1)}-C_{(2)}$	119.4(2)	
$C_{(10)} - N_{(3)}C_{(15)}$	122.1(3)	$C_{(3)} - C_{(2)} - C_{(1)}$	120.4(3)	
$C_{(6)} - C_{(1)} - C_{(2)}$	119.3(3)	$C_{(5)} - C_{(4)} - C_{(3)}$	120.9(3)	
$C_{(3)} - C_{(2)} - C_{(1)}$	119.6(3)	$C_{(1)} - C_{(6)} - C_{(5)}$	117.8(2)	
$C_{(5)} - C_{(4)} - C_{(3)}$	120.2(3)	$C_{(5)} - C_{(6)} - C_{(7)}$	124.1(2)	
$C_{(3)} - C_{(4)} - Cl_{(1)}$	118.9(3)	$C_{(8)} - C_{(7)} - C_{(6)}$	118.9(2)	
$C_{(1)} - C_{(6)} - C_{(5)}$	119.7(3)	$C_{(7)} - C_{(8)} - C_{(9)}$	122.1(2)	
$C_{(5)} - C_{(6)} - C_{(7)}$	120.0(3)	$O_{(1)} - C_{(9)} - C_{(8)}$	123.5(2)	
$N_{(2)}-C_{(7)}-C_{(6)}$	117.0(3)	$N_{(3)}-C_{(10)}-C_{(11)}$	123.3(3)	
$C_{(7)} - C_{(8)} - C_{(15)}$	119.6(3)	$C_{(11)}-C_{(10)}-N_{(2)}$	119.4(3)	
$C_{(15)} - C_{(8)} - C_{(9)}$	118.8(3)	$C_{(13)}-C_{(12)}-C_{(11)}$	118.8(3)	
$O_{(1)} - C_{(9)} - C_{(8)}$	123.5(3)	$N_{(3)}-C_{(14)}-C_{(13)}$	121.4(3)	
$N_{(2)} - C_{(10)} - N_{(3)}$	122.4(3)	$C_{(13)}-C_{(14)}-C_{(15)}$	122.4(3)	
$N_{(3)} - C_{(10)} - C_{(11)}$	117.4(3)	$C_{(7)} - N_{(2)} - C_{(10)}$	126.2(2)	
$C_{(11)} - C_{(12)} - C_{(13)}$	119.7(3)	$N_{(1)}-C_{(1)}-C_{(6)}$	119.9(2)	
$C_{(13)} - C_{(14)} - N_{(3)}$	120.3(3)	$C_{(6)} - C_{(1)} - C_{(2)}$	120.8(2)	
$O_{(2)} - C_{(15)} - N_{(3)}$	117.1(3)	$C_{(2)} - C_{(3)} - C_{(4)}$	119.7(3)	
$N_{(1)}-C_{(16)}-C_{(17)}$	111.5(3)	$C_{(4)} - C_{(5)} - C_{(6)}$	120.5(3)	
$C_{(1)} - N_{(1)} - C_{(16)}$	121.0(2)	$C_{(1)} - C_{(6)} - C_{(7)}$	118.2(2)	
$C_{(10)} - N_{(2)} - C_{(7)}$	117.9(3)	$C_{(8)} - C_{(7)} - N_{(2)}$	123.0(2)	
$C_{(14)} - N_{(3)} - C_{(15)}$	116.8(3)	$N_{(2)}-C_{(7)}-C_{(6)}$	118.1(2)	
$C_{(6)} - C_{(1)} - N_{(1)}$	120.0(3)	$O_{(1)} - C_{(9)} - N_{(1)}$	119.4(2)	
$N_{(1)}-C_{(1)}-C_{(2)}$	120.7(3)	$N_{(1)}-C_{(9)}-C_{(8)}$	117.1(2)	
$C_{(2)} - C_{(3)} - C_{(4)}$	120.6(3)	$N_{(3)}-C_{(10)}-N_{(2)}$	117.3(2)	
$C_{(5)}-C_{(4)}-Cl_{(1)}$	120.9(3)	$C_{(12)}-C_{(11)}-C_{(10)}$	118.8(3)	
$C_{(4)} - C_{(5)} - C_{(6)}$	120.5(3)	$C_{(12)}-C_{(13)}-C_{(14)}$	119.9(3)	
$C_{(1)} - C_{(6)} - C_{(7)}$	120.2(3)	$N_{(3)}-C_{(14)}-C_{(15)}$	116.3(3)	
$N_{(2)} - C_{(7)} - C_{(8)}$	124.7(3)	$C_{(2W)} - O_{(1W)} - H_{(1OW)}$	113(3)	
$C_{(8)}-C_{(7)}-C_{(6)}$	118.3(3)	$O_{(1W)} - C_{(2W)} - C_{(1W)}$	119.4(6)	
$C_{(7)} - C_{(8)} - C_{(9)}$	121.6(3)			
$O_{(1)} - C_{(9)} - N_{(1)}$	119.3(3)			
$N_{(1)} - C_{(9)} - C_{(8)}$	117.2(3)			
$N_{(2)}-C_{(10)}-C_{(11)}$	120.2(3)			
$C_{(12)} - C_{(11)} - C_{(10)}$	120.8(3)			
$C_{(14)} - C_{(13)} - C_{(12)}$	120.6(3)			
$O_{(2)} - C_{(15)} - C_{(8)}$	129.6(3)			
$C_{(8)} - C_{(15)} - N_{(3)}$	113.2(3)			

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Спектры ЯМР ¹Н синтезированных соединений записаны на приборе Varian Mercury-VX-200 (200 МГц), растворитель ДМСО-d₆, внутренний стандарт ТМС. Масс-спектры зарегистрированы на квадрупольном спектрометре Finnigan MAT Incos 50 в режиме полного сканирования в диапазоне 33...700 *m/z*, ионизация ЭУ 70 эВ при прямом вводе образца, скорость нагрева ~5 °C/с.

8-Метил-5Н-5,7а,12-триазабензо[а]антрацен-6,7-дион (5е). Смесь 2.51 г (0.01 моль) этилового эфира 1-Н-2-оксо-4-хлорхинолин-3-карбоновой кислоты (1) и 1.08 г (0.01 моль) 2-амино-6-метилпиридина тщательно перемешивают и выдерживают 20–30 мин на металлической бане при 250 °С. Охлаждают, остаток растворяют в кипящем ДМФА, чистят углем и фильтруют. Выделившиеся кристаллы бензоантрацена **5**е отфильтровывают, промывают на воронке спиртом, затем водой, сушат.

По аналогичной методике получены все бензоантрацены 5 (табл. 1).

4-(6-метилпиридил-2-амино)-1H-хинолин-2-он (6е, R = R' = H, R'' = 6-Ме). Фильтрат после отделения бензоантрацена **5е** (см. предыдущий пример) разбавляют водой. Выпавший осадок отфильтровывают, промывают водой, сушат. Выход 1.58 г (63%). После двойной перекристаллизации из водного этанола получают прозрачные бесцветные кристаллы сольвата с т. пл. 225–227 °C (в запаянном капилляре). Чистый препарат с т. пл. 271–273 °C получают, выдерживая мелкоизмельченный сольват в сушильном шкафу при 100–110 °C в течение 3 сут. Спектр ЯМР ¹H, δ , м. д. (J, Гц): 11.20 (1H, с, CONH); 8.92 (1H, с, NH); 8.18 (1H, д, J = 8.1, H-5); 7.63 (1H, т, J = 7.3, H-4'); 7.49 (1H, т, J = 7.2, H-7); 7.43 (1H, с, H-3); 7.29 (1H, д, J = 8.6, H-8); 7.23–7.10 (2H, м, H-6 + H-3'); 6.84 (1H, д, J = 7.4, H-5'); 2.43 (3H, с, CH₃). Найдено, %: C 71.55; H 5.17; N 16.77. C₁₅H₁₃N₃O. Вычислено, %: C 71.69; H 5.21; N 16.72.

Рентгеноструктурные исследования. Кристаллы бензоантрацена **5n** моноклинные, при 20 °C a = 8.730(2), b = 15.672(5), c = 11.484(4) Å, $\beta = 111.05(2)^{\circ}$, V = 1466.4(8) Å³, $M_r = 325.75$, Z = 4, пространственная группа $P2_1/c$, $d_{Bbl4} = 1.475$ г/см³, μ (Мо $K\alpha$) = 0.274 мм⁻¹, F(000) = 672. Кристаллы сольвата пиридиламинохинолин-2-она **6e** с этанолом моноклинные, при 20 °C a = 11.131(4), b = 9.477(3), c = 15.332(5) Å, $\beta = 107.98(3)^{\circ}$, V = 1538.4(9) Å³, $M_r = 297.35$, Z = 4, пространственная группа $P2_1/c$, $d_{Bbl4} = 1.284$ г/см³, μ (Мо $K\alpha$) = 0.086 мм⁻¹, F(000) = 632. Параметры элементарных ячеек и интенсивности 2614 отражений (2427 независимых, $R_{int} = 0.042$) для бензоантрацена **5n** и 2799 отражений (2578 независимых, $R_{int} = 0.04$) для пиридиламинохинолин-2-она **6e** измерены на автоматическом четырехкружном дифрактометре Siemens РЗ/РС (Мо $K\alpha$, графитовый монохроматор, θ/θ -сканирование, $2\theta_{max} = 50^{\circ}$).

Структуры расшифрованы прямым методом по комплексу программ SHELXTL [20]. Положения атомов водорода выявлены из разностного синтеза электронной плотности. Уточнение положения атомов водорода проводилось по модели "наездника" с $U_{\mu_{30}} = n U_{_{3KB}}$ неводородного атома, связанного с данным водородным (n = 1.5 для метильных групп и n = 1.2 для остальных атомов водорода). Атомы $H_{(1N)}$, $H_{(2N)}$ и $H_{(1OW)}$ в структуре пиридиламинохинолин-2-она бе уточнены изотропно. Все остальные атомы водорода этого соединения уточнялись по модели "наездника" с нефиксированным Uизо. При уточнении структуры налагались ограничения на длины связей в молекуле растворителя (C(sp³)- $C(sp^3)$ 1.51(1) Å). Структуры уточнены по F^2 полноматричным МНК в анизотропном приближении для неводородных атомов до $wR_2 = 0.091$ по 2427 отражениям ($R_1 = 0.045$ по 1190 отражениям с $F > 4\sigma$ (F), S = 0.858) для бензоантрацена **5n** и до $wR_2 = 0.155$ по 2578 отражениям ($R_1 = 0.059$ по 1597 отражениям с $F > 4\sigma(F)$, S = 0.972) для пиридиламинохинолин-2-она 6е. Полная кристаллографическая информация депонирована в Кембриджском банке структурных данных (бензоантрацен 5n – депонент № ССDС 240007; пиридиламинохинолин-2-он 6е – депонент № ССDС 240006). Межатомные расстояния и валентные углы представлены в табл. 4, 5.

СПИСОК ЛИТЕРАТУРЫ

1. И. В. Украинец, П. А. Безуглый, Н. Скаиф, О. В. Горохова, Л. В. Сидоренко, *Журн. орг. фарм. хим.*, **2**, вып. 1 (5), 39 (2004).

- 2. Общая органическая химия, под ред. Д. Бартона, У. Д. Оллиса, Химия, Москва, 1985, **8**, с. 79.
- 3. A. Kutyrev, T. Kappe, J. Heterocycl. Chem., 36, 237 (1999).
- 4. Y. Fang-Chen, C. Bang-Chi, H. Xian, Synthesis, 317 (1989).
- 5. M. B. Abelson, G. J. Berdy, T. Mundorf, L. D. Amdahl, A. L. Graves, J. Ocul. Pharmacol. Ther., 18, 475 (2002).
- 6. J. V. Lawler, M. R. Wallace, Curr. Gastroenterol. Rep., 5, 287 (2003).
- B. J. Brown, A. O. Asinobi, O. J. Fatunde, K. Osinusi, N. A. Fasina, West Afr. J. Med., 22, 110 (2003).
- C. L. Hart, A. S. Ward, M. Haney, R. W. Foltin, *Exp. Clin. Psychopharmacol.*, 11, 259 (2003).
- 9. И. В. Украинец, С. Г. Таран, О. В. Горохова, Н. А. Марусенко, С. Н. Коваленко, А. В. Туров, Н. И. Филимонова, С. М. Ивков, *XTC*, 195 (1995).
- 10. П. А. Безуглый, И. В. Украинец, Н. Скаиф, О. В. Горохова, Л. В. Сидоренко, *Фармаком*, № 3, 23 (2003).
- 11. А. Ф. Пожарский, Теоретические основы химии гетероциклов, Химия, Москва, 1985.
- 12. H. Gunther, *NMR Spectroscopy: Basic Principles, Concepts, and Applications in Chemistry,* John Wiley & Sons, Chichester, 1995.
- 13. H.-B. Burgi, J. D. Dunitz, Struc. Correl., VCH, Weinheim, 1994, 2, 741.
- 14. Jia-Hai Ye, Ke-Qing Ling, Yan Zhang, Ning Li, Jian-Hua Xu, J. Chem. Soc., Perkin Trans. 1, 2017 (1999).
- E. V. L. da Cunha, J. A. Armstrong, A. I. Gray, D. C. R. Hockless, P. G. Waterman, A. H. White, *Aust. J. Chem.*, 46, 1507 (1993).
- V. B. Rybakov, V. V. Chernyshev, I. V. Ukrainets, P. A. Bezugly, L. V. Sidorenko, N. Skaif, *Acta Crystallogr.*, E57, 721 (2001).
- 17. Ю. В. Зефиров, П. М. Зоркий, Успехи химии, 58, 713 (1989).
- 18. П. А. Безуглый, И. В. Украинец, Н. Скаиф, О. В. Горохова, Л. В. Сидоренко, *Журн. орг. фарм. хим.*, **1**, вып. 1–2, 51 (2003).
- 19. N. S. Zefirov, V. A. Palyulin, E. E. Dashevskaya, J. Phys. Org. Chem., 3, 147 (1990).
- 20. G. M. Sheldrick, SHELXTL PLUS. PC Version. A system of computer programs for the determination of crystal structure from X-ray diffraction data, Rev. 5.1 (1998).

Национальный фармацевтический университет, Харьков 61002, Украина e-mail: uiv@kharkov.ua Поступило в редакцию 09.03.2004